Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic impact strength of diamond-SiC superhard composite

Li Yuan-Yuan Yu Yin Meng Chuan-Min Zhang Lu Wang Tao Li Yong-Qiang He Hong-Liang He Duan-Wei

Citation:

Dynamic impact strength of diamond-SiC superhard composite

Li Yuan-Yuan, Yu Yin, Meng Chuan-Min, Zhang Lu, Wang Tao, Li Yong-Qiang, He Hong-Liang, He Duan-Wei
PDF
HTML
Get Citation
  • Unlike the ductile materials, the failure seriously limits the strength of the brittle medium. To understand the mechanism of controlling the dynamic impact strength of diamond-SiC superhard composite under shock wave compression, the numerical simulation is conducted with a lattice-spring model that can describe the mechanical properties of diamond-SiC superhard composite quantitatively. For the simulation, the diamond-SiC superhard composite is constructed by different volume content of diamond and SiC particles. The obtainted shock wave profiles indicate that the dynamic impact strength first increases and then decreases with the increase of diamond content in the sample. The analysis based on the meso-scale damage pattern reveals that such a variation of dynamic impact strength corresponds to three damage evolution modes. When the diamond content increases to a value between 10%–50% in volume percentage, the long slip bands are first dominated, and then becomes short slip bands when the diamond content is 70%, and damage happens mainly in SiC matrix whereas most of the diamond particles are not damaged. When the diamond content is above a critical value of 70% in volume percentage, even the short slip bands are limited heavily, which makes it difficult to relax the shear stress on diamond particles and causes serious damage to diamond particles, finally results in the reduction of dynamic strength.
      Corresponding author: Yu Yin, yuyun86@caep.cn ; He Duan-Wei, duanweihe@scu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0305900), the National Natural Science Foundation of China (Grant Nos. 11602244, 11602245, 11772090), and the Foundation of National Key Laboratory of Shock Wave and Detonation Physics, China (Grant Nos. 6142A03020204, LSD-KB1805).
    [1]

    Liu Y S, Hu C H, Men J, Feng W, Cheng L F, Zhang L T 2015 J. Eur. Ceram. Soc. 35 2233Google Scholar

    [2]

    Zhao Z F, Liu Y S, Feng W, Zhang Q, Cheng L F, Zhang L T 2017 Diam. Relat. Mater. 74 1Google Scholar

    [3]

    Ekimov E A, Gavriliuk A G, Palosz B, Gierlotka S, Dluzewski P, Tatianin E, Kluev Y, Naletov M, Presz A 2000 Appl. Phys. Lett. 77 954Google Scholar

    [4]

    Yang Z L, He X B, Wu M, Zhang L, Ma A, Liu R J, Hu H F, Zhang Y D, Qu X H 2013 Ceram. Int. 39 3399Google Scholar

    [5]

    Zhao Y S, Qian J, Daemen L L, Pantea C, Zhang J Z, Voronin G A, Zerda T W 2004 Appl. Phys. Lett. 84 1356Google Scholar

    [6]

    Lu K 2016 Nature Rev. Mater. 1 16019Google Scholar

    [7]

    Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250Google Scholar

    [8]

    Cheng Z, Zhou H, Lu Q, Gao H, Lu L 2018 Science 362 1925Google Scholar

    [9]

    Yang M X, Yan D S, Yuan F P, Jiang P, Ma E, Wu X L 2018 PNAS 115 7224Google Scholar

    [10]

    Mayer G 2005 Science 310 1144Google Scholar

    [11]

    Weaver J C, Milliron G W, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, Mershon W J, Swanson B, Zavattieri P, DiMasi E, Kisailus D 2012 Science 336 1275Google Scholar

    [12]

    Lian Y P, Zhang X, Liu Y 2012 Theor. Appl. Mech. Lett. 2 021003Google Scholar

    [13]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302Google Scholar

    [14]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309Google Scholar

    [15]

    Yu Y, Wang W Q, He H L, Jiang T L, Huan Q, Zhang F P, Li Y Q, Lu T C 2015 J. Appl. Phys. 117 125901Google Scholar

    [16]

    Núñez Valdez M, Umemoto K, Wentzcovitch R M 2012 Appl. Phys. Lett. 101 171902Google Scholar

    [17]

    Varshney D, Shriya S, Varshney M, Singh N, Khenata R 2015 J. Theor. Appl. Phys. 9 221Google Scholar

    [18]

    Griffith A A, Eng M V I 1921 Phil. Trans. R. Soc. Lond. A 221 163Google Scholar

    [19]

    Qu R T, Zhang Z F 2013 Sci. Rep. 3 1117Google Scholar

    [20]

    Barenblatt G I 1962 Adv. Appl. Mech. 7 55Google Scholar

    [21]

    Novikov N V, Dub S N 1991 J. Hard. Mater. 2 3

    [22]

    罗恩 B 著 (龚江宏 译) 2010 脆性固体断裂力学 (北京: 高等教育出版社) 第44, 45页

    Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solid (Beijing: Higher Education Press) pp44, 45 (in Chinese)

    [23]

    Liu Y S, Hu C H, Feng W, Men J, Cheng L F, Zhang L T 2014 J. Eur. Ceram. Soc. 34 3489Google Scholar

    [24]

    Matthey B, Höhn S, Wolfrum A K, Mühle U, Motylenko M, Rafaja D, Michaelis A, Herrmann M 2017 J. Eur. Ceram. Soc. 37 1917Google Scholar

    [25]

    姜太龙, 喻寅, 宦强, 李永强, 贺红亮 2015 物理学报 64 188301Google Scholar

    Jiang T L, Yu Y, Huan Q, Li Y Q, He H L 2015 Acta Phys. Sin. 64 188301Google Scholar

    [26]

    Grady D E 1998 Mech. Mater. 29 181Google Scholar

    [27]

    Eremin M O 2016 Phys. Mesomech. 19 452Google Scholar

    [28]

    Lapin J, Štamborská M, Pelachová T, Bajana O 2018 Mater. Sci. Eng. A 721 1Google Scholar

    [29]

    Salamone S, Aghajanian M, Horner S E, Zheng J Q 2015 Adv. Ceram. Armor. XI 600 111

    [30]

    Lasalvia J C, Campbell J, Swab J J, Mccauley J W 2010 JOM 62 16

    [31]

    Petel O E, Ouellet S 2017 J. Appl. Phys. 122 025108

    [32]

    Petel O E, Ouellet S, Loiseau J, Frost D L, Higgins A J 2015 Int. J. Impact Eng. 85 83Google Scholar

    [33]

    Petel O E, Ouellet S, Loiseau J, Marr B J, Frost D L, Higgins A J 2013 Appl. Phys. Lett. 102 064103

    [34]

    Sun Y, Yu Z, Wang Z, Liu X 2015 Constr. Build. Mater. 96 484Google Scholar

  • 图 1  金刚石-碳化硅超硬复合材料中金刚石颗粒不同含量(体积百分比) (a) 10%; (b) 30%; (c) 50%; (d) 70%; (e) 73%; (f) 76%; 红色区域表示金刚石颗粒, 蓝色区域表示碳化硅基体

    Figure 1.  Diamond particle content in diamond-SiC superhard composites (in volume percentage): (a) 10%; (b) 30%; (c) 50%; (d) 70%; (e) 73%; (f) 76%. The red areas represent diamond particles, and the blue areas are the SiC matrix

    图 2  在1300 m/s活塞驱动下, 金刚石颗粒不同含量(体积百分比)对金刚石-碳化硅超硬复合材料冲击波剖面的影响

    Figure 2.  Influence of diamond content (in volume percentage) on shock wave profiles of diamond-SiC superhard composite under a 1300 m/s piston driven.

    图 3  金刚石-碳化硅超硬复合材料的冲击强度随金刚石颗粒含量(体积百分比)的变化

    Figure 3.  Dynamic strength of diamond-SiC superhard composite varies with diamond content (in volume percentage).

    图 4  在1300 m/s活塞驱动下, 金刚石-碳化硅超硬复合材料中金刚石颗粒不同含量的损伤演化特征, 其中金刚石颗粒含量(体积百分比)分别是(a) 10%; (b) 30%; (c) 50%; (d) 70%; (e) 73%; (f) 76%; 黑色带状区域是扩展滑移带

    Figure 4.  Damage evolution of diamond-SiC superhard composite with different diamond particle content in volume percentage: (a) 10%; (b) 30%; (c) 50%; (d) 70%; (e) 73%; (f) 76%. The piston velocity is 1300 m/s. The thin black lines are slip bands occurred in SiC matrix.

    图 5  在活塞速度1300 m/s驱动下, 金刚石-碳化硅复合超硬材料的损伤度随金刚石含量(体积百分比)的变化

    Figure 5.  Damage degree of diamond-SiC superhard composite varies with diamond content (in volume percentage) under a 1300 m/s piston.

  • [1]

    Liu Y S, Hu C H, Men J, Feng W, Cheng L F, Zhang L T 2015 J. Eur. Ceram. Soc. 35 2233Google Scholar

    [2]

    Zhao Z F, Liu Y S, Feng W, Zhang Q, Cheng L F, Zhang L T 2017 Diam. Relat. Mater. 74 1Google Scholar

    [3]

    Ekimov E A, Gavriliuk A G, Palosz B, Gierlotka S, Dluzewski P, Tatianin E, Kluev Y, Naletov M, Presz A 2000 Appl. Phys. Lett. 77 954Google Scholar

    [4]

    Yang Z L, He X B, Wu M, Zhang L, Ma A, Liu R J, Hu H F, Zhang Y D, Qu X H 2013 Ceram. Int. 39 3399Google Scholar

    [5]

    Zhao Y S, Qian J, Daemen L L, Pantea C, Zhang J Z, Voronin G A, Zerda T W 2004 Appl. Phys. Lett. 84 1356Google Scholar

    [6]

    Lu K 2016 Nature Rev. Mater. 1 16019Google Scholar

    [7]

    Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250Google Scholar

    [8]

    Cheng Z, Zhou H, Lu Q, Gao H, Lu L 2018 Science 362 1925Google Scholar

    [9]

    Yang M X, Yan D S, Yuan F P, Jiang P, Ma E, Wu X L 2018 PNAS 115 7224Google Scholar

    [10]

    Mayer G 2005 Science 310 1144Google Scholar

    [11]

    Weaver J C, Milliron G W, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, Mershon W J, Swanson B, Zavattieri P, DiMasi E, Kisailus D 2012 Science 336 1275Google Scholar

    [12]

    Lian Y P, Zhang X, Liu Y 2012 Theor. Appl. Mech. Lett. 2 021003Google Scholar

    [13]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302Google Scholar

    [14]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309Google Scholar

    [15]

    Yu Y, Wang W Q, He H L, Jiang T L, Huan Q, Zhang F P, Li Y Q, Lu T C 2015 J. Appl. Phys. 117 125901Google Scholar

    [16]

    Núñez Valdez M, Umemoto K, Wentzcovitch R M 2012 Appl. Phys. Lett. 101 171902Google Scholar

    [17]

    Varshney D, Shriya S, Varshney M, Singh N, Khenata R 2015 J. Theor. Appl. Phys. 9 221Google Scholar

    [18]

    Griffith A A, Eng M V I 1921 Phil. Trans. R. Soc. Lond. A 221 163Google Scholar

    [19]

    Qu R T, Zhang Z F 2013 Sci. Rep. 3 1117Google Scholar

    [20]

    Barenblatt G I 1962 Adv. Appl. Mech. 7 55Google Scholar

    [21]

    Novikov N V, Dub S N 1991 J. Hard. Mater. 2 3

    [22]

    罗恩 B 著 (龚江宏 译) 2010 脆性固体断裂力学 (北京: 高等教育出版社) 第44, 45页

    Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solid (Beijing: Higher Education Press) pp44, 45 (in Chinese)

    [23]

    Liu Y S, Hu C H, Feng W, Men J, Cheng L F, Zhang L T 2014 J. Eur. Ceram. Soc. 34 3489Google Scholar

    [24]

    Matthey B, Höhn S, Wolfrum A K, Mühle U, Motylenko M, Rafaja D, Michaelis A, Herrmann M 2017 J. Eur. Ceram. Soc. 37 1917Google Scholar

    [25]

    姜太龙, 喻寅, 宦强, 李永强, 贺红亮 2015 物理学报 64 188301Google Scholar

    Jiang T L, Yu Y, Huan Q, Li Y Q, He H L 2015 Acta Phys. Sin. 64 188301Google Scholar

    [26]

    Grady D E 1998 Mech. Mater. 29 181Google Scholar

    [27]

    Eremin M O 2016 Phys. Mesomech. 19 452Google Scholar

    [28]

    Lapin J, Štamborská M, Pelachová T, Bajana O 2018 Mater. Sci. Eng. A 721 1Google Scholar

    [29]

    Salamone S, Aghajanian M, Horner S E, Zheng J Q 2015 Adv. Ceram. Armor. XI 600 111

    [30]

    Lasalvia J C, Campbell J, Swab J J, Mccauley J W 2010 JOM 62 16

    [31]

    Petel O E, Ouellet S 2017 J. Appl. Phys. 122 025108

    [32]

    Petel O E, Ouellet S, Loiseau J, Frost D L, Higgins A J 2015 Int. J. Impact Eng. 85 83Google Scholar

    [33]

    Petel O E, Ouellet S, Loiseau J, Marr B J, Frost D L, Higgins A J 2013 Appl. Phys. Lett. 102 064103

    [34]

    Sun Y, Yu Z, Wang Z, Liu X 2015 Constr. Build. Mater. 96 484Google Scholar

  • [1] Liu Xiu-Cheng, Yang Zhi, Guo Hao, Chen Ying, Luo Xiang-Long, Chen Jian-Yong. Molecular dynamics simulation of thermal conductivity of diamond/epoxy resin composites. Acta Physica Sinica, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [2] Wang Fu, Zhou Yi, Gao Shi-Xin, Duan Zhen-Gang, Sun Zhi-Peng, Wang Jun, Zou Yu, Fu Bao-Qin. Molecular dynamics study of effects of point defects on thermal conductivity in cubic silicon carbide. Acta Physica Sinica, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [3] Effects of point defects on thermal conductivity in cubic silicon carbide: A molecular dynamics study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211434
    [4] Zhang Hong, Guo Hong-Xia, Pan Xiao-Yu, Lei Zhi-Feng, Zhang Feng-Qi, Gu Zhao-Qiao, Liu Yi-Tian, Ju An-An, Ouyang Xiao-Ping. Transport process and energy loss of heavy ions in silicon carbide. Acta Physica Sinica, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [5] Lu Yuan-Yuan, Lu Gui-Hua, Zhou Heng-Wei, Huang Yi-Neng. Preparation and properties of spodumene/silicon carbide composite ceramic materials. Acta Physica Sinica, 2020, 69(11): 117701. doi: 10.7498/aps.69.20200232
    [6] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [7] Liu Yin-Juan, He Duan-Wei, Wang Pei, Tang Ming-Jun, Xu Chao, Wang Wen-Dan, Liu Jin, Liu Guo-Duan, Kou Zi-Li. Syntheses and studies of superhard composites under high pressure. Acta Physica Sinica, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [8] Zhang Xiu-Zhi, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Tian Yu-Ming, Chai Yue-Sheng. Effect of nitrogen on the defect luminescence in diamond. Acta Physica Sinica, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [9] Lin Xue-Ling, Pan Feng-Chun. The magnetism study of N-doped diamond. Acta Physica Sinica, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [10] Liu Yan-Wen, Wang Xiao-Xia, Zhu Hong, Han Yong, Gu Bing, Lu Yu-Xin, Fang Rong. Influence of diamond on heat dissipation capability of slow-wave structure of helix TWT. Acta Physica Sinica, 2013, 62(23): 234402. doi: 10.7498/aps.62.234402
    [11] Song Kun, Chai Chang-Chun, Yang Yin-Tang, Jia Hu-Jun, Chen Bin, Ma Zhen-Yang. Effects of the improved hetero-material-gate approach on sub-micron silicon carbide metal-semiconductor field-effect transistor. Acta Physica Sinica, 2012, 61(17): 177201. doi: 10.7498/aps.61.177201
    [12] Fang Chao, Liu Ma-Lin. The study of the Raman spectra of SiC layers in TRISO particles. Acta Physica Sinica, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [13] Zhou Nai-Gen, Hong Tao, Zhou Lang. A comparative study between MEAM and Tersoff potentials on the characteristics of melting and solidification of carborundum. Acta Physica Sinica, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [14] Liang Zhong-Zhu, Liang Jing-Qiu, Zheng Na, Jiang Zhi-Gang, Wang Wei-Biao, Fang Wei. Study on the compound film of diamond for absorbing radiation. Acta Physica Sinica, 2009, 58(11): 8033-8038. doi: 10.7498/aps.58.8033
    [15] Lin Tao, Chen Zhi-Ming, Li Jia, Li Lian-Bi, Li Qing-Min, Pu Hong-Bin. Study of the growth characteristics of SiCGe layers grown on 6H-SiC substrates. Acta Physica Sinica, 2008, 57(9): 6007-6012. doi: 10.7498/aps.57.6007
    [16] Yu Wei, He Jie, Sun Yun-Tao, Zhu Hai-Feng, Han Li, Fu Guang-Sheng. Pulse laser crystallization of silicon carbon thin films. Acta Physica Sinica, 2004, 53(6): 1930-1934. doi: 10.7498/aps.53.1930
    [17] Tang Xiao-Yan, Zhang Yi-Men, Zhang He-Ming, Zhang Yu-Ming, Dai Xian-Ying, Hu Hui-Yong. 3UCVD deposition SiO2 on SiC wafer and its C-V measurement. Acta Physica Sinica, 2004, 53(9): 3225-3228. doi: 10.7498/aps.53.3225
    [18] Hu Xiao-Jun, Li Rong-Bin, Shen He-Sheng, He Xian-Chang, Deng Wen, Luo Li-Xiong. Investigation of defect properties in doped diamond films. Acta Physica Sinica, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
    [19] Li Rong-Bin, Dai Yong-Bing, Hu Xiao-Jun, Shen He-Sheng, He Xian-Chang. A molecular dynamics study of energetic particle bombardment on diamond. Acta Physica Sinica, 2003, 52(12): 3135-3141. doi: 10.7498/aps.52.3135
    [20] Wang Jian-Ping, Hao Yue, Peng Jun, Zhu Zuo-Yun, Zhang Yong-Hua. . Acta Physica Sinica, 2002, 51(8): 1793-1797. doi: 10.7498/aps.51.1793
Metrics
  • Abstract views:  10304
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  12 March 2019
  • Accepted Date:  21 May 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回