Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase transformation kinetics of zirconium under ramp wave loading with different windows

Chong Tao Wang Gui-Ji Tan Fu-Li Zhao Jian-Heng Tang Zhi-Ping

Citation:

Phase transformation kinetics of zirconium under ramp wave loading with different windows

Chong Tao, Wang Gui-Ji, Tan Fu-Li, Zhao Jian-Heng, Tang Zhi-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The effect of window acoustic impedance on the wave profile of phase transition of zirconium under ramp wave compression is investigated in experiment and simulation. In the experiments, a ramp wave driven by magnetic pressure is applied to the zirconium samples backed windows with different acoustic impedances such as LiF, sapphire and free surface based on the compact pulsed power generator CQ-4. The experimental wave profiles measured by an advanced laser interference velocimeter show that the characteristic particle velocity of the onset phase transition from to is about 331.0 m/s in the conditions of LiF widow and free surface with low acoustic impedance, and it is approximately 301.9 m/s for the sapphire window with higher acoustic impedance. The corresponding onset pressure of phase transition varies from about 9.14 GPa to 8.27 GPa. The result shows that this onset pressure of phase transition, which is affected by diverse factors, is not the inherent value of phase transition belonging to the material properties. In order to describe these dynamic responses in experiment well, the numerical simulation of phase transition dynamics of zirconium is conducted in one-dimensional hydrodynamic code, in which included are the muti-phase equation of state based on Helmholtz free energy, the equation of non-equilibrium phase transition dynamics, and Steinberg constitutive relationship. The simulated results show that they can reflect the physical processes of elasto-plastic transition and - phase transition as well, which are excellently consistent with the experimental data. The relaxation times of - phase transition in three different acoustic impedance experiments are nearly the same (30 ns), and their finishing times of phase transition are all about 100 ns. The calculated quasi-isentrope of zirconium below 20 GPa in the pressure-volume and temperature-pressure thermodynamic planes shows that the isentrope and shock adiabat exhibit tiny difference before phase transition, and then separate gradually with the increase of pressure. The isentrope lies below the shock adiabat after the onset of phase transition. At about 20 GPa, the temperature of zirconium under ramp wave loading is bout 100 K lower than that under shock loading. Meanwhile, the abrupt change of volume at phase transition causes the Lagrange sound speed to reduce about 7% and then comes back to the bulk sound speed again after the phase transition has been finished.
      Corresponding author: Zhao Jian-Heng, jianh_zhao@caep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11327803), the project of Youth Innovation of Science and Technology of Sichuan Province, China (Grant No. 2016TD0022), and the National Challenging Plan, China (Grant No. JCKY2016212A501).
    [1]

    Xiao D W 2008 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [肖大武2008 博士学位论文(合肥: 中国科学技术大学)]

    [2]

    Bridgman P W 1952 Proceedings of the American Academy of Arts Sciences 81 165

    [3]

    Jamieson J C 1963 Science 140 72

    [4]

    Zilbershtein V A, Nosova G I, Estrin E I 1973 Phys. Met. Metallogr. 35 29

    [5]

    Xia H, Parthasarathy G, Luo H, Vohra Y K, Ruoff A L 1990 Phys. Rev. B 42 6736

    [6]

    Xia H, Duclos S J, Ruoff A L, Vohra Y K 1990 Phys. Rev. Lett. 64 204

    [7]

    Al'Tshuler L V, Bakanova A A, Dudoladov I P 1967 Zh. Eksp. Teor. Fiz. 53 1967

    [8]

    Al'Tshuler L V, Bakanova A A, Dudoladov I P, Dynin E A, Trunin R F, Chekin B S 1981 J. Appl. Mech. Tech. Ph. 22 145

    [9]

    McQueen R G, Marsh S P, Taylor J W, Fritz J N, Carter W J 1970 High Velocity Impact Phenomena (New York: Academic) pp293-417

    [10]

    Kutsar A R, Pavlovskii M N, Kamissarov V V 1982 Jetp. Lett. 39 1

    [11]

    Greeff C W 2005 Model. Simul. Mater. Sc. 13 1015

    [12]

    Cerreta E, Iii G T G, Hixson R S, Rigg P A, Brown D W 2005 Acta Mater. 53 1751

    [13]

    Gray G T, Bourne N K 2000 Shock Compression of Condensed Matter (Vol. 505) (American Institute of Physics) p509

    [14]

    Rigg P A, Greeff C W, Knudson M D, Iii G T G, Hixson R S 2009 J. Appl. Phys. 106 245

    [15]

    Li Y H 2006 M. S. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [李英华 2006 硕士学位论文(绵阳: 中国工程物理研究院)]

    [16]

    Chong T, Wang G J, Tan F L, Luo B Q, Zhang X P, Wu G, Zhao J H 2014 Sci. Sin.: Phys. Mech. Astron. 44 1 (in Chinese) [种涛, 王桂吉, 谭福利, 罗斌强, 张旭平, 吴刚, 赵剑衡 2014 中国科学: 物理学 力学 天文学 44 1]

    [17]

    Wang G J, Luo B Q, Zhang X P, Zhao J H, Sun C W, Tan F L, Chong T, Mo J J, Wu G, Tao Y H 2013 Rev. Sci. Instrum. 84 015117

    [18]

    Hall C A, Asay J R, Knudson M D, Stygar W A, Hall C A, Asya J R, Knudson M D 2001 Rev. Sci. Instrum. 72 3587

    [19]

    Chong T 2012 M. S. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [种涛 2012 硕士学位论文(绵阳: 中国工程物理研究院)]

    [20]

    Tang Z P 2008 Phase Transition under Shock Compression (Beijing: Science Press) p130 (in Chinese) [唐志平 2008 冲击相变 (北京: 科学出版社) 第130页]

    [21]

    Hayes D B 1975 J. Appl. Phys. 46 3438

    [22]

    Zuo Q H, Harstad E N, Addessio F L, Greeff C W 2006 Model. Simul. Mater. Sci. 14 1465

    [23]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

  • [1]

    Xiao D W 2008 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [肖大武2008 博士学位论文(合肥: 中国科学技术大学)]

    [2]

    Bridgman P W 1952 Proceedings of the American Academy of Arts Sciences 81 165

    [3]

    Jamieson J C 1963 Science 140 72

    [4]

    Zilbershtein V A, Nosova G I, Estrin E I 1973 Phys. Met. Metallogr. 35 29

    [5]

    Xia H, Parthasarathy G, Luo H, Vohra Y K, Ruoff A L 1990 Phys. Rev. B 42 6736

    [6]

    Xia H, Duclos S J, Ruoff A L, Vohra Y K 1990 Phys. Rev. Lett. 64 204

    [7]

    Al'Tshuler L V, Bakanova A A, Dudoladov I P 1967 Zh. Eksp. Teor. Fiz. 53 1967

    [8]

    Al'Tshuler L V, Bakanova A A, Dudoladov I P, Dynin E A, Trunin R F, Chekin B S 1981 J. Appl. Mech. Tech. Ph. 22 145

    [9]

    McQueen R G, Marsh S P, Taylor J W, Fritz J N, Carter W J 1970 High Velocity Impact Phenomena (New York: Academic) pp293-417

    [10]

    Kutsar A R, Pavlovskii M N, Kamissarov V V 1982 Jetp. Lett. 39 1

    [11]

    Greeff C W 2005 Model. Simul. Mater. Sc. 13 1015

    [12]

    Cerreta E, Iii G T G, Hixson R S, Rigg P A, Brown D W 2005 Acta Mater. 53 1751

    [13]

    Gray G T, Bourne N K 2000 Shock Compression of Condensed Matter (Vol. 505) (American Institute of Physics) p509

    [14]

    Rigg P A, Greeff C W, Knudson M D, Iii G T G, Hixson R S 2009 J. Appl. Phys. 106 245

    [15]

    Li Y H 2006 M. S. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [李英华 2006 硕士学位论文(绵阳: 中国工程物理研究院)]

    [16]

    Chong T, Wang G J, Tan F L, Luo B Q, Zhang X P, Wu G, Zhao J H 2014 Sci. Sin.: Phys. Mech. Astron. 44 1 (in Chinese) [种涛, 王桂吉, 谭福利, 罗斌强, 张旭平, 吴刚, 赵剑衡 2014 中国科学: 物理学 力学 天文学 44 1]

    [17]

    Wang G J, Luo B Q, Zhang X P, Zhao J H, Sun C W, Tan F L, Chong T, Mo J J, Wu G, Tao Y H 2013 Rev. Sci. Instrum. 84 015117

    [18]

    Hall C A, Asay J R, Knudson M D, Stygar W A, Hall C A, Asya J R, Knudson M D 2001 Rev. Sci. Instrum. 72 3587

    [19]

    Chong T 2012 M. S. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [种涛 2012 硕士学位论文(绵阳: 中国工程物理研究院)]

    [20]

    Tang Z P 2008 Phase Transition under Shock Compression (Beijing: Science Press) p130 (in Chinese) [唐志平 2008 冲击相变 (北京: 科学出版社) 第130页]

    [21]

    Hayes D B 1975 J. Appl. Phys. 46 3438

    [22]

    Zuo Q H, Harstad E N, Addessio F L, Greeff C W 2006 Model. Simul. Mater. Sci. 14 1465

    [23]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

  • [1] Li Ting, Wu Feng-Min, Zhang Tong-Tao, Wang Jun-Jun, Yang Bin, Zhang Dong. A low-frequency wideband ventilation muffler based on an embedded rough-necked Helmholtz resonator. Acta Physica Sinica, 2023, 72(22): 224301. doi: 10.7498/aps.72.20231047
    [2] Tian Chun-Ling, Liu Hai-Yan, Wang Biao, Liu Fu-Sheng, Gan Yun-Dan. Phase transition and equation of state of dense liquid nitrogen at high temperature and high pressure. Acta Physica Sinica, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [3] Chong Tao, Mo Jian-Jun, Zheng Xian-Xu, Fu Hua, Zhao Jian-Heng, Cai Jin-Tao. Dynamic behaviors of RDX single crystal under ramp compression. Acta Physica Sinica, 2020, 69(17): 176101. doi: 10.7498/aps.69.20200318
    [4] Li Jun, Wu Qiang, Yu Ji-Dong, Tan Ye, Yao Song-Lin, Xue Tao, Jin Ke. Orientation effect of alpha-to-epsilon phase transformation in single-crystal iron. Acta Physica Sinica, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [5] Jiang Zhao-Xiu, Wang Yong-Gang, Nie Heng-Chang, Liu Yu-Sheng. Effects of poling state and direction on domain switching and phase transformation of Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression. Acta Physica Sinica, 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [6] Sang Yong-Jie, Lan Yu, Ding Yue-Wen. Study on elastic-wall fluid cavity resonant frequency of Helmholtz underwater acoustic transducer. Acta Physica Sinica, 2016, 65(2): 024301. doi: 10.7498/aps.65.024301
    [7] Jiang Zhao-Xiu, Xin Ming-Zhi, Shen Hai-Ting, Wang Yong-Gang, Nie Heng-Chang, Liu Yu-Sheng. Mechanical properties and phase transformation of porous unpoled Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression. Acta Physica Sinica, 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [8] Pan Hao, Hu Xiao-Mian, Wu Zi-Hui, Dai Cheng-Da, Wu Qiang. Numerical study of shock-induced phase transformation of cerium under low pressure. Acta Physica Sinica, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [9] Wang Jun-Guo, Liu Fu-Sheng, Li Yong-Hong, Zhang Ming-Jian, Zhang Ning-Chao, Xue Xue-Dong. The structural transition of water at quartz/water interfaces under shock compression in phase region of liquid. Acta Physica Sinica, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [10] Liu Dan-Yang, Wang Ya-Wei, Wang Xian, He Kun, Zhang Xing-Juan, Yang Chun-Xin. Chaotic property analysis of pressure fluctuation for oxygen phase change heat exchanger. Acta Physica Sinica, 2012, 61(15): 150506. doi: 10.7498/aps.61.150506
    [11] Li Ying-Hua, Chang Jing-Zhen, Li Xue-Mei, Yu Yu-Ying, Dai Cheng-Da, Zhang Lin. Multiphase equation of states of solid and liquid phases for bismuth. Acta Physica Sinica, 2012, 61(20): 206203. doi: 10.7498/aps.61.206203
    [12] Liang Xiao-Lin, Gong Yue-Qiu, Liu Zhi-Zhuang, Lü Ye-Gang, Zheng Xue-Jun. Effect of external electric field on phase transitions of ferroelectric thin films. Acta Physica Sinica, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [13] Ji Zheng-Hua, Zeng Xiang-Hua, Cen Jie-Ping, Tan Ming-Qiu. Electronic structure and phase transformation in ZnSe: An ab initio study. Acta Physica Sinica, 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [14] Chen Bin, Peng Xiang-He, Fan Jing-Hong, Sun Shi-Tao, Luo Ji. A thermo-elastoplastic constitutive equation including phase transformation and its applications. Acta Physica Sinica, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [15] Shao Jian-Li, Qin Cheng-Sen, Wang Pei. Atomistic simulation of mechanical properties of martensitic transformation under dynamic compression. Acta Physica Sinica, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [16] Mao Yi-Jun, Qi Da-Tong. A unified boundary integral equation for sound radiation and scattering from the open/closed thin bodies. Acta Physica Sinica, 2009, 58(10): 6764-6769. doi: 10.7498/aps.58.6764
    [17] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [18] Wang Hui, Liu Jin-Fang, He Yan, Chen Wei, Wang Ying, Gerward L., Jiang Jian-Zhong. Size-induced enhancement of bulk modulus and transition pressure of nanocrystalline Ge. Acta Physica Sinica, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [19] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [20] Liu Hong, Wang Hui. Phase transition in biaxial nematic liquid crystal. Acta Physica Sinica, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
Metrics
  • Abstract views:  6526
  • PDF Downloads:  144
  • Cited By: 0
Publishing process
  • Received Date:  10 October 2017
  • Accepted Date:  03 January 2018
  • Published Online:  05 April 2018

/

返回文章
返回