Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamically tunable multi-frequency modulator via triple plasmon-induced transparency in graphene metasurfaces

ZHANG Wenjie ZHANG Xiaojiao HU Shunan ZHAN Jie GAO Enduo WANG Qi NIE Guozheng

Citation:

Dynamically tunable multi-frequency modulator via triple plasmon-induced transparency in graphene metasurfaces

ZHANG Wenjie, ZHANG Xiaojiao, HU Shunan, ZHAN Jie, GAO Enduo, WANG Qi, NIE Guozheng
cstr: 32037.14.aps.74.20250488
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Plasmon-induced transparency (PIT) is a class of electromagnetically induced transparency phenomenon that enhances the interaction between light and matter, thereby improving the performance of nano-optical devices. However, traditional PITs usually rely on near-field coupling between bright modes and dark modes. In order to break through the limitation of this mechanism, in this study we propose a dual-polarized graphene hypersurface structure, which consists of four groups of symmetric L-shaped graphene surrounding cross-shaped hollow graphene, forming a triple PIT through the synergistic effect between two single PITs. The accuracy of the results is verified by simulating the transmission spectra using the finite-difference time-domain, which is highly similar to that of the coupled-mode theory results. It is found that by modulating the Fermi energy levels and carrier mobility, this structure exhibits a group refractive index of up to 500 as a slow-light device, demonstrating excellent slow-light control capability. As a polarizing device, this structure has dual polarization characteristics and can generate a triple PIT window under both x and y polarized light incidence. In particular, the resonant frequency f6 is not affected by the direction of polarization of the incident light. This good stability and resistance to interference in various polarized light conditions are particularly important for designing polarization devices. Meanwhile, we adjust the length parameter of graphene L2 and find that the resonance frequency f6 is still highly stable, showing a better tolerance to structural changes. Therefore, in this study, a multifunctional integrated device with slow light modulation and polarization selection in one device is designed, providing new theoretical guidance and research directions for synergistic effects based on polarization insensitivity.
      Corresponding author: ZHAN Jie, jiezhanwl@163.com ; GAO Enduo, 009004@csust.edu.cn ; NIE Guozheng, gzhnie@hnust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62175062, 62173135), the Natural Science Foundation of the Education Department of Hunan Province, China (Grant No. 23A0454), the Natural Science Foundation of Hunan Province, China (Grant No. 2025JJ50357), and the Open Fund for Hunan Provincial Key Laboratory of Intelligent Sensors and Novel Sensing Materials (Grant No. E22453).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Ebbesen T W, Genet C, Bozhevolnyi S I 2008 Phys. Today 61 44Google Scholar

    [3]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [4]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685Google Scholar

    [5]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83Google Scholar

    [6]

    Farmani A, Mir A, Sharifpour Z 2018 Appl. Surf. Sci. 453 358Google Scholar

    [7]

    Creighton J A, Blatchford C G, Albrecht M G 1979 J. Chem. Soc. , Faraday Trans. 75 790Google Scholar

    [8]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [9]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435Google Scholar

    [10]

    Chen P Y, Argyropoulos C, Farhat M, Gomez-Diaz J S 2017 Nanophotonics 6 1239Google Scholar

    [11]

    Chen Z Y, Liu N L, Nie G Z, Li Y Q, Su X, Tang X F, Zeng Y, Liu Y X 2024 Physica B. 686 416073Google Scholar

    [12]

    Liu C B, Bai Y, Zhou J, Zhao Q, Qiao L J 2017 J. Korean Ceram. Soc. 54 349Google Scholar

    [13]

    Han M Y, Özyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805Google Scholar

    [14]

    Zhang B H, Huang X T, Chen G, Wang Z, Qian W, Zhang Z X, Cai W Q, Du K, Zhou C, Wang T T, Zhu W, He D P, Wang S X 2023 Opt. Laser Technol. 164 109431Google Scholar

    [15]

    Dhriti K M, Chowdhary A K, Chouhan B S, Sikdar D, Kumar G 2022 J. Phys. D: Appl. Phys. 55 285101Google Scholar

    [16]

    Li Z L, Nie G Z, Chen Z Q, Zhan S P, Lan L F 2024 Opt. Lett. 49 3380Google Scholar

    [17]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨 2023 物理学报 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phys. Sin. 72 128701Google Scholar

    [18]

    Li Z L, Nie G Z, Wang J H, Zhong F, Zhan S P 2024 Phys. Rev. Appl. 21 034039Google Scholar

    [19]

    Zhan Y, Fan C Z 2023 Mater. Res. Express 10 055802Google Scholar

    [20]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131Google Scholar

    [21]

    Zhang H Y, Cao Y Y, Liu Y Z, Li Y, Zhang Y P 2017 Opt. Commun. 391 9Google Scholar

    [22]

    Scott Z, Muhammad S, Shahbazyan T V 2022 J. Chem. Phys. 156 194702Google Scholar

    [23]

    Kurter C, Tassin P, Zhang L, Koschny T, Zhuravel A P, Ustinov A V, Anlage S M, Soukoulis C M 2011 Phys. Rev. Lett. 107 043901Google Scholar

    [24]

    成昱轩, 许辉, 于鸿飞, 黄林琴, 谷志超, 陈玉峰, 贺龙辉, 陈智全, 侯海良 2025 物理学报 74 067801Google Scholar

    Cheng Y X, Xu H, Yu H F, Huang L Q, Gu Z C, Chen Y F, He L H, Chen Z Q, Hou H L 2025 Acta Phys. Sin. 74 067801Google Scholar

    [25]

    Yang H, Li G H, Cao G T, Zhao Z Y, Chen J, Ou K, Chen X S, Lu W 2018 Opt. Express 26 5632Google Scholar

    [26]

    Tsakmakidis K L, Shen L, Schulz S A, Zheng X, Upham J, Deng X, Altug H, Vakakis A F, Boyd R 2017 Science 356 1260Google Scholar

    [27]

    He Z H, Li L Q, Cui W, Wang Y X, Xue W W, Xu H, Yi Z, Li C J, Li Z X 2021 New J. Phys. 23 053015Google Scholar

    [28]

    Yan Y, Jiang Y F, Li B X, Deng C S 2023 J. Lightwave Technol. 42 732Google Scholar

    [29]

    胡树南, 李德琼, 詹杰, 高恩多, 王琦, 刘南柳, 聂国政 2025 物理学报 74 097801Google Scholar

    Hu S N, Li D Q, Zhan J, Gao E D, Wang Q, Liu N L, Nie G Z 2025 Acta Phys. Sin. 74 097801Google Scholar

    [30]

    Li M, Xu H, Yang X J, Xu H Y, Liu P C, He L H, Nie G Z, Dong Y L, Chen Z Q 2023 Results Phys. 52 106798Google Scholar

    [31]

    Xu H, Zhao M Z, Xiong C X, Zhang B H, Zheng M F, Zeng J P, Xia H, Li H J 2018 Phys. Chem. Chem. Phys. 20 25959Google Scholar

    [32]

    Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 75 015501Google Scholar

    [33]

    Liu Z M, Zhang X, Zhang Z B, Gao E D, Zhou F Q, Li H J, Luo X 2020 New J. Phys. 22 083006Google Scholar

    [34]

    Zhang X, Zhou F Q, Liu Z M, Zhang Z B, Qin Y P, Zhou S S, Luo X, Gao E D, Li H J 2021 Opt. Express 29 29387Google Scholar

    [35]

    Ji C, Liu Z M, Zhou F Q, Luo X, Yang G X, Xie Y D, Yang R H 2023 J. Phys. D: Appl. Phys. 56 405102Google Scholar

    [36]

    Liu Z M, Yang G X, Luo X, Zhou F Q, Cheng Z Q, Yi Z 2024 Diam. Relat. Mater. 142 110786Google Scholar

    [37]

    Zheng L, Cheng X H, Cao D, Wang G, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H, Shen D S 2014 ACS Appl. Mater. Interfaces 6 7014Google Scholar

    [38]

    Zheng L, Cheng X H, Cao D, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H 2014 Mater. Lett. 137 200Google Scholar

    [39]

    Jin R, Huang L J, Zhou C B, Guo J Y, Fu Z C, Chen J, Wang J, Li X, Yu F L, Chen J, Zhao Z Y, Chen X S, Lu W, Li G H 2023 Nano Lett. 23 9105Google Scholar

    [40]

    Müller M, Bouša M, Hájková Z, Ledinský M, Fejar A, Drogowska-Horná K, Kalbáč M, Frank O 2020 Nanomaterials 10 589Google Scholar

    [41]

    Wu D, Wang M, Feng H, Xu Z X, Liu Y P, Xia F, Zhang K, Kong W J, Dong L F, Yun M J 2019 Carbon 155 618Google Scholar

    [42]

    Falkovsky L A, Varlamov A A 2007 Eur. Phys. J. B 56 281Google Scholar

    [43]

    Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012 Nano Res. 5 667Google Scholar

    [44]

    Liang H W, Ruan S C, Zhang M, Su H, Li I L 2015 Appl. Phys. Lett. 107 091602Google Scholar

    [45]

    Cheng H, Chen S Q, Yu P, Duan X Y, Xie B Y, Tian J G 2013 Appl. Phys. Lett. 103 203112Google Scholar

    [46]

    Zentgraf T, Zhang S, Oulton R F, Zhang X 2009 Phys. Rev. B 80 195415Google Scholar

    [47]

    Li M, Li H J, Xu H, Xiong C X, Zhao M Z, Liu C, Ruan B X, Zhang B H, Wu K 2020 New J. Phys. 22 103030Google Scholar

    [48]

    Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 74 115501Google Scholar

    [49]

    Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401Google Scholar

    [50]

    Liu Z M, Qin Y P, Zhou F Q, Zhou S S, Ji C, Yang G X, Xie Y D, Yang R H, Luo X 2024 Mod. Phys. Lett. B 38 2350248Google Scholar

    [51]

    Wang Y J, Luo G L, Yan Z D, Wang J P, Tang C J, Liu F X, Zhu M W 2024 J. Lightwave Technol. 42 406Google Scholar

  • 图 1  (a) 所提出的超表面的三维结构透视图和侧视图; (b) 一个周期单元结构顶视图; (c) 石墨烯结构制备过程的示意图

    Figure 1.  (a) Perspective and side views of the three-dimensional structure of the proposed hypersurface; (b) top view of one cycle unit structure; (c) schematic diagram of the process of preparing graphene structures.

    图 2  耦合模理论示意图

    Figure 2.  Schematic diagram of coupled mode theory.

    图 3  (a)—(c) 不同石墨烯结构之间相互作用的透射光谱; (d) 三重PIT共振频率下的归一化电场分布图

    Figure 3.  (a)–(c) Transmission spectra illustrating interactions between different graphene structures; (d) normalized electric field distribution at triple PIT resonance frequencies.

    图 4  (a) 不同费米能级下FDTD模拟和CMT计算的透射光谱; (b) 三重PIT在不同费米能级的三维演化

    Figure 4.  (a) Transmission spectra from FDTD simulations and CMT calculations at Fermi levels; (b) three-dimensional evolution of the triple-PIT at different Fermi levels.

    图 5  不同结构参数下的透射光谱

    Figure 5.  Transmission spectra with different structural parameters.

    图 6  不同石墨烯载流子迁移率条件下, 群折射率和相移随频率的变化(EF = 1.0 eV) (a) 0.5 m2/(V·s); (b) 1.0 m2/(V·s); (c) 2.0 m2/(V·s); (d) 3.0 m2/(V·s)

    Figure 6.  Variation of group index and phase shift with frequency at graphene carrier mobilities of (a) 0.5 m2/(V·s), (b) 1.0 m2/(V·s), (c) 2.0 m2/(V·s), and (d) 3.0 m2/(V·s) (EF = 1.0 eV).

    图 7  (a) 偏振光入射角从0°—90°变化的透射光谱; (b) 透射率随偏振光入射角和频率的三维演化; (c) 共振频率随角度变化的趋势图

    Figure 7.  (a) Transmission spectra under varying polarization angles of incident light from 0° to 90°; (b) three-dimensional mapping of transmittance versus frequency and polarization angle; (c) trend plot of resonance frequency versus angle.

    图 8  (a)—(c) SS, SZ和整个结构对于偏振光的透射光谱; (d) 不同偏振光下整体结构的电场分布图

    Figure 8.  (a)–(c) Transmission spectra of the SS, SZ, and the entire structure under polarized illumination; (d) plot of the electric field distribution of the overall structure under different polarized light.

    表 1  不同图案化石墨烯的性能比较

    Table 1.  Comparison of the properties of different patterned graphene.

    Reference
    /year
    Modulation modeMaterial structureGroup indexPolarization direction or sensitive
    2020[47]Dual-frequencySingle-layer continuous patterned graphene358x-polarization
    2021[34]Multiple-frequencySingle-layer discrete patterned graphene321Polarization-insensitive
    2022[48]Multiple-frequencyDouble-layer patterned graphene<500x-polarization
    2023[49]Dual-frequencyMonolayer patterned black phosphorus219x-polarization
    2023[50]Multiple-frequencyDouble-layer patterned graphene424Polarization-insensitive
    2024[51]Multiple-frequencySingle-layer silicon nanostrip array320x or y-polarization
    This workMultiple-frequencySingle-layer discrete patterned graphene500x or y-polarization-insensitive
    DownLoad: CSV
  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Ebbesen T W, Genet C, Bozhevolnyi S I 2008 Phys. Today 61 44Google Scholar

    [3]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [4]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685Google Scholar

    [5]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83Google Scholar

    [6]

    Farmani A, Mir A, Sharifpour Z 2018 Appl. Surf. Sci. 453 358Google Scholar

    [7]

    Creighton J A, Blatchford C G, Albrecht M G 1979 J. Chem. Soc. , Faraday Trans. 75 790Google Scholar

    [8]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [9]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435Google Scholar

    [10]

    Chen P Y, Argyropoulos C, Farhat M, Gomez-Diaz J S 2017 Nanophotonics 6 1239Google Scholar

    [11]

    Chen Z Y, Liu N L, Nie G Z, Li Y Q, Su X, Tang X F, Zeng Y, Liu Y X 2024 Physica B. 686 416073Google Scholar

    [12]

    Liu C B, Bai Y, Zhou J, Zhao Q, Qiao L J 2017 J. Korean Ceram. Soc. 54 349Google Scholar

    [13]

    Han M Y, Özyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805Google Scholar

    [14]

    Zhang B H, Huang X T, Chen G, Wang Z, Qian W, Zhang Z X, Cai W Q, Du K, Zhou C, Wang T T, Zhu W, He D P, Wang S X 2023 Opt. Laser Technol. 164 109431Google Scholar

    [15]

    Dhriti K M, Chowdhary A K, Chouhan B S, Sikdar D, Kumar G 2022 J. Phys. D: Appl. Phys. 55 285101Google Scholar

    [16]

    Li Z L, Nie G Z, Chen Z Q, Zhan S P, Lan L F 2024 Opt. Lett. 49 3380Google Scholar

    [17]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨 2023 物理学报 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phys. Sin. 72 128701Google Scholar

    [18]

    Li Z L, Nie G Z, Wang J H, Zhong F, Zhan S P 2024 Phys. Rev. Appl. 21 034039Google Scholar

    [19]

    Zhan Y, Fan C Z 2023 Mater. Res. Express 10 055802Google Scholar

    [20]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131Google Scholar

    [21]

    Zhang H Y, Cao Y Y, Liu Y Z, Li Y, Zhang Y P 2017 Opt. Commun. 391 9Google Scholar

    [22]

    Scott Z, Muhammad S, Shahbazyan T V 2022 J. Chem. Phys. 156 194702Google Scholar

    [23]

    Kurter C, Tassin P, Zhang L, Koschny T, Zhuravel A P, Ustinov A V, Anlage S M, Soukoulis C M 2011 Phys. Rev. Lett. 107 043901Google Scholar

    [24]

    成昱轩, 许辉, 于鸿飞, 黄林琴, 谷志超, 陈玉峰, 贺龙辉, 陈智全, 侯海良 2025 物理学报 74 067801Google Scholar

    Cheng Y X, Xu H, Yu H F, Huang L Q, Gu Z C, Chen Y F, He L H, Chen Z Q, Hou H L 2025 Acta Phys. Sin. 74 067801Google Scholar

    [25]

    Yang H, Li G H, Cao G T, Zhao Z Y, Chen J, Ou K, Chen X S, Lu W 2018 Opt. Express 26 5632Google Scholar

    [26]

    Tsakmakidis K L, Shen L, Schulz S A, Zheng X, Upham J, Deng X, Altug H, Vakakis A F, Boyd R 2017 Science 356 1260Google Scholar

    [27]

    He Z H, Li L Q, Cui W, Wang Y X, Xue W W, Xu H, Yi Z, Li C J, Li Z X 2021 New J. Phys. 23 053015Google Scholar

    [28]

    Yan Y, Jiang Y F, Li B X, Deng C S 2023 J. Lightwave Technol. 42 732Google Scholar

    [29]

    胡树南, 李德琼, 詹杰, 高恩多, 王琦, 刘南柳, 聂国政 2025 物理学报 74 097801Google Scholar

    Hu S N, Li D Q, Zhan J, Gao E D, Wang Q, Liu N L, Nie G Z 2025 Acta Phys. Sin. 74 097801Google Scholar

    [30]

    Li M, Xu H, Yang X J, Xu H Y, Liu P C, He L H, Nie G Z, Dong Y L, Chen Z Q 2023 Results Phys. 52 106798Google Scholar

    [31]

    Xu H, Zhao M Z, Xiong C X, Zhang B H, Zheng M F, Zeng J P, Xia H, Li H J 2018 Phys. Chem. Chem. Phys. 20 25959Google Scholar

    [32]

    Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 75 015501Google Scholar

    [33]

    Liu Z M, Zhang X, Zhang Z B, Gao E D, Zhou F Q, Li H J, Luo X 2020 New J. Phys. 22 083006Google Scholar

    [34]

    Zhang X, Zhou F Q, Liu Z M, Zhang Z B, Qin Y P, Zhou S S, Luo X, Gao E D, Li H J 2021 Opt. Express 29 29387Google Scholar

    [35]

    Ji C, Liu Z M, Zhou F Q, Luo X, Yang G X, Xie Y D, Yang R H 2023 J. Phys. D: Appl. Phys. 56 405102Google Scholar

    [36]

    Liu Z M, Yang G X, Luo X, Zhou F Q, Cheng Z Q, Yi Z 2024 Diam. Relat. Mater. 142 110786Google Scholar

    [37]

    Zheng L, Cheng X H, Cao D, Wang G, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H, Shen D S 2014 ACS Appl. Mater. Interfaces 6 7014Google Scholar

    [38]

    Zheng L, Cheng X H, Cao D, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H 2014 Mater. Lett. 137 200Google Scholar

    [39]

    Jin R, Huang L J, Zhou C B, Guo J Y, Fu Z C, Chen J, Wang J, Li X, Yu F L, Chen J, Zhao Z Y, Chen X S, Lu W, Li G H 2023 Nano Lett. 23 9105Google Scholar

    [40]

    Müller M, Bouša M, Hájková Z, Ledinský M, Fejar A, Drogowska-Horná K, Kalbáč M, Frank O 2020 Nanomaterials 10 589Google Scholar

    [41]

    Wu D, Wang M, Feng H, Xu Z X, Liu Y P, Xia F, Zhang K, Kong W J, Dong L F, Yun M J 2019 Carbon 155 618Google Scholar

    [42]

    Falkovsky L A, Varlamov A A 2007 Eur. Phys. J. B 56 281Google Scholar

    [43]

    Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012 Nano Res. 5 667Google Scholar

    [44]

    Liang H W, Ruan S C, Zhang M, Su H, Li I L 2015 Appl. Phys. Lett. 107 091602Google Scholar

    [45]

    Cheng H, Chen S Q, Yu P, Duan X Y, Xie B Y, Tian J G 2013 Appl. Phys. Lett. 103 203112Google Scholar

    [46]

    Zentgraf T, Zhang S, Oulton R F, Zhang X 2009 Phys. Rev. B 80 195415Google Scholar

    [47]

    Li M, Li H J, Xu H, Xiong C X, Zhao M Z, Liu C, Ruan B X, Zhang B H, Wu K 2020 New J. Phys. 22 103030Google Scholar

    [48]

    Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 74 115501Google Scholar

    [49]

    Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401Google Scholar

    [50]

    Liu Z M, Qin Y P, Zhou F Q, Zhou S S, Ji C, Yang G X, Xie Y D, Yang R H, Luo X 2024 Mod. Phys. Lett. B 38 2350248Google Scholar

    [51]

    Wang Y J, Luo G L, Yan Z D, Wang J P, Tang C J, Liu F X, Zhu M W 2024 J. Lightwave Technol. 42 406Google Scholar

  • [1] SHI Hanxu, LI Xinyang, ZHANG Yuru, WANG Younian. Numerical investigation of the secondary electron effect in capacitively coupled plasmas driven by ultra-low frequency/radio frequency sources. Acta Physica Sinica, 2025, 74(13): 135203. doi: 10.7498/aps.74.20250341
    [2] HU Shunan, LI Deqiong, ZHAN Jie, GAO Enduo, WANG Qi, LIU Nanliu, NIE Guozheng. Synergy-based plasmon-induced transparency and optical switch and slow light applications. Acta Physica Sinica, 2025, 74(9): 097801. doi: 10.7498/aps.74.20250078
    [3] Wang Xin, Ren Fei-Fan, Han Song, Han Hai-Yan, Yan Dong. Perfect optomechanically induced transparency and slow light in an Rydberg atom-assisted optomechanical system. Acta Physica Sinica, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [4] Xie Bao-Hao, Chen Hua-Jun, Sun Yi. Slow light effect caused by optomechanically induced transparency in multimode optomechanical system. Acta Physica Sinica, 2023, 72(15): 154203. doi: 10.7498/aps.72.20230663
    [5] Gu Xin, Zhang Hui-Fang, Li Ming-Yu, Chen Jun-Ya, He Ying. Theoretical analysis of tunable double plasmon induced transparency in three-ellipse-shaped resonator coupled waveguide. Acta Physica Sinica, 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [6] Wang Bo-Yun, Zhu Zi-Hao, Gao You-Kang, Zeng Qing-Dong, Liu Yang, Du Jun, Wang Tao, Yu Hua-Qing. Plasmon induced transparency effect based on graphene nanoribbon waveguide side-coupled with rectangle cavities system. Acta Physica Sinica, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [7] Zhu Zi-Hao, Gao You-Kang, Zeng Yan, Cheng Zheng, Ma Hong-Hua, Yi Xu-Nong. Three-band plasmon induced transparency effect based on four-disk resonator coupled waveguide system. Acta Physica Sinica, 2022, 71(24): 244201. doi: 10.7498/aps.71.20221397
    [8] Plasmon induced transparency effect based on graphene nanoribbon waveguide side–coupled with rectangle cavities system. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211397
    [9] Chen Ying, Xie Jin-Chao, Zhou Xin-De, Zhang Can, Yang Hui, Li Shao-Hua. Semi-closed T-shaped-disk waveguide filter based on surface-plasmon-induced transparency. Acta Physica Sinica, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [10] Zhang Kai, Du Chun-Guang, Gao Jian-Cun. Long-range surface plasmon polariton enhancement in double-electrode structure. Acta Physica Sinica, 2017, 66(22): 227302. doi: 10.7498/aps.66.227302
    [11] Yang You-Lei, Hu Ye-Min, Xiang Nong. Effects of trapping electrons on synergy of lower-hybrid wave and electron cyclotron wave. Acta Physica Sinica, 2017, 66(24): 245202. doi: 10.7498/aps.66.245202
    [12] He Yu-Juan, Zhang Xiao-Wen, Liu Yuan. Total dose dependence of hot carrier injection effect in the n-channel metal oxide semiconductor devices. Acta Physica Sinica, 2016, 65(24): 246101. doi: 10.7498/aps.65.246101
    [13] Hao Ying-Ying, Meng Xiu-Lan, Yao Fu-Bao, Zhao Guo-Ming, Wang Jing, Zhang Lian-Zhu. Simulations of electrical asymmetry effect on N2-H2 capacitively coupled plasma by particle-in-cell/Monte Carlo model. Acta Physica Sinica, 2014, 63(18): 185205. doi: 10.7498/aps.63.185205
    [14] Shen Yun, Fu Ji-Wu, Yu Guo-Ping. Influence of gain on propagation properties of slow light in one-dimensional periodic structures. Acta Physica Sinica, 2014, 63(17): 174202. doi: 10.7498/aps.63.174202
    [15] Huang Jie, Bai Xing-Yu, Zeng Hao, Tang Chang-Jian. Research on coupling characteristics of low hybrid wave in the presence of electron cyclotron wave in Tokamak. Acta Physica Sinica, 2013, 62(2): 025202. doi: 10.7498/aps.62.025202
    [16] Liang Pei, Wang Le, Xiong Si-Yu, Dong Qian-Min, Li Xiao-Yan. Research on the photocatalysis synergistic effect of Mo-X(B, C, N, O, F) codoped TiO2. Acta Physica Sinica, 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [17] Huang Yong-Xian, Leng Jin-Song, Tian Xiu-Bo, Lü Shi-Xiong, Li Yao. The study on adaptability and effect of mesh-inducing for plasma immersion ion implantation on non-conductor polymer. Acta Physica Sinica, 2012, 61(15): 155206. doi: 10.7498/aps.61.155206
    [18] Song Wen-Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Nanofocusing by phase delayed plasmonic nanostructures illuminated with a linearly polarized light. Acta Physica Sinica, 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [19] Xie Hong-Lan, Hu Wen, Luo Hong-Xin, Du Guo-Hao, Deng Biao, Chen Rong-Chang, Xue Yan-Ling, Shi Shao-Meng, Xiao Ti-Qiao. A new reconstructing algorithm for removing polarization effect of incident X-ray source and twin images in X-ray fluorescence holography. Acta Physica Sinica, 2008, 57(11): 7044-7051. doi: 10.7498/aps.57.7044
    [20] Yao Ming, Zhu Ka-Di, Yuan Xiao-Zhong, Jiang Yi-Wen, Wu Zhuo-Jie. Phonon mediated electromagnetically induced transparency and ultraslow light in strongly coupled exciton-phonon systems. Acta Physica Sinica, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
Metrics
  • Abstract views:  538
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2025
  • Accepted Date:  28 May 2025
  • Available Online:  11 June 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回