Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhancement mechanism of magnetic emission performance of PZT MFC/Metglas magnetoelectric composites by MoS2-modified adhesive layer

YOU Shiyue QIN Zhi MA Liang SHI Dengcai SHEN Jie JIN Wei ZHOU Jing

Citation:

Enhancement mechanism of magnetic emission performance of PZT MFC/Metglas magnetoelectric composites by MoS2-modified adhesive layer

YOU Shiyue, QIN Zhi, MA Liang, SHI Dengcai, SHEN Jie, JIN Wei, ZHOU Jing
cstr: 32037.14.aps.74.20250482
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The magnetoelectric (ME) antenna based on the piezoelectric resonance principle can solve the problems of large size and high power consumption of traditional low-frequency electrical antennas. However, the acoustic impedance mismatch between the adhesive layer in the magnetoelectric composite and the piezoelectric and ferromagnetic phases significantly hinders the stress transfer in the magneto-mechanical-electric coupling process, ultimately limiting the magnetic radiation intensity of the magnetoelectric composite. To improve the magnetic emission performance of the PZT MFC/Metglas magnetoelectric composite, in this work, the two-dimensional filler MoS2 is adopted to fill and modify the adhesive layer of the PZT MFC/Metglas magnetoelectric composite, aiming to improve the acoustic impedance match between the adhesive layer and the ferroelectric and ferromagnetic phases. The influence of the MoS2 content on the magnetic emission intensity of the PZT MFC/Metglas magnetoelectric composite is systematically studied. The results show that when the filling weight percent of MoS2 is 1%, the magnetic emission intensity of the PZT MFC/Metglas magnetoelectric composite can reach 331 μT under the optimal bias, which is 1.5 times higher than that of the magnetoelectric composite without MoS2 filling. At a distance of 1 m, the magnetic emission intensity can reach 2.7 nT. The stress wave transfer mechanism in the electro-mechanical-magnetic coupling is discussed in conjunction with acoustic impedance matching theory. In addition, the amplitude shift keying modulation method demonstrates the lossless signal transmission capability of the magnetoelectric antenna composed of MoS2-modified PZT MFC/Metglas magnetoelectric composite. This method of optimizing the interfacial adhesive layer is simple and effective to expand the magnetoelectric response by increasing the stress wave transfer efficiency. Meanwhile, it provides a feasible solution for communication systems such as low-frequency underwater communication, underground sensing, and distributed wireless networks.
      Corresponding author: JIN Wei, jinwei@whut.edu.cn ; ZHOU Jing, zhoujing@whut.edu.cn
    • Funds: Project supported by the Natural Science Foundation Innovation Research Team of Hainan Province, China (Grant No. 524CXTD431) and the Open Fund of Hubei Longzhong Laboratory, China (Grant Nos. 2024KF-04, 2024KF-14).
    [1]

    崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛 2020 物理学报 69 208401Google Scholar

    Cui Y, Wu M, Song X, Huang Y P, Jia Q, Tao Y F, Wang C 2020 Acta Phys. Sin. 69 208401Google Scholar

    [2]

    Yang S, Geng J, Zhou H, Wang K, Zhao X, Lu J, Zhao R, Tang X, Zhang Y, Su D, Zhang A, Li H, Jin R 2023 IEEE Trans. Antennas Propag. 71 2082Google Scholar

    [3]

    杨娜娜, 陈轩, 汪尧进 2018 物理学报 67 157508Google Scholar

    Yang N N, Chen X, Wang Y J 2018 Acta Phys. Sin. 67 157508Google Scholar

    [4]

    宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 褚昭强 2022 物理学报 71 247502Google Scholar

    Song K X, Min S G, Gao J Q, Zhang S J, Mao Z N, Shen Y, Chu Z Q 2022 Acta Phys. Sin. 71 247502Google Scholar

    [5]

    聂长文, 吴瀚舟, 王书豪, 蔡园园, 宋树, Sokolov Oleg, Bichurin, 汪尧进 2021 物理学报 70 247501Google Scholar

    Nie C W, Wu H Z, Wang S H, Cai Y Y, Song S, Sokolov O, Bichurin M I, Wang Y J 2021 Acta Phys. Sin. 70 247501Google Scholar

    [6]

    Chu Z, Yu C, Dan W, Jiang S, Ren Y, Dong K, Dong S 2024 Appl. Phys. Lett. 124 072901Google Scholar

    [7]

    Li W, Li D, Zhou K, Fu Q, Yuan X, Zhu X 2023 IEEE Trans. Antennas Propag. 71 263Google Scholar

    [8]

    Cheng Z, Zhou J, Wang B, Wu Q, Ma L, Qin Z, Shen J, Chen W, Peng W, Chang J, Ci P, Dong S 2024 Adv. Sci. 11 2403746Google Scholar

    [9]

    Cui Y, Wang C, Song X, Wu M, Zhang Q, Yuan H, Yuan Z 2023 iScience 26 105832Google Scholar

    [10]

    Niu Y, Ren H 2022 IEEE Sens. J. 22 14008Google Scholar

    [11]

    Liu K, Qin Z, Shen J, Cheng Z, You S, Ma L, Zhou J, Chen W 2024 Nano Res. 17 6630Google Scholar

    [12]

    Xiao N, Wang Y, Chen L, Wang G, Wen Y, Li P 2023 IEEE Antennas Wirel. Propag. Lett. 22 34Google Scholar

    [13]

    Chang J, He Z, Xu S, Zheng X, Peng W, Ci P, Wang B, Zhang C, Dong S 2024 Adv. Mater. 36 2309159Google Scholar

    [14]

    Dong C, He Y, Li M, Tu C, Chu Z, Liang X, Chen H, Wei Y, Zaeimbashi M, Wang X, Lin H, Gao Y, Sun N X 2020 IEEE Antennas Wirel. Propag. Lett. 19 398Google Scholar

    [15]

    Silva M, Reis S, Lehmann C S, Martins P, Lanceros Mendez S, Lasheras A, Gutiérrez J, Barandiarán J M 2013 ACS Appl. Mater. Interfaces 5 10912Google Scholar

    [16]

    Hwang G T, Palneedi H, Jung B M, Kwon S J, Peddigari M, Min Y, Kim J W, Ahn C W, Choi J J, Hahn B D, Choi J H, Yoon W H, Park D S, Lee S B, Choe Y, Kim K H, Ryu J 2018 ACS Appl. Mater. Interfaces 10 32323Google Scholar

    [17]

    Kim S H, Thakre A, Patil D R, Park S H, Listyawan T A, Park N, Hwang G T, Jang J, Kim K H, Ryu J 2021 ACS Appl. Mater. Interfaces 13 19983Google Scholar

    [18]

    Wong C M, Chan S F, Wu W C, Suen C H, Yau H M, Wang D Y, Li S, Dai J Y 2021 Ultrasonics 116 106506Google Scholar

    [19]

    Madeshwaran S R, Jayaganthan R, Velmurugan R, Gupta N K, Manzhirov A V 2018 J. Phys. Conf. Ser. 991 012054Google Scholar

    [20]

    Zhou J, Zhou J, Chen W, Tian J, Shen J, Zhang P 2022 Compos. Struct. 299 116019Google Scholar

    [21]

    Liang J Z 2013 Composites Part B. 51 224Google Scholar

    [22]

    Krautkrämer J, Krautkrämer H 2013 Ultrasonic Testing of Materials (New York: Springer Science & Business Media

    [23]

    Hassanien A E, Breen M, Li M H, Gong S 2020 Sci. Rep. 10 17006Google Scholar

    [24]

    Hu L, Zhang Q, Wu H, You H, Jiao J, Luo H, Wang Y, Duan C, Gao A 2022 J. Phys. Condens. Matter 34 414002Google Scholar

    [25]

    Du Y, Xu Y, Wu J, Qiao J, Wang Z, Hu Z, Jiang Z, Liu M 2023 IEEE Trans. Antennas Propag. 71 2167Google Scholar

    [26]

    Fu S, Cheng J, Jiang T, Wu H, Fang Z, Jiao J, Sokolov O, Ivanov S, Bichurin M, Wang Y 2023 Appl. Phys. Lett. 122 262901Google Scholar

    [27]

    Leung C M, Zheng H, Yang J, Wang T, Wang F 2024 Sensors 24 694Google Scholar

  • 图 1  MoS2填充环氧树脂黏接层及磁电复合材料的制备流程图

    Figure 1.  Schematic of the preparation of MoS2-filled epoxy adhesive layer and the synthesis process of the magnetoelectric (ME) composite.

    图 2  (a)不同MoS2填充量黏接层的XRD图谱; (b)填充前后黏接层FT-IR光谱图; (c)不同MoS2填充量黏接层的TGA曲线

    Figure 2.  (a) XRD patterns of the adhesive layers with different filling contents of MoS2; (b) FT-IR spectrograms of the adhesive layer before and after filling; (c) thermogravimetric curves of the adhesive layers with different filling contents of MoS2.

    图 3  不同MoS2填充质量分数黏接层的断面SEM图像 (a) 0%; (b) 0.5%; (c) 1%; (d) 1.5%; (e) 2%

    Figure 3.  SEM of fracture surface of MoS2/epoxy composite with different weight percent of MoS2: (a) Pure epoxy; (b) 0.5%; (c) 1%; (d) 1.5%; (e) 2%.

    图 4  不同MoS2填充量黏接层 (a)应力-应变曲线; (b)杨氏模量

    Figure 4.  Adhesive layers with different filling contents of MoS2: (a) Stress-strain curves; (b) Young’s modulus

    图 5  不同MoS2填充量的黏接层 (a) DSC曲线; (b)储能模量曲线

    Figure 5.  Adhesive layers with different filling contents of MoS2: (a) DSC curves; (b) storage modulus curves.

    图 6  不同质量分数的MoS2填充磁电复合材料在不同偏置下的磁发射性能扫频曲线 (a)环氧树脂; (b) 0.5%; (c) 1%; (d) 1.5%; (e) 2%

    Figure 6.  Sweep frequency curves of the magnetic emission intensity of ME composite with different MoS2 filling contents (weight percent) under different bias conditions: (a) Pure epoxy; (b) 0.5%; (c) 1%; (d) 1.5%; (e) 2%.

    图 7  (a)最佳偏置下不同MoS2填充量的磁电复合材料扫频曲线; (b)最佳偏置下磁电复合材料的磁发射强度随MoS2填充量的变化; (c)不同MoS2填充量磁电复合材料在最佳偏置下的磁发射强度随电压的变化

    Figure 7.  (a) Sweep frequency curves of ME composites with different MoS2 filling contents under optimal bias conditions; (b) variation of magnetic emission intensity of ME composite with different MoS2 filling contents under optimal bias conditions; (c) variation of magnetic emission intensity of ME composite with voltage under optimal bias conditions.

    图 8  (a)黏接层杨氏模量随MoS2填充量的变化; (b)黏接层密度随MoS2填充量的变化; (c)黏接层声学阻抗随MoS2填充量的变化

    Figure 8.  (a) Young’s modulus curves of the adhesive layers with different MoS2 filling contents; (b) density curves of the adhesive layers with different MoS2 filling contents; (c) acoustic impedance curves of the adhesive layers with different MoS2 filling contents.

    图 9  最佳偏置下MoS2填充前后磁电复合材料 (a)近场辐射特性; (b)磁场强度随实测距离的变化

    Figure 9.  Magnetoelectric composites before and after MoS2 filling under the optimal bias: (a) Near-field radiation characteristics; (b) variation of the magnetic field intensity with the measured distance.

    图 10  (a)磁电复合材料调制测量装置的示意图; (b)通过ASK方法调制1 Hz比特流

    Figure 10.  (a) Schematic diagram of the measurement setup for digital data transmission; (b) 1 Hz bit stream modulated by ASK method.

    表 1  不同MoS2填充量黏接层的密度、杨氏模量、声阻抗、声学透射系数

    Table 1.  Density, Young’s modulus, acoustic impedance, and acoustic transmission coefficient of adhesive layers with different filling contents.

    Samples
    (epoxy/MoS2)
    Density
    /(g·cm–3)
    Young’s
    modulus
    /GPa
    Z
    /MRayls
    T
    epoxy 1.26 3.01 1.95 0.077
    0.5% 1.29 4.36 2.38 0.107
    1% 1.32 5.56 2.70 0.132
    1.5% 1.34 4.12 2.34 0.101
    2% 1.35 2.70 1.90 0.074
    PZT-5H 7.61 56 20.63
    Metglas 7.82 100 27.93
    DownLoad: CSV

    表 2  本工作与已报道的磁电天线辐射性能比较

    Table 2.  Comparison of the radiation performance of this work with the reported ME antennas.

    年份 材料体系 发射器体积/cm3 工作频率/kHz 辐射能力 单位体积辐射能力
    2020[23] PZT 50.3 33.23 40 fT at 6 m 0.8 fT/cm3 @6 m
    2022[24] PZT/Metglas 0.45 6.3 1 nT at 0.4 m 2.2 nT/cm3 @0.4 m
    2023[25] PZT/Metglas 69 22.23 6 pT at 5.5 m 0.09 pT/cm3 @5.5 m
    2020[14] PZT/Metglas 0.33 23.95 10 fT at 120 m 30 fT/cm3 @120 m
    2023[26] PZT/Metglas 0.56 17.9 1 nT at 1.4 m 1.79 nT/cm3 @1.4 m
    2024[27] PZT/Ni/Metglas 0.16 24.47 2.4 pT at 3 m 15 pT/cm3@3 m
    本工作 PZT-5H/Metglas 0.07 12.51 2.7 nT at 1 m 38.6 nT/cm3 @1 m
    DownLoad: CSV
  • [1]

    崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛 2020 物理学报 69 208401Google Scholar

    Cui Y, Wu M, Song X, Huang Y P, Jia Q, Tao Y F, Wang C 2020 Acta Phys. Sin. 69 208401Google Scholar

    [2]

    Yang S, Geng J, Zhou H, Wang K, Zhao X, Lu J, Zhao R, Tang X, Zhang Y, Su D, Zhang A, Li H, Jin R 2023 IEEE Trans. Antennas Propag. 71 2082Google Scholar

    [3]

    杨娜娜, 陈轩, 汪尧进 2018 物理学报 67 157508Google Scholar

    Yang N N, Chen X, Wang Y J 2018 Acta Phys. Sin. 67 157508Google Scholar

    [4]

    宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 褚昭强 2022 物理学报 71 247502Google Scholar

    Song K X, Min S G, Gao J Q, Zhang S J, Mao Z N, Shen Y, Chu Z Q 2022 Acta Phys. Sin. 71 247502Google Scholar

    [5]

    聂长文, 吴瀚舟, 王书豪, 蔡园园, 宋树, Sokolov Oleg, Bichurin, 汪尧进 2021 物理学报 70 247501Google Scholar

    Nie C W, Wu H Z, Wang S H, Cai Y Y, Song S, Sokolov O, Bichurin M I, Wang Y J 2021 Acta Phys. Sin. 70 247501Google Scholar

    [6]

    Chu Z, Yu C, Dan W, Jiang S, Ren Y, Dong K, Dong S 2024 Appl. Phys. Lett. 124 072901Google Scholar

    [7]

    Li W, Li D, Zhou K, Fu Q, Yuan X, Zhu X 2023 IEEE Trans. Antennas Propag. 71 263Google Scholar

    [8]

    Cheng Z, Zhou J, Wang B, Wu Q, Ma L, Qin Z, Shen J, Chen W, Peng W, Chang J, Ci P, Dong S 2024 Adv. Sci. 11 2403746Google Scholar

    [9]

    Cui Y, Wang C, Song X, Wu M, Zhang Q, Yuan H, Yuan Z 2023 iScience 26 105832Google Scholar

    [10]

    Niu Y, Ren H 2022 IEEE Sens. J. 22 14008Google Scholar

    [11]

    Liu K, Qin Z, Shen J, Cheng Z, You S, Ma L, Zhou J, Chen W 2024 Nano Res. 17 6630Google Scholar

    [12]

    Xiao N, Wang Y, Chen L, Wang G, Wen Y, Li P 2023 IEEE Antennas Wirel. Propag. Lett. 22 34Google Scholar

    [13]

    Chang J, He Z, Xu S, Zheng X, Peng W, Ci P, Wang B, Zhang C, Dong S 2024 Adv. Mater. 36 2309159Google Scholar

    [14]

    Dong C, He Y, Li M, Tu C, Chu Z, Liang X, Chen H, Wei Y, Zaeimbashi M, Wang X, Lin H, Gao Y, Sun N X 2020 IEEE Antennas Wirel. Propag. Lett. 19 398Google Scholar

    [15]

    Silva M, Reis S, Lehmann C S, Martins P, Lanceros Mendez S, Lasheras A, Gutiérrez J, Barandiarán J M 2013 ACS Appl. Mater. Interfaces 5 10912Google Scholar

    [16]

    Hwang G T, Palneedi H, Jung B M, Kwon S J, Peddigari M, Min Y, Kim J W, Ahn C W, Choi J J, Hahn B D, Choi J H, Yoon W H, Park D S, Lee S B, Choe Y, Kim K H, Ryu J 2018 ACS Appl. Mater. Interfaces 10 32323Google Scholar

    [17]

    Kim S H, Thakre A, Patil D R, Park S H, Listyawan T A, Park N, Hwang G T, Jang J, Kim K H, Ryu J 2021 ACS Appl. Mater. Interfaces 13 19983Google Scholar

    [18]

    Wong C M, Chan S F, Wu W C, Suen C H, Yau H M, Wang D Y, Li S, Dai J Y 2021 Ultrasonics 116 106506Google Scholar

    [19]

    Madeshwaran S R, Jayaganthan R, Velmurugan R, Gupta N K, Manzhirov A V 2018 J. Phys. Conf. Ser. 991 012054Google Scholar

    [20]

    Zhou J, Zhou J, Chen W, Tian J, Shen J, Zhang P 2022 Compos. Struct. 299 116019Google Scholar

    [21]

    Liang J Z 2013 Composites Part B. 51 224Google Scholar

    [22]

    Krautkrämer J, Krautkrämer H 2013 Ultrasonic Testing of Materials (New York: Springer Science & Business Media

    [23]

    Hassanien A E, Breen M, Li M H, Gong S 2020 Sci. Rep. 10 17006Google Scholar

    [24]

    Hu L, Zhang Q, Wu H, You H, Jiao J, Luo H, Wang Y, Duan C, Gao A 2022 J. Phys. Condens. Matter 34 414002Google Scholar

    [25]

    Du Y, Xu Y, Wu J, Qiao J, Wang Z, Hu Z, Jiang Z, Liu M 2023 IEEE Trans. Antennas Propag. 71 2167Google Scholar

    [26]

    Fu S, Cheng J, Jiang T, Wu H, Fang Z, Jiao J, Sokolov O, Ivanov S, Bichurin M, Wang Y 2023 Appl. Phys. Lett. 122 262901Google Scholar

    [27]

    Leung C M, Zheng H, Yang J, Wang T, Wang F 2024 Sensors 24 694Google Scholar

  • [1] QIU Fasheng, ZENG Yufan, XIAO Shukun, YIN Xiaofang, GUO Chaoyang. Influence of stress on magneto-acoustic emission and magnetic domain motion characteristics. Acta Physica Sinica, 2025, 74(14): 145101. doi: 10.7498/aps.74.20250376
    [2] Li Ting, Wu Feng-Min, Zhang Tong-Tao, Wang Jun-Jun, Yang Bin, Zhang Dong. A low-frequency wideband ventilation muffler based on an embedded rough-necked Helmholtz resonator. Acta Physica Sinica, 2023, 72(22): 224301. doi: 10.7498/aps.72.20231047
    [3] Bai Jia-Hao, Guo Jian-Gang. Theoretical studies on bidirectional interfacial shear stress transfer of graphene/flexible substrate composite structure. Acta Physica Sinica, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [4] Li Yuan-Yuan, Yu Yin, Meng Chuan-Min, Zhang Lu, Wang Tao, Li Yong-Qiang, He Hong-Liang, He Duan-Wei. Dynamic impact strength of diamond-SiC superhard composite. Acta Physica Sinica, 2019, 68(15): 158101. doi: 10.7498/aps.68.20190350
    [5] Deng Dong-Ge, Zuo Su, Wu Xin-Jun. A method of characterizing axial stress in ferromagnetic members using superficial magnetic flux density obtained from static magnetization by permanent magnet. Acta Physica Sinica, 2018, 67(17): 178103. doi: 10.7498/aps.67.20180560
    [6] Zhou Yong, Li Chun-Jian, Pan Yu-Rong. Magnetoelectric effect analysis of magnetostrictive/piezoelectric laminated composites. Acta Physica Sinica, 2018, 67(7): 077702. doi: 10.7498/aps.67.20172307
    [7] Chong Tao, Wang Gui-Ji, Tan Fu-Li, Zhao Jian-Heng, Tang Zhi-Ping. Phase transformation kinetics of zirconium under ramp wave loading with different windows. Acta Physica Sinica, 2018, 67(7): 070204. doi: 10.7498/aps.67.20172198
    [8] Sang Yong-Jie, Lan Yu, Ding Yue-Wen. Study on elastic-wall fluid cavity resonant frequency of Helmholtz underwater acoustic transducer. Acta Physica Sinica, 2016, 65(2): 024301. doi: 10.7498/aps.65.024301
    [9] Yu Xin-Jie, Wu Tian-Yi, Li Zhen. Wireless energy transfer system based on metglas/PFC magnetoelectric laminated composites. Acta Physica Sinica, 2013, 62(5): 058503. doi: 10.7498/aps.62.058503
    [10] Shi Zhan, Chen Lai-Zhu, Tong Yong-Shuai, Zheng Zhi-Bin, Yang Shui-Yuan, Wang Cui-Ping, Liu Xing-Jun. Phase drift of magnetoelectric effect in Terfenol-D/PZT composite materials. Acta Physica Sinica, 2013, 62(1): 017501. doi: 10.7498/aps.62.017501
    [11] Luo Ying, Bao Bing-Hao. Theoretical and experimental study on magnetoelectric effect in laminated composites of magnetostrictive and piezoelectric materials with finite input impedance. Acta Physica Sinica, 2011, 60(1): 017508. doi: 10.7498/aps.60.017508
    [12] Wang Wei, Luo Xiao-Bin, Yang Li-Jie, Zhang Ning. Magnetocapacitance effect of magnetoelectric laminated composite at resonant frequency. Acta Physica Sinica, 2011, 60(10): 107702. doi: 10.7498/aps.60.107702
    [13] Zhang Yan-Fang, Wen Yu-Mei, Li Ping, Bian Lei-Xiang. Magnetoelectric response of magnetostrictive/piezoelectric composite on a trapezoidal elastic substrate. Acta Physica Sinica, 2009, 58(1): 546-553. doi: 10.7498/aps.58.546
    [14] Gao Jian-Sen, Zhang Ning. Electric field-controlled permeability and impedance in a heterotypic composite of ferroelectrics/magnet with high permeability. Acta Physica Sinica, 2009, 58(12): 8607-8611. doi: 10.7498/aps.58.8607
    [15] Mao Yi-Jun, Qi Da-Tong. A unified boundary integral equation for sound radiation and scattering from the open/closed thin bodies. Acta Physica Sinica, 2009, 58(10): 6764-6769. doi: 10.7498/aps.58.6764
    [16] Zhou Jian-Ping, Shi Zhan, Liu Gang, He Hong-Cai, Nan Ce-Wen. Analysis of magnetoelectric properties of ferroelectric and ferromagnetic columnar composites. Acta Physica Sinica, 2006, 55(7): 3766-3771. doi: 10.7498/aps.55.3766
    [17] Wan Hong, Xie Li-Qiang, Wu Xue-Zhong, Liu Xi-Cong. Magnetoelectric effect of the TbDyFe/PZT laminated composite. Acta Physica Sinica, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [18] Shi Zhan, Nan Ce-Wen. Calculations of magnetoelectric properties in three-phase ferroelectric and ferromagnetic particulate composites. Acta Physica Sinica, 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
    [19] ZHANG WU, WANG YAN. STRESS-OPTICAL BEHAVIORS OF OPTICALLY HETERO-GENEOUS FIBER REINFORCED COMPOSITES. Acta Physica Sinica, 1994, 43(7): 1192-1202. doi: 10.7498/aps.43.1192
    [20] LI MING-XIAN. MEASUREMENT OF THE DETECTION IMPEDANCE AND A DESIGN FOR INCREASING THE SENSITIVITY OF THE DETECTOR IN THE ACOUSTIC IMPEDANCE METHOD. Acta Physica Sinica, 1974, 23(3): 3-12. doi: 10.7498/aps.23.3-2
Metrics
  • Abstract views:  449
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2025
  • Accepted Date:  17 May 2025
  • Available Online:  06 June 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回