-
The Zr/O/W Schottky-type thermal field emission cathode is a key component in advanced electron beam instrumentation, with its unique interfacial emission mechanism remaining a focus of research in cathode technology. Traditional understanding attributes the decrease of work function at the cathode tip to a monolayer adsorption of Zr-O dipoles on the W(100) facet, with the electropositive orientation directed outward, perpendicular to the surface. This study successfully fabricats a high-performance Zr/O/W Schottky-type thermal field emission cathode that exhibits exceptional emission characteristics, including a current density of 2.5×104 A/cm2 and operational stability exceeding 8000 h. Comprehensive microstructural characterization of the activated emission zone is performed utilizing energy-dispersive X-ray spectroscopy (EDS) and Auger electron spectroscopy (AES), thereby precisely determining elemental distribution profiles across both surface and subsurface regions. The results reveal that during cathode preparation, the zirconia coating diffuses in the form of Zr-O complexes within the tungsten matrix, forming nanoscale enrichment zones specifically on the W(100) facet. Under operational conditions combining elevated temperature (1700–1800 K) and high electric field (>107 V/m), the W(100) surface develops not an adsorbed Zr-O dipole monolayer, but a nanoscale Zr/O/W(100) composite oxide structure. This multilayer structure consists of three coherently integrated components: 1) an oxygen-enriched diffusion layer beneath the W(100) interface, 2) the crystalline W(100) substrate, and 3) an overlying Zr-O thin film with multiatomic-layer thickness. First-principles calculations simulating the dynamic evolution of the W(100) emission interface during thermal treatment corroborate the experimental findings. The computed work function of the cathode emission surface decreases significantly from 5.02 eV (characteristic of nano-WO3) to 2.85 eV, showing excellent agreement with experimental measurements. When the emission interface becomes unbalanced due to external perturbations, the continuous diffusion of the zirconia coating toward the tip region, combined with the diffusion of Zr-O complexes from the subsurface of the W(100) crystal plane to the interface, enables autonomous replenishment of surface-active sites. This dynamic process effectively maintains a stable low-work-function emission surface. Both theoretical and experimental evidence consistently demonstrate that the Zr/O/W(100) oxide film serves as the fundamental material basis for the exceptional emission current density, remarkable stability, and extended operational lifetime of Zr/O/W cathodes.
-
Keywords:
- Zr/O/W /
- thermal field emission cathode /
- electron emission
-
图 6 发射端表面SEM图(50000 X) (1) W(100)面取点1; (2) 侧发射区取点2和3; (3)非理想发射区取点4和5
Figure 6. Surface SEM morphology of emitter tip (50000 X) with selected analysis points: (1) Take point 1 from the W(100) surface; (2) take points 2 and 3 from the side emission area; (3) take points 4 and 5 from the non-ideal emission area.
表 1 不同工作温度W(100)晶面的元素组成
Table 1. Elemental composition of the W(100) crystal plane at various working temperatures.
序号 温度/
KW atomic percent/% O atomic percent /% Zr atomic percent /% 110503 1700 96.91 2.59 0.51 120902 1750 95.22 3.78 1.01 122804 1800 91.54 6.49 1.98 表 2 阴极涂层至发射区AES分析结果
Table 2. AES analysis results of the cathode coating-to-emitter transition region.
序号 O atomic
percent/%Zr atomic
percent/%W atomic
percent/%a 34.66 7.11 58.22 b 29.86 6.78 63.35 c 29.92 5.17 64.9 d 32.46 4.6 62.94 表 3 发射端表面AES分析结果
Table 3. AES analysis results of emitter tip surface.
序号 O atomic percent/% Zr atomic percent/% W atomic percent/% 1 70.27 10.39 19.34 2 65.04 4.54 30.42 3 33.13 2.2 64.67 4 43.31 2.15 54.54 5 47.92 2.51 49.58 -
[1] Orloff, J 2009 Handbook of Charged Particle Optics (2nd Ed. ) (Boca Raton: CRC Press) pp2–5
[2] Lamouri A, Muller W, Krainsky I L 1994 Phys. Rev. B 50 4764
Google Scholar
[3] Leung T C, Hu H, Liu A J, Lin M C 2019 Phys. Chem. Chem. Phys. 21 25763
Google Scholar
[4] 郭家美, 阴生毅, 张永清, 孙万众, 高向阳 2022 电子显微学报 41 664
Guo J M, Yin S Y, Zhang Y Q, Sun W Z, Gao X Y 2022 J. Chin. Electron Microsc. Soc. 41 664
[5] Swanson L W, Schwind G A, Kellogg S M, Liu K 2012 J. Vac. Sci. Technol. , B 30 06f603
Google Scholar
[6] Bahm A, Schwind G, Swanson L 2011 J. Appl. Phys. 110 054322
Google Scholar
[7] Shimizu R 1998 J. Electron Microsc. 47 371
Google Scholar
[8] Iiyoshi R 2011 Nucl. Instrum. Methods Phys. Res. , Sect. A 645 316
Google Scholar
[9] Danielson L R, Swanson L W 1979 Surf. Sci. 88 14
Google Scholar
[10] Lee S C, Irokawa Y, Inoue M, Shimizu R 1995 Surf. Sci. 330 289
Google Scholar
[11] 郭家美, 阴生毅, 孙万众, 张永清 2024第二十二届真空电子学学术年会 广州, 中国, 5月9—11日, 2024 第414页
Guo J M, Yin S Y, Sun W Z, Zhang Y Q 2024 Proceedings of the 22nd Symposium on Vacuum Electronics Guangzhou, China, May 9–11, 2024 p414
[12] 王兴起, 王小霞, 罗积润, 李云 2022 稀有金属材料与工程 51 4658
Wang X Q, Wang X X, Luo J R, Li Y 2022 Rare Met. Mater. Eng. 51 4658
[13] 周细文, 朱小芳, 胡权, 黄桃, 杨中海 2011 真空电子技术 2 24
Zhou X W, Zhu X F, Hu Q, Huang T, Yang Z H 2011 Vac. Electron. 2 24
[14] 阴生毅, 吕昕平, 任峰, 卢志鹏, 王欣欣, 王宇, 邯娇, 张琪, 李阳 2021 电子与信息学报 43 3058
Yin S Y, Lü X P, Ren F, Lu Z P, Wang X X, Wang Y, Han J, Zhang Q, Li Y 2021 J. Electron. Inf. Technol. 43 3058
[15] 崔忠圻, 覃耀春 2023 金属学与热处理 (第3版) (北京: 机械工业出版社) 第225页
Cui Z Q, Qin Y C 2023 Metallography and Heat Treatment (3rd Ed. ) (Beijing: China Machine Press) p225
[16] Zhao Y C, Xu L J, Guo M Y, Li Z, Xu Z N, Ye J H, Wei S Z 2022 J. Alloys Compd. 921 166153
Google Scholar
[17] 虞觉奇 1987 二元合金状态图集 第1版 (上海: 上海科学技术出版社) 第580页
Yu J Q 1987 Binary Alloy Phase Diagrams Atlas (1st Ed. ) (Shanghai: Shanghai Science and Technology Press) p580
[18] Diyou J, Li X, Xuemei H, Tao W, Jianfeng H 2018 J. Mater. Res. 34 290
[19] Alkhamees A, Zhou H B, Liu Y L, Jin S, Zhang Y, Lu G H 2013 J. Nucl. Mater. 437 6
Google Scholar
[20] 刘凯斐, 孙大中, 牛相宏, 张红光, 陈伟 2023 大学物理实验 36 15
Liu K F, Sun D Z, Niu X H, Zhang H G, Chen W 2023 Phys. Exp. Coll. 36 15
[21] Nie Z, Ma L, Xi X, Liu Y, Zhao L 2021 J. Inorg. Mater. 36 1125
Google Scholar
[22] Kul'kova S E, Bakulin A V, Hocker S, Schmauder S 2013 Tech. Phys. 58 325
Google Scholar
[23] Nagy D, Humphry-Baker S A 2022 Scr. Mater. 209 114373
Google Scholar
[24] Kajita S, Ohta A, Ishida T, Makihara K, Yoshida T, Ohno N 2015 Jpn. J. Appl. Phys. 54 126201
Google Scholar
Metrics
- Abstract views: 24
- PDF Downloads: 2
- Cited By: 0









DownLoad: