Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Sc2O3 doping on thermal emission properties of rare-earth refractory yttrium salt cathode

QI Shikai WANG Xingqi LI Yun ZHANG Qi WANG Yu

Citation:

Effect of Sc2O3 doping on thermal emission properties of rare-earth refractory yttrium salt cathode

QI Shikai, WANG Xingqi, LI Yun, ZHANG Qi, WANG Yu
cstr: 32037.14.aps.74.20250520
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • To improve the thermionic emission performance of the rare-earth refractory yttrium salt cathode used in the magnetron, the influence of Sc2O3 doping on its thermionic emission properties is investigated. Cathodes are fabricated by incorporating different weight percentages of Sc2O3 into the rare-earth refractory yttrium salt matrix, and their thermionic emission properties are systematically evaluated. The experimental findings reveal that the doping of Sc2O3 significantly enhances the thermionic emission capability of the cathode. Notably, Sc2O3 with a doping concentration of 3% has the most significant improvement in emission performance. The 3% Sc2O3-doped cathode can achieve a thermionic emission current density of 3.85 A/cm2 under an anode voltage of 300 V at 1600 ℃. In contrast, under the same conditions, the undoped cathode provides a current density of only 1.66 A/cm2, indicating a 132% increase in thermionic emission efficiency when doped with 3% Sc2O3. By using the Richardson line method coupled with data-fitting algorithms, the absolute zero work functions for undoped and Sc2O3-doped cathodes (3%, 7%, and 11%) are determined to be 1.42, 0.93, 0.98, and 1.11 eV, respectively. The lifespan assessment indicates that at 1400℃ the cathode doped with 3% Sc2O3 remains stable for over 4200 h under an initial load of 0.5 A/cm2 without significant degradation. Finally, those cathodes are analyzed by the XRD, SEM, EDS, AES respectively. The analyses show that during thermionic emission testing, the Sc2O3 and Y2Hf2O7 undergo substitutional solid solution reactions, forming the ScxY(2–x)Hf2O[7+(3/2)x] solid solution. This process causes lattice distortion in the Y2Hf2O7, which makes it in a high-energy state, thus reducing the work function on the cathode surface. At the same time, Sc from Sc2O3 displaces Y in the Y2Hf2O7 unit cells, with the displaced Y existing in the form of metal, which enhances the electrical conductivity of the cathode surface. Additionally, the ScxY(2–x)Hf2O[7+(3/2)x] solid solution generates a substantial number of Vo2+ oxygen vacancies and free electrons, thereby further augmenting surface conductivity. All in all, these mechanisms contribute to significantly improving the thermionic emission capability of the cathode.
      Corresponding author: QI Shikai, kaishiqi@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62161014) and the Key Laboratory of Material Surface Engineering of Jiangxi Province, China (Grant No. 2024SSY05072).
    [1]

    Vyas S K, Verma R K, Maurya S 2016 Frequenz 70 455Google Scholar

    [2]

    Patibandla A, Dobbidi P, Tiwari T 2023 24th International Vacuum Electronics Conference (IVEC) Chengdu, China, April 25–28, 2023 p1

    [3]

    Lim H, Jeong D H, Lee M, Ro S C 2017 IEEE Trans. Plasma. Sci. 45 2734Google Scholar

    [4]

    Shang J H, Yang X Y, Wang Z Y, Hu M Y, Han C L, Zhang J X 2020 IEEE Trans. Elec. Dev. 67 2580Google Scholar

    [5]

    Timofeev N A, Sukhomlinov V S, Georges Z 2021 IEEE Trans. Plasma Sci. 49 2387Google Scholar

    [6]

    Bergner A, Scharf F H, Kühn G, Ruhrmann C, Hoebing T, Awakowicz P, Mentel J 2014 Plasma Sources Sci. T. 23 054005Google Scholar

    [7]

    Makarov A P, Zemchikhin E M 2019 IEEE Proceedings of IVEC Busan, Korea (South), April 28–May 1, 2019 p112

    [8]

    Djubua B C, Polivnikova O V 2003 Appl. Surf. Sci. 215 242Google Scholar

    [9]

    Djubua B C, Kultashev O K, Kultashev A P, Polivnikova O V 2012 IEEE Proceedings of IVESC Monterey, CA, USA, April 24–26, 2012 p185

    [10]

    Hu M W, Wang X X, Qi S K 2019 IEEE Trans. Elec. Dev. 66 3592Google Scholar

    [11]

    Wang X X, Meng M F, Zhang R Q, Li Y, Zhang Q 2023 IEEE Proceedings of IVEC Chengdu, China, April 25-28, 2023 p1145

    [12]

    Wang X X, Liu Y W, Luo J R, Zhan Q L, Li Y, Zhang Q 2014 IEEE Trans. Elec. Dev. 61 605Google Scholar

    [13]

    Zhang R Q, Wang X X, Ren F, Yin S Y 2024 IEEE Trans. Elec. Dev. 71 2078Google Scholar

    [14]

    Zhang R Q, Ding S X, Wang X X, Ren F, Yin S Y 2025 IEEE Trans. Elec. Dev. 72 1427Google Scholar

    [15]

    Mujan N S, Zhou Q F, Liu X T, John B, Matthew J B 2022 IEEE Trans. Elec. Dev. 69 3513Google Scholar

    [16]

    Wang J S, Dong L R, Liu W, Yang F 2017 Sci. China Technol. Sc. 60 1439Google Scholar

    [17]

    Yang F, Wang J S, Liu W, Liu X, Zhou M L 2013 Appl Surface Sci. 270 746Google Scholar

    [18]

    Yang F, Wang J S, Liu W, Zhou M L 2015 Mater. Chem. Phys. 149–150 288Google Scholar

    [19]

    Wang X Q, Wang X X, Luo J R, Qi S K, Li Y 2023 IEEE Trans. Elec. Dev. 70 2883Google Scholar

    [20]

    漆世锴, 王小霞, 罗积润, 赵青兰, 李云 2016 物理学报 65 057901Google Scholar

    Qi S K, Wang X X, Luo J R, Zhao Q L, Li Y 2016 Acta Phys. Sin. 65 057901Google Scholar

    [21]

    Sakharov K A, Simonenko E P, Simonenko N P 2018 Ceram. Int. 44 7647Google Scholar

    [22]

    周宏明, 易丹青 2008 无机材料学报 23 247Google Scholar

    Zhou H M, Yi D Q 2008 J. Inorg. Mater. 23 247Google Scholar

    [23]

    袁志谦, 周增林, 李艳, 何学良, 陈文帅, 张婉婷 2024 材料导报 39 24100155

    Yuan Z Q, Zhou Z L, Li Y, He X L, Chen W S, Zhang W T 2024 Materials Reports 39 24100155

    [24]

    Prashar G, Vasudev H, Thakur L 2023 Prot. Met. Phys. Chem. Surf. 59 461Google Scholar

    [25]

    Wang J S, Chen M D, Li C Z, Chen L Y, Yu Y S, Wang Y H, Liu B, Jing Q S 2021 Surf. Coat. Technol. 428 127879Google Scholar

    [26]

    Guo Y Q, Guo L, Liu K Y, Qiu S Y, Guo H B, Xu H B 2024 J. Mater. Sci. Technol. 182 33Google Scholar

  • 图 1  阴极的剖面结构示意图

    Figure 1.  Cross-sectional structure schematic of the cathode.

    图 2  不同质量分数Sc2O3掺杂稀土难熔钇盐阴极的伏安特性曲线 (a) 未掺杂Sc2O3; (b) 3% Sc2O3掺杂; (c) 7% Sc2O3掺杂; (d) 11% Sc2O3掺杂

    Figure 2.  I -V curves of the Sc2O3 doped rare-earth refractory yttrium salt cathodes: (a) Undoped Sc2O3; (b) 3% Sc2O3; (c) 7% Sc2O3; (d) 11% Sc2O3.

    图 3  3% Sc2O3掺杂阴极实验寿命曲线

    Figure 3.  Lifetime curve of the 3% Sc2O3 doped cathode.

    图 4  阴极的lg j -U 1/2曲线 (a) 未掺杂Sc2O3; (b) 3% Sc2O3掺杂

    Figure 4.  lg j -U 1/2 curves of the cathode: (a) Undoped Sc2O3; (b) 3% Sc2O3.

    图 5  阴极的Richardson直线 (a) 未掺杂Sc2O3; (b) 3% Sc2O3掺杂

    Figure 5.  Richardson line of the cathode: (a) Undoped Sc2O3; (b) 3% Sc2O3.

    图 6  未掺杂Sc2O3阴极活性物质表面SEM及XRD图 (a) SEM形貌; (b) XRD谱

    Figure 6.  SEM and XRD of the active material’s surface for the undoped Sc2O3: (a) SEM; (b) XRD.

    图 7  阴极表面SEM形貌图 (a) 未掺杂Sc2O3; (b) 3% Sc2O3掺杂; (c) 7% Sc2O3掺杂; (d) 11% Sc2O3掺杂

    Figure 7.  SEM morphology of the cathode’s surface: (a) Undoped Sc2O3; (b) 3% Sc2O3; (c) 7% Sc2O3; (d) 11% Sc2O3.

    图 8  阴极顶表面AES谱图

    Figure 8.  AES spectrum of the topmost layer on the cathode’s surface.

    图 9  元素含量与氩离子蚀刻深度之间的关系

    Figure 9.  Elements content as a function of the depth using argon ion etching method.

    图 10  晶胞结构示意图 (a) 未掺杂Sc2O3; (b) 掺杂Sc2O3

    Figure 10.  Schematic diagram of unit cell structure: (a) Undoped Sc2O3; (b) doped Sc2O3.

    表 1  未掺杂、3%、7%、11% Sc2O3掺杂阴极表面元素成分及其原子百分比

    Table 1.  Element contents of the undoped, 3%, 7%, 11% Sc2O3 doped cathode and their atomic percentage.

    Cathode type Element type/%
    Sc Y Hf O
    Undoped Sc2O3 0 19.88 25.23
    54.89
    3% Sc2O3 doped 0 22.03 26.35
    51.62
    7% Sc2O3 doped 6.37 16.99 18.25 58.39
    11% Sc2O3 doped 15.10 12.81 18.98 53.11
    DownLoad: CSV

    表 2  O, Y, Hf, Sc, C元素原子百分比与氩离子蚀刻深度的关系

    Table 2.  O, Y, Hf, Sc, C atomic percentage as a function of the depth using argon ion etching method

    Depth/nm O/% Y/% Hf/% Sc/% C/%
    0 31.1 22.3 15.6 3.8 27.2
    5 22.5 33.5 20.0 3.2 20.8
    10 31.4 30.0 17.4 2.5 18.7
    20 34.2 24.7 19.0 3.2 18.9
    50 37.6 21.4 17.7 4.3 19.0
    100 46.3 17.5 14.8 4.8 16.6
    200 54.9 15.8 14.4 4.7 10.2
    300 52.8 15.0 14.2 5.2 12.8
    DownLoad: CSV
  • [1]

    Vyas S K, Verma R K, Maurya S 2016 Frequenz 70 455Google Scholar

    [2]

    Patibandla A, Dobbidi P, Tiwari T 2023 24th International Vacuum Electronics Conference (IVEC) Chengdu, China, April 25–28, 2023 p1

    [3]

    Lim H, Jeong D H, Lee M, Ro S C 2017 IEEE Trans. Plasma. Sci. 45 2734Google Scholar

    [4]

    Shang J H, Yang X Y, Wang Z Y, Hu M Y, Han C L, Zhang J X 2020 IEEE Trans. Elec. Dev. 67 2580Google Scholar

    [5]

    Timofeev N A, Sukhomlinov V S, Georges Z 2021 IEEE Trans. Plasma Sci. 49 2387Google Scholar

    [6]

    Bergner A, Scharf F H, Kühn G, Ruhrmann C, Hoebing T, Awakowicz P, Mentel J 2014 Plasma Sources Sci. T. 23 054005Google Scholar

    [7]

    Makarov A P, Zemchikhin E M 2019 IEEE Proceedings of IVEC Busan, Korea (South), April 28–May 1, 2019 p112

    [8]

    Djubua B C, Polivnikova O V 2003 Appl. Surf. Sci. 215 242Google Scholar

    [9]

    Djubua B C, Kultashev O K, Kultashev A P, Polivnikova O V 2012 IEEE Proceedings of IVESC Monterey, CA, USA, April 24–26, 2012 p185

    [10]

    Hu M W, Wang X X, Qi S K 2019 IEEE Trans. Elec. Dev. 66 3592Google Scholar

    [11]

    Wang X X, Meng M F, Zhang R Q, Li Y, Zhang Q 2023 IEEE Proceedings of IVEC Chengdu, China, April 25-28, 2023 p1145

    [12]

    Wang X X, Liu Y W, Luo J R, Zhan Q L, Li Y, Zhang Q 2014 IEEE Trans. Elec. Dev. 61 605Google Scholar

    [13]

    Zhang R Q, Wang X X, Ren F, Yin S Y 2024 IEEE Trans. Elec. Dev. 71 2078Google Scholar

    [14]

    Zhang R Q, Ding S X, Wang X X, Ren F, Yin S Y 2025 IEEE Trans. Elec. Dev. 72 1427Google Scholar

    [15]

    Mujan N S, Zhou Q F, Liu X T, John B, Matthew J B 2022 IEEE Trans. Elec. Dev. 69 3513Google Scholar

    [16]

    Wang J S, Dong L R, Liu W, Yang F 2017 Sci. China Technol. Sc. 60 1439Google Scholar

    [17]

    Yang F, Wang J S, Liu W, Liu X, Zhou M L 2013 Appl Surface Sci. 270 746Google Scholar

    [18]

    Yang F, Wang J S, Liu W, Zhou M L 2015 Mater. Chem. Phys. 149–150 288Google Scholar

    [19]

    Wang X Q, Wang X X, Luo J R, Qi S K, Li Y 2023 IEEE Trans. Elec. Dev. 70 2883Google Scholar

    [20]

    漆世锴, 王小霞, 罗积润, 赵青兰, 李云 2016 物理学报 65 057901Google Scholar

    Qi S K, Wang X X, Luo J R, Zhao Q L, Li Y 2016 Acta Phys. Sin. 65 057901Google Scholar

    [21]

    Sakharov K A, Simonenko E P, Simonenko N P 2018 Ceram. Int. 44 7647Google Scholar

    [22]

    周宏明, 易丹青 2008 无机材料学报 23 247Google Scholar

    Zhou H M, Yi D Q 2008 J. Inorg. Mater. 23 247Google Scholar

    [23]

    袁志谦, 周增林, 李艳, 何学良, 陈文帅, 张婉婷 2024 材料导报 39 24100155

    Yuan Z Q, Zhou Z L, Li Y, He X L, Chen W S, Zhang W T 2024 Materials Reports 39 24100155

    [24]

    Prashar G, Vasudev H, Thakur L 2023 Prot. Met. Phys. Chem. Surf. 59 461Google Scholar

    [25]

    Wang J S, Chen M D, Li C Z, Chen L Y, Yu Y S, Wang Y H, Liu B, Jing Q S 2021 Surf. Coat. Technol. 428 127879Google Scholar

    [26]

    Guo Y Q, Guo L, Liu K Y, Qiu S Y, Guo H B, Xu H B 2024 J. Mater. Sci. Technol. 182 33Google Scholar

  • [1] Wang Rui-Gang, Liu Ze-Peng, Xiang-Lian, Sun Yong. Analysis of thermal diffuse scattering intensity of scandium oxide (Sc2O3). Acta Physica Sinica, 2024, 73(6): 063401. doi: 10.7498/aps.73.20231241
    [2] Zhang Hong-Yan, Bao Li-Hong, Chao Luo-Meng, Zhao Feng-Qi, Liu Zi-Zhong. Optical absorption and thermionic emission mechanism of multi-functional La1–x Srx B6 hexaborides. Acta Physica Sinica, 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [3] Qi Shi-Kai, Wang Xiao-Xia, Wang Xing-Qi, Hu Ming-Wei, Liu Li, Zeng Wei. A novel Y2Hf2O7 ceramic cathode applied to high power magnetron tube. Acta Physica Sinica, 2020, 69(3): 037901. doi: 10.7498/aps.69.20191496
    [4] Li Fan, Zhang Xin, Zhang Jiu-Xing. Direct synthesis of [Ca24Al28O64]4+(4e) electride and its thermionic emission performance. Acta Physica Sinica, 2019, 68(20): 206801. doi: 10.7498/aps.68.20190070
    [5] Yang Wen-Yuan, Dong Ye, Dong Zhi-Wei. Theoretical and numerical investigations of the novel relativistic magnetron using all-cavity output and semi-transparent cathode. Acta Physica Sinica, 2016, 65(24): 248401. doi: 10.7498/aps.65.248401
    [6] Qi Shi-Kai, Wang Xiao-Xia, Luo Ji-Run, Zhao Qing-Lan, Li Yun. A novel Y2O3-Gd2O3-HfO2 impregnated W base direct-heated cathode in magnetron tube. Acta Physica Sinica, 2016, 65(5): 057901. doi: 10.7498/aps.65.057901
    [7] Shi Di-Fu, Wang Hong-Gang, Li Wei, Qian Bao-Liang. Theoretical analysis and numerical simulation of rising sun magnetron with sector cavities. Acta Physica Sinica, 2013, 62(15): 151101. doi: 10.7498/aps.62.151101
    [8] Yue Song, Zhang Zhao-Chuan, Gao Dong-Ping. Injection-locking of magnetrons with matched impedance. Acta Physica Sinica, 2013, 62(17): 178401. doi: 10.7498/aps.62.178401
    [9] Li Wei, Liu Yong-Gui, Yang Jian-Hua. Investigation on the power combination of the relativistic magnetrons with axial extraction. Acta Physica Sinica, 2012, 61(3): 038401. doi: 10.7498/aps.61.038401
    [10] Li Wei, Liu Yong-Gui. Theoretical analysis of magnetronlike structure. Acta Physica Sinica, 2012, 61(2): 021103. doi: 10.7498/aps.61.021103
    [11] Li Wei, Liu Yong-Gui. Simulation investigation of the 2 mode operating tunable relativistic magnetron with axial radiation. Acta Physica Sinica, 2011, 60(12): 128403. doi: 10.7498/aps.60.128403
    [12] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Wang Xiao-Hui, Li Biao, Xu Yuan. Photoemission mechanism of GaN vacuum surface electron source. Acta Physica Sinica, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [13] Li Shi-Shuai, Zhang Zhong, Huang Jin-Zhao, Feng Xiu-Peng, Liu Ru-Xi. Preparation and mechanism of In-doped ZnO emitting white-light. Acta Physica Sinica, 2011, 60(9): 097405. doi: 10.7498/aps.60.097405
    [14] Sun Wei-Feng, Li Mei-Cheng, Zhao Lian-Cheng. Theoretical investigation of infrared generation mechanism by quantum coherence in low-dimensional semiconductor heterostructures. Acta Physica Sinica, 2010, 59(9): 6185-6192. doi: 10.7498/aps.59.6185
    [15] Liu Ying, Ni Xiao-Wu. The fluorescence spectral characteristics and the emission mechanism of ethanol excimer in water solution. Acta Physica Sinica, 2009, 58(5): 3572-3577. doi: 10.7498/aps.58.3572
    [16] Zhang Lin-Li, Xu Zhuo, Feng Yu-Jun, Sheng Zhao-Xuan. Characteristics of electron emission from La-doped Pb(Zr,Sn,Ti)O3 antiferroelectric cathode under negative triggering pulse. Acta Physica Sinica, 2009, 58(6): 4249-4253. doi: 10.7498/aps.58.4249
    [17] Wu Chun-Xia, Zhou Ming, Feng Cheng-Cheng, Yuan Run, Li Gang, Ma Wei-Wei, Cai Lan. Study on ultraviolet emission mechanism of micro-nano multi-scale ZnO structures. Acta Physica Sinica, 2008, 57(6): 3887-3891. doi: 10.7498/aps.57.3887
    [18] Wang Yun-Cai, Zhang Geng-Wei, Wang An-Bang, Wang Bing-Jie, Li Yan-Li, Guo Ping. Bandwidth enhancement of semiconductor laser as a chaotic transmitter by external light injection. Acta Physica Sinica, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [19] He Yu, Guo Wen-Kang, Shao Qi-Jun, Xu Peng. . Acta Physica Sinica, 2000, 49(3): 487-491. doi: 10.7498/aps.49.487
    [20] ZHU ANG-RU, WU XI-LIN. THE MECHANISM OF THE SECONDARY ION EMISSION INVESTIGATED BY THE EFFECT OF ENERGETIC ELECTRONS. Acta Physica Sinica, 1984, 33(10): 1475-1479. doi: 10.7498/aps.33.1475
Metrics
  • Abstract views:  469
  • PDF Downloads:  18
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2025
  • Accepted Date:  19 May 2025
  • Available Online:  29 May 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回