Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Emission performance at the interface of Zr/O/W Schottky thermal field emission cathodes

GUO Jiamei YIN Shengyi SUN Wanzhong ZHANG Yongqing JIN He ZHAO Zichen

Citation:

Emission performance at the interface of Zr/O/W Schottky thermal field emission cathodes

GUO Jiamei, YIN Shengyi, SUN Wanzhong, ZHANG Yongqing, JIN He, ZHAO Zichen
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The Zr/O/W Schottky-type thermal field emission cathode is a key component in advanced electron beam instrumentation, with its unique interfacial emission mechanism remaining a focus of research in cathode technology. Traditional understanding attributes the decrease of work function at the cathode tip to a monolayer adsorption of Zr-O dipoles on the W(100) facet, with the electropositive orientation directed outward, perpendicular to the surface. This study successfully fabricats a high-performance Zr/O/W Schottky-type thermal field emission cathode that exhibits exceptional emission characteristics, including a current density of 2.5×104 A/cm2 and operational stability exceeding 8000 h. Comprehensive microstructural characterization of the activated emission zone is performed utilizing energy-dispersive X-ray spectroscopy (EDS) and Auger electron spectroscopy (AES), thereby precisely determining elemental distribution profiles across both surface and subsurface regions. The results reveal that during cathode preparation, the zirconia coating diffuses in the form of Zr-O complexes within the tungsten matrix, forming nanoscale enrichment zones specifically on the W(100) facet. Under operational conditions combining elevated temperature (1700–1800 K) and high electric field (>107 V/m), the W(100) surface develops not an adsorbed Zr-O dipole monolayer, but a nanoscale Zr/O/W(100) composite oxide structure. This multilayer structure consists of three coherently integrated components: 1) an oxygen-enriched diffusion layer beneath the W(100) interface, 2) the crystalline W(100) substrate, and 3) an overlying Zr-O thin film with multiatomic-layer thickness. First-principles calculations simulating the dynamic evolution of the W(100) emission interface during thermal treatment corroborate the experimental findings. The computed work function of the cathode emission surface decreases significantly from 5.02 eV (characteristic of nano-WO3) to 2.85 eV, showing excellent agreement with experimental measurements. When the emission interface becomes unbalanced due to external perturbations, the continuous diffusion of the zirconia coating toward the tip region, combined with the diffusion of Zr-O complexes from the subsurface of the W(100) crystal plane to the interface, enables autonomous replenishment of surface-active sites. This dynamic process effectively maintains a stable low-work-function emission surface. Both theoretical and experimental evidence consistently demonstrate that the Zr/O/W(100) oxide film serves as the fundamental material basis for the exceptional emission current density, remarkable stability, and extended operational lifetime of Zr/O/W cathodes.
  • 图 1  场发射阴极组件示意图[11]

    Figure 1.  Schematic diagram of field emission cathode assembly[11]

    图 2  Zr/O/W肖特基式热场发射阴极(R = 600 nm)在不同温度下的肖特基曲线

    Figure 2.  Schottky plots of Zr/O/W Schottky thermal field emission cathode at three tip temperatures (R = 600 nm).

    图 3  Zr/O/W肖特基式场发射阴极SEM图(20000 X) (a) 发射测试前; (b) 发射测试后

    Figure 3.  SEM images of Zr/O/W Schottky thermal field emission cathodes (20000 X): (a) Before emission testing; (b) after emission testing.

    图 4  Zr/O/W肖特基式场发射阴极发射端SEM俯视图(50000 X)

    Figure 4.  Top-view SEM image of the emission tip on Zr/O/W Schottky thermal field emission cathodes (50000 X).

    图 5  阴极涂层至发射区SEM图(300 X)

    Figure 5.  SEM image of coating-to-emitter transition region (300 X).

    图 6  发射端表面SEM图(50000 X) (1) W(100)面取点1; (2) 侧发射区取点2和3; (3)非理想发射区取点4和5

    Figure 6.  Surface SEM morphology of emitter tip (50000 X) with selected analysis points: (1) Take point 1 from the W(100) surface; (2) take points 2 and 3 from the side emission area; (3) take points 4 and 5 from the non-ideal emission area.

    图 7  图6中阴极表面点1的成分深度分布

    Figure 7.  Composition depth profile at Point 1 of Fig.6 on surface.

    图 8  Zr/O/W肖特基式场发射阴极表面层晶胞模型 (a) W2Zr2O4; (b) W2Zr1O5; (c) W2O6

    Figure 8.  Unit cell models of surface layer in Zr/O/W Schottky thermal field emission cathodes: (a) W2Zr2O4; (b) W2Zr1O5; (c) W2O6.

    图 9  Zr/O/W肖特基式场发射阴极表面层升温过程图

    Figure 9.  In-situ surface layer of Zr/O/W Schottky thermal field emission cathodes under thermal activation.

    表 1  不同工作温度W(100)晶面的元素组成

    Table 1.  Elemental composition of the W(100) crystal plane at various working temperatures.

    序号 温度/
    K
    W atomic percent/% O atomic percent /% Zr atomic percent /%
    110503 1700 96.91 2.59 0.51
    120902 1750 95.22 3.78 1.01
    122804 1800 91.54 6.49 1.98
    DownLoad: CSV

    表 2  阴极涂层至发射区AES分析结果

    Table 2.  AES analysis results of the cathode coating-to-emitter transition region.

    序号O atomic
    percent/%
    Zr atomic
    percent/%
    W atomic
    percent/%
    a34.667.1158.22
    b29.866.7863.35
    c29.925.1764.9
    d32.464.662.94
    DownLoad: CSV

    表 3  发射端表面AES分析结果

    Table 3.  AES analysis results of emitter tip surface.

    序号O atomic percent/%Zr atomic percent/%W atomic percent/%
    170.2710.3919.34
    265.044.5430.42
    333.132.264.67
    443.312.1554.54
    547.922.5149.58
    DownLoad: CSV
  • [1]

    Orloff, J 2009 Handbook of Charged Particle Optics (2nd Ed. ) (Boca Raton: CRC Press) pp2–5

    [2]

    Lamouri A, Muller W, Krainsky I L 1994 Phys. Rev. B 50 4764Google Scholar

    [3]

    Leung T C, Hu H, Liu A J, Lin M C 2019 Phys. Chem. Chem. Phys. 21 25763Google Scholar

    [4]

    郭家美, 阴生毅, 张永清, 孙万众, 高向阳 2022 电子显微学报 41 664

    Guo J M, Yin S Y, Zhang Y Q, Sun W Z, Gao X Y 2022 J. Chin. Electron Microsc. Soc. 41 664

    [5]

    Swanson L W, Schwind G A, Kellogg S M, Liu K 2012 J. Vac. Sci. Technol. , B 30 06f603Google Scholar

    [6]

    Bahm A, Schwind G, Swanson L 2011 J. Appl. Phys. 110 054322Google Scholar

    [7]

    Shimizu R 1998 J. Electron Microsc. 47 371Google Scholar

    [8]

    Iiyoshi R 2011 Nucl. Instrum. Methods Phys. Res. , Sect. A 645 316Google Scholar

    [9]

    Danielson L R, Swanson L W 1979 Surf. Sci. 88 14Google Scholar

    [10]

    Lee S C, Irokawa Y, Inoue M, Shimizu R 1995 Surf. Sci. 330 289Google Scholar

    [11]

    郭家美, 阴生毅, 孙万众, 张永清 2024第二十二届真空电子学学术年会 广州, 中国, 5月9—11日, 2024 第414页

    Guo J M, Yin S Y, Sun W Z, Zhang Y Q 2024 Proceedings of the 22nd Symposium on Vacuum Electronics Guangzhou, China, May 9–11, 2024 p414

    [12]

    王兴起, 王小霞, 罗积润, 李云 2022 稀有金属材料与工程 51 4658

    Wang X Q, Wang X X, Luo J R, Li Y 2022 Rare Met. Mater. Eng. 51 4658

    [13]

    周细文, 朱小芳, 胡权, 黄桃, 杨中海 2011 真空电子技术 2 24

    Zhou X W, Zhu X F, Hu Q, Huang T, Yang Z H 2011 Vac. Electron. 2 24

    [14]

    阴生毅, 吕昕平, 任峰, 卢志鹏, 王欣欣, 王宇, 邯娇, 张琪, 李阳 2021 电子与信息学报 43 3058

    Yin S Y, Lü X P, Ren F, Lu Z P, Wang X X, Wang Y, Han J, Zhang Q, Li Y 2021 J. Electron. Inf. Technol. 43 3058

    [15]

    崔忠圻, 覃耀春 2023 金属学与热处理 (第3版) (北京: 机械工业出版社) 第225页

    Cui Z Q, Qin Y C 2023 Metallography and Heat Treatment (3rd Ed. ) (Beijing: China Machine Press) p225

    [16]

    Zhao Y C, Xu L J, Guo M Y, Li Z, Xu Z N, Ye J H, Wei S Z 2022 J. Alloys Compd. 921 166153Google Scholar

    [17]

    虞觉奇 1987 二元合金状态图集 第1版 (上海: 上海科学技术出版社) 第580页

    Yu J Q 1987 Binary Alloy Phase Diagrams Atlas (1st Ed. ) (Shanghai: Shanghai Science and Technology Press) p580

    [18]

    Diyou J, Li X, Xuemei H, Tao W, Jianfeng H 2018 J. Mater. Res. 34 290

    [19]

    Alkhamees A, Zhou H B, Liu Y L, Jin S, Zhang Y, Lu G H 2013 J. Nucl. Mater. 437 6Google Scholar

    [20]

    刘凯斐, 孙大中, 牛相宏, 张红光, 陈伟 2023 大学物理实验 36 15

    Liu K F, Sun D Z, Niu X H, Zhang H G, Chen W 2023 Phys. Exp. Coll. 36 15

    [21]

    Nie Z, Ma L, Xi X, Liu Y, Zhao L 2021 J. Inorg. Mater. 36 1125Google Scholar

    [22]

    Kul'kova S E, Bakulin A V, Hocker S, Schmauder S 2013 Tech. Phys. 58 325Google Scholar

    [23]

    Nagy D, Humphry-Baker S A 2022 Scr. Mater. 209 114373Google Scholar

    [24]

    Kajita S, Ohta A, Ishida T, Makihara K, Yoshida T, Ohno N 2015 Jpn. J. Appl. Phys. 54 126201Google Scholar

  • [1] QI Shikai, WANG Xingqi, LI Yun, ZHANG Qi, WANG Yu. Effect of Sc2O3 doping on thermal emission properties of rare-earth refractory yttrium salt cathode. Acta Physica Sinica, doi: 10.7498/aps.74.20250520
    [2] GUO Jiamei, YIN Shengyi, SUN Wanzhong, ZHANG Yongqing, JIN He, ZHAO Zichen. Emission Performance at the Interface of Zr/O/W Schottky Thermal Field Emission Cathodes. Acta Physica Sinica, doi: 10.7498/aps.74.20251100
    [3] Shang Ji-Hua, Yang Xin-Yu, Sun Da-Peng, Zhang Jiu-Xing. Improvement of barium tungsten cathode and investigation of thermionic emission performance. Acta Physica Sinica, doi: 10.7498/aps.71.20211684
    [4] Hao Guang-Hui, Han Pan-Yang, Li Xing-Hui, Li Ze-Peng, Gao Yu-Juan. The electron emission characteristics of GaAs photocathode with vacuum-channel structure. Acta Physica Sinica, doi: 10.7498/aps.69.20191893
    [5] Li Fan, Zhang Xin, Zhang Jiu-Xing. Direct synthesis of [Ca24Al28O64]4+(4e) electride and its thermionic emission performance. Acta Physica Sinica, doi: 10.7498/aps.68.20190070
    [6] Hao Guang-Hui, Li Ze-Peng, Gao Yu-Juan, Zhou Ya-Kun. Effect of surface topography on emission properties of hot-cathode. Acta Physica Sinica, doi: 10.7498/aps.68.20181725
    [7] Wang Dan, He Yong-Ning, Ye Ming, Cui Wan-Zhao. Secondary electron emission characteristics of gold nanostructures. Acta Physica Sinica, doi: 10.7498/aps.67.20180079
    [8] Ren Feng, Yin Sheng-Yi, Lu Zhi-Peng, Li Yang, Wang Yu, Zhang Shen-Jin, Yang Feng, Wei Dong. Applications of deep ultraviolet laser photo-and thermal-emission electron microscope in thermal dispenser cathode research. Acta Physica Sinica, doi: 10.7498/aps.66.187901
    [9] Wang Qiu-Ping, Feng Yu-Jun, Xu Zhuo, Cheng Peng-Fei, Feng Fei-Long. Electron emission from Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric cathode. Acta Physica Sinica, doi: 10.7498/aps.64.247701
    [10] Yu Yang, Zhao Yong-Tao, Wang Yu-Yu, Wang Xing, Cheng Rui, Zhou Xian-Ming, Li Yong-Feng, Liu Shi-Dong, Lei Yu, Sun Yuan-Bo, Zeng Li-Xia. Secondary electron emission from carbon Foils by Ne2+ near Bohr velocity. Acta Physica Sinica, doi: 10.7498/aps.62.157901
    [11] Zuo Ying-Hong, Wang Jian-Guo, Zhu Jin-Hui, Niu Sheng-Li, Fan Ru-Yu. Investigation of the cathode electric field at the initial stage of explosive electron emission. Acta Physica Sinica, doi: 10.7498/aps.61.177901
    [12] Wang Yi-Jun, Wang Liu-Ding, Yang Min, Liu Guang-Qing, Yan Cheng. Structural stability and field emission properties of carbon nanotubes doped by a boron atom and adsorbed with several H2O molecules. Acta Physica Sinica, doi: 10.7498/aps.59.4950
    [13] Chen An-Min, Gao Xun, Jiang Yuan-Fei, Ding Da-Jun, Liu Hang, Jin Ming-Xing. Numerical simulation of femtosecond laser heating of metal films using electron thermal emission. Acta Physica Sinica, doi: 10.7498/aps.59.7198
    [14] Wang Jian-Guo, Xu Zhong-Feng, Zhao Yong-Tao, Wang Yu-Yu, Li De-Hui, Zhao Di, Xiao Guo-Qing. Slow highly charged ions induced electron emission from clean Si surfaces. Acta Physica Sinica, doi: 10.7498/aps.59.7803
    [15] Zhang Lin-Li, Xu Zhuo, Feng Yu-Jun, Sheng Zhao-Xuan. Characteristics of electron emission from La-doped Pb(Zr,Sn,Ti)O3 antiferroelectric cathode under negative triggering pulse. Acta Physica Sinica, doi: 10.7498/aps.58.4249
    [16] Wang Xiao-Xia, Liao Xian-Heng, Luo Ji-Run, Zhao Qing-Lan. Preparation and emission properties of a sub-micrometer carbonate emission material. Acta Physica Sinica, doi: 10.7498/aps.57.1924
    [17] Sheng Zhao-Xuan, Feng Yu-Jun, Huang Xuan, Xu Zhuo, Sun Xin-Li. Strong electron emission of antiferroelectric ceramic. Acta Physica Sinica, doi: 10.7498/aps.57.4590
    [18] Yu Jian-Hua, Lai Jian-Jun, Huang Jian-Jun, Wang Xin-Bin, Qui Jun-Lin. . Acta Physica Sinica, doi: 10.7498/aps.51.2080
    [19] . Acta Physica Sinica, doi: 10.7498/aps.51.367
    [20] He Yu, Guo Wen-Kang, Shao Qi-Jun, Xu Peng. . Acta Physica Sinica, doi: 10.7498/aps.49.487
Metrics
  • Abstract views:  24
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Received Date:  15 August 2025
  • Accepted Date:  19 September 2025
  • Available Online:  17 December 2025
  • /

    返回文章
    返回