Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Applications of deep ultraviolet laser photo-and thermal-emission electron microscope in thermal dispenser cathode research

Ren Feng Yin Sheng-Yi Lu Zhi-Peng Li Yang Wang Yu Zhang Shen-Jin Yang Feng Wei Dong

Citation:

Applications of deep ultraviolet laser photo-and thermal-emission electron microscope in thermal dispenser cathode research

Ren Feng, Yin Sheng-Yi, Lu Zhi-Peng, Li Yang, Wang Yu, Zhang Shen-Jin, Yang Feng, Wei Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The research of micro-region emission state for thermal dispenser cathode surface,especially in-situ observation and analysis,is an important subject in the field of thermal cathode.A newly developed instrument aiming at meeting the special operation requirements of thermal dispenser cathode is used to carry out this research.This instrument combines the functions of deep ultraviolet laser photo-emission electron microscope and thermal-emission electron microscope,so it is called DUV-PEEM/TEEM.In this paper,its basic principle is introduced emphatically.In addition,the actual applications of the microscope system to the electron emission investigation of thermal dispenser cathode are displayed. This system is equipped with the heating unit,which is used for activating the thermal dispenser cathode sample,and the temperature of sample can reach 1400℃.The system has three imaging modes,namely,photoemission electron imaging, cathode thermal emission electron imaging,and united imaging by integrating cathode thermal emission electron and photoemission electron.By applying new microscope system to traditional thermal dispenser cathode,we acquire the photoemission electron images of impregnated barium aluminate cathode surface at room temperature.In the heating process,we observe the thermal electron emission phenomenon originating from thermal dispenser cathode and record the variation process with temperature change.A high emission cathode which we developed before,is also studied with DUV-PEEM/TEEM.Fortunately,we find that some bright stripes appear on the surface of high emission cathode when the cathode temperature reaches 800℃.The widths of these bright stripes are about 100 nm.We calculate the thermal emission electron imaging resolution of this system by using these thermal electron emission stripes and the obtained resolution reaches 28 nm.Conveniently,the emission performance and uniformity of this high emission cathode are compared with those of traditional impregnated barium aluminate cathode directly at same temperature. Using united imaging mode of the system,in-situ observation and analysis of thermal electron emission spots on high emission cathode surface are carried out successfully.The results indicate as follows.For thermal dispenser cathode,the deep ultraviolet laser photoemission electron imaging can be used to show the surface fundamental micro-morphology of cathode;cathode thermal emission electron imaging is suitable for revealing the intrinsic emission uniformity of the thermal dispenser cathode;with the united imaging by integrating cathode thermal emission electron and photoemission electron,the positions of effective emission points on cathode surface can be fixed accurately.Based on these applications and findings,we believe that DUV-PEEM/TEEM also has ability to investigate the processes of cathode poisoning and recovery.
      Corresponding author: Yin Sheng-Yi, ysy210@163.com
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2012YQ120048).
    [1]

    Gilmour Jr A S (Translated by Ding Y G, Zhang Z C) 2012 Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers and Gyrotrons (Beijing:National Defense Industry Press) pp39-40(in Chinese)[Gilmour Jr A S著(丁耀根, 张兆传译) 2012速调管、行波管、磁控管、正交场放大器和回旋管(北京:国防工业出版社)第3940页]

    [2]

    Wang W X 2012 Vacuum Electronic Devices (Beijing:National Defense Industry Press) p11(in Chinese)[王文祥2012真空电子器件(北京:国防工业出版社)第11页]

    [3]

    Jones D, Mcneely D, Swanson L W 1979 Appl. Surf. Sci. 2 232

    [4]

    Chen D S, Lindau I, Hecht M H, Viescas A J, Nogami J, Spicer W E 1982 Appl. Surf. Sci. 13 321

    [5]

    Brion D, Tonnerre J C, Shroff A M 1983 Appl. Surf. Sci. 16 55

    [6]

    Koenig M F, Grant J T 1985 Appl. Surf. Sci. 20 481

    [7]

    Ares Fang C S, Maloney C E 1990 J. Vac. Sci. Technol. A 8 2329

    [8]

    Li Y T, Zhang H L, Liu P K, Zhang M C 2006 Acta Phys. Sin. 55 6677(in Chinese)[李玉涛, 张洪来, 刘濮鲲, 张明晨2006物理学报 55 6677]

    [9]

    Yin S Y, Zhang H L, Yang J X, Urash I, Qian H J, Wang J O, Wang Y, Wang X X 2011 J. Electron. Inf. Technol. 33 3040(in Chinese)[阴生毅, 张洪来, 杨靖鑫, 奎热西, 钱海杰, 王嘉欧, 王宇, 王欣欣2011电子与信息学报 33 3040]

    [10]

    Wang J S, Wang Y M, Wang X, Zhang X Z, Yang F, Liu W, Zhou M L 2013 Proceedings of the 14th IEEE International Vacuum Electronics Conference Paris, France, May 21-23, 2013 p1

    [11]

    Liang W L, Wang Y M, Liu W, Li H Y, Wang J S 1984 J. Electron. Inf. Technol. 6 89(in Chinese)[张恩虬, 刘学悫1984电子科学学刊 6 89]

    [12]

    Motta C C 2016 Proceedings of the 17th IEEE International Vacuum Electronics Conference Monterey, USA, April 1921, 2016 p1

    [13]

    Zhang E Q, Liu X Q 1984 J. Electron. Inf. Technol. 6 89 (in Chinese) [张恩虬, 刘学悫1984 电子科学学刊6 89]

    [14]

    Fang H M, Su Q X, Su X C 1983 J. Vac. Sci. Technol. 3 91(in Chinese)[方厚民, 苏翘秀, 苏煦春1983真空科学与技术学报 3 91]

    [15]

    Bauer E 2001 J. Phys. Condens. Matter 13 11391

    [16]

    Wlegmann L 1972 J. Microsc. 96 1

    [17]

    Gnther S, Kaulich B, Gregoratti L, Kiskinova M 2002 Prog. Surf. Sci. 70 187

    [18]

    Turner D W, Plummer I R, Porter H Q 1984 J. Microsc. 136 259

    [19]

    Guo F Z 2010 Physics 39 211(in Chinese)[郭方准2010物理 39 211]

    [20]

    Ning X Y, Fu Q, Bao X H 2016 Acta Phys.-Chim. Sin. 32 171(in Chinese)[宁艳晓, 傅强, 包信和2016物理化学学报 32 171]

    [21]

    Engel W, Kordesch M E, Rotermund H H, Kubala S, Oertzen A V 1991 Ultramicroscopy 36 148

    [22]

    Yin S Y, Zhang Z C, Peng Z, Zheng Q, Wang Y 2013 IEEE Trans. Electron. Dev. 60 4258

  • [1]

    Gilmour Jr A S (Translated by Ding Y G, Zhang Z C) 2012 Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers and Gyrotrons (Beijing:National Defense Industry Press) pp39-40(in Chinese)[Gilmour Jr A S著(丁耀根, 张兆传译) 2012速调管、行波管、磁控管、正交场放大器和回旋管(北京:国防工业出版社)第3940页]

    [2]

    Wang W X 2012 Vacuum Electronic Devices (Beijing:National Defense Industry Press) p11(in Chinese)[王文祥2012真空电子器件(北京:国防工业出版社)第11页]

    [3]

    Jones D, Mcneely D, Swanson L W 1979 Appl. Surf. Sci. 2 232

    [4]

    Chen D S, Lindau I, Hecht M H, Viescas A J, Nogami J, Spicer W E 1982 Appl. Surf. Sci. 13 321

    [5]

    Brion D, Tonnerre J C, Shroff A M 1983 Appl. Surf. Sci. 16 55

    [6]

    Koenig M F, Grant J T 1985 Appl. Surf. Sci. 20 481

    [7]

    Ares Fang C S, Maloney C E 1990 J. Vac. Sci. Technol. A 8 2329

    [8]

    Li Y T, Zhang H L, Liu P K, Zhang M C 2006 Acta Phys. Sin. 55 6677(in Chinese)[李玉涛, 张洪来, 刘濮鲲, 张明晨2006物理学报 55 6677]

    [9]

    Yin S Y, Zhang H L, Yang J X, Urash I, Qian H J, Wang J O, Wang Y, Wang X X 2011 J. Electron. Inf. Technol. 33 3040(in Chinese)[阴生毅, 张洪来, 杨靖鑫, 奎热西, 钱海杰, 王嘉欧, 王宇, 王欣欣2011电子与信息学报 33 3040]

    [10]

    Wang J S, Wang Y M, Wang X, Zhang X Z, Yang F, Liu W, Zhou M L 2013 Proceedings of the 14th IEEE International Vacuum Electronics Conference Paris, France, May 21-23, 2013 p1

    [11]

    Liang W L, Wang Y M, Liu W, Li H Y, Wang J S 1984 J. Electron. Inf. Technol. 6 89(in Chinese)[张恩虬, 刘学悫1984电子科学学刊 6 89]

    [12]

    Motta C C 2016 Proceedings of the 17th IEEE International Vacuum Electronics Conference Monterey, USA, April 1921, 2016 p1

    [13]

    Zhang E Q, Liu X Q 1984 J. Electron. Inf. Technol. 6 89 (in Chinese) [张恩虬, 刘学悫1984 电子科学学刊6 89]

    [14]

    Fang H M, Su Q X, Su X C 1983 J. Vac. Sci. Technol. 3 91(in Chinese)[方厚民, 苏翘秀, 苏煦春1983真空科学与技术学报 3 91]

    [15]

    Bauer E 2001 J. Phys. Condens. Matter 13 11391

    [16]

    Wlegmann L 1972 J. Microsc. 96 1

    [17]

    Gnther S, Kaulich B, Gregoratti L, Kiskinova M 2002 Prog. Surf. Sci. 70 187

    [18]

    Turner D W, Plummer I R, Porter H Q 1984 J. Microsc. 136 259

    [19]

    Guo F Z 2010 Physics 39 211(in Chinese)[郭方准2010物理 39 211]

    [20]

    Ning X Y, Fu Q, Bao X H 2016 Acta Phys.-Chim. Sin. 32 171(in Chinese)[宁艳晓, 傅强, 包信和2016物理化学学报 32 171]

    [21]

    Engel W, Kordesch M E, Rotermund H H, Kubala S, Oertzen A V 1991 Ultramicroscopy 36 148

    [22]

    Yin S Y, Zhang Z C, Peng Z, Zheng Q, Wang Y 2013 IEEE Trans. Electron. Dev. 60 4258

  • [1] Yang Dong, Li Zhong-Wen, Tian Yuan, Sun Shuai-Shuai, Tian Huan-Fang, Yang Huai-Xin, Li Jian-Qi. Photo-emission electron gun and electron optical simulation for ultrafast scanning electron microscope. Acta Physica Sinica, 2024, 73(22): 222901. doi: 10.7498/aps.73.20241245
    [2] Shi Liang-Zhu, Zhang Meng, Chu Yu-Xi, Liu Bo-Wen, Hu Ming-Lie. 206 nm deep ultraviolet laser generated from fifth harmonic of femtosecond fiber laser. Acta Physica Sinica, 2023, 72(22): 224209. doi: 10.7498/aps.72.20230877
    [3] Liu Xuan-Xuan, Guo Hong-Xuan, Xu Tao, Yin Kui-Bo, Sun Li-Tao. In-situ liquid phase transmission electron microscope and its application in nanoparticle characterization. Acta Physica Sinica, 2021, 70(8): 086701. doi: 10.7498/aps.70.20201899
    [4] Zhao Xiang-Yu, Qin Yu-Lu, Ji Bo-Yu, Lang Peng, Song Xiao-Wei, Lin Jing-Quan. Near-field imaging of femtosecond propagating surface plasmon and regulation of excitation efficiency. Acta Physica Sinica, 2021, 70(10): 107101. doi: 10.7498/aps.70.20201827
    [5] Lü Hao-Chang, Zhao Yun-Chi, Yang Guang, Dong Bo-Wen, Qi Jie, Zhang Jing-Yan, Zhu Zhao-Zhao, Sun Yang, Yu Guang-Hua, Jiang Yong, Wei Hong-Xiang, Wang Jing, Lu Jun, Wang Zhi-Hong, Cai Jian-Wang, Shen Bao-Gen, Yang Feng, Zhang Shen-Jin, Wang Shou-Guo. High resolution imaging based on photo-emission electron microscopy excited by deep ultraviolet laser. Acta Physica Sinica, 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [6] Hao Guang-Hui, Li Ze-Peng, Gao Yu-Juan, Zhou Ya-Kun. Effect of surface topography on emission properties of hot-cathode. Acta Physica Sinica, 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [7] Meng Xiang-Hao, Liu Hua-Gang, Huang Jian-Hong, Dai Shu-Tao, Deng Jing, Ruan Kai-Ming, Chen Jin-Ming, Lin Wen-Xiong. Tunable deep ultraviolet femtosecond sum frequency laser based on Ba1-xB2-y-zO4SixAlyGaz crystal. Acta Physica Sinica, 2015, 64(16): 164205. doi: 10.7498/aps.64.164205
    [8] Zhang Chao, Fang Liang, Sui Bing-Cai, Xu Qiang, Wang Hui. Nano-scale lithography and in-situ electrical measurements based on the micro-chips in a transmission electron microscope. Acta Physica Sinica, 2014, 63(24): 248105. doi: 10.7498/aps.63.248105
    [9] WANG ZHEN-XIA, RUAN MEI-LING, YANG JIN-QING, WANG WEN-MIN, YU GUO-QING. INVESTIGATION OF THE NOVEL CARBON NANOSTRUCTURES BY HIGH RESOLUTION ELECTRON MICROSCOPY. Acta Physica Sinica, 1999, 48(11): 2092-2097. doi: 10.7498/aps.48.2092
    [10] Qui Wen-Xiu, Yao Xi. . Acta Physica Sinica, 1995, 44(4): 614-621. doi: 10.7498/aps.44.614
    [11] LI YI-JIE, XIONG GUANG-CHENG, GAN ZI-ZHAO, REN CONG-XIN, ZOU SHI-CHANG. TEM STUDY OF MICROSTRUCTURAL CHANGES INDUCED BY AR ION IMPLANTATION IN YBa2Cu3O7-x SUPERCONDUCTING FILMS. Acta Physica Sinica, 1993, 42(3): 482-487. doi: 10.7498/aps.42.482
    [12] LI LONG, LI FANG-HUA, YANG DA-YU, TIAN LING-HUA, LIN ZHEN-JIN. ELECTRON DIFFRACTION AND HIGH RESOLUTION MICRO-SCOPY STUDY ON INCOMMENSURATE MODULATED STRUCTURE IN Ce1+εFe4B4 ALLOY. Acta Physica Sinica, 1990, 39(5): 788-792. doi: 10.7498/aps.39.788
    [13] YANG CUI-YING, ZHANG DAO-FAN, WU XING, ZHOU YU-QING, FENG GUO-GUANG. ANALYTICAL ELECTRON MICROSCOPY OF DEFECTS IN PHOTOREFRACTIVE BaTiO3 CRYSTAL. Acta Physica Sinica, 1989, 38(12): 2003-2007. doi: 10.7498/aps.38.2003
    [14] XU HUI-FANG, LUO GU-FENG, HU MEI-SHENG, CHEN JUN. HRTEM STUDY OF THE SUPERLATTICE ORTHOCLASE. Acta Physica Sinica, 1989, 38(9): 1527-1529. doi: 10.7498/aps.38.1527
    [15] GUO YONG-XIANG, HEI ZU-KUN, WU YU-KUN, GUO KE-XIN. A TEM STUDY OF THE CRYSTALLIZATION OF AMORPHOUS Ni-Zr ALLOY(I)——METASTABLE PHASES FORMED DURING CRYSTALLIZATION OF Ni67Zr33. Acta Physica Sinica, 1986, 35(3): 359-364. doi: 10.7498/aps.35.359
    [16] ZHANG JING, LIU AN-SHENG, WU ZI-QIN, GUO KE-XIN. A TEM STUDY OF Pd-Si THIN FILM SOLID-PHASE REACTION. Acta Physica Sinica, 1986, 35(7): 965-968. doi: 10.7498/aps.35.965
    [17] LI FANG-HUA, FAN HAN-JIE, YANG DA-YU, FU PING-QIU, KONG YOU-HUA. ELECTRON MICROSCOPY OF HUANGHOITE. Acta Physica Sinica, 1982, 31(5): 571-576. doi: 10.7498/aps.31.571
    [18] CHENG PENG-ZHU, MA XIAO-HUA, LUO QI-GUANG, YANG DA-YU. THE PREPARATION OF TRANSMISSION ELECTRON MICROSCOPE SPECIMEN BY ELECTROLYTIC POLISHING METHOD. Acta Physica Sinica, 1981, 30(2): 286-290. doi: 10.7498/aps.30.286
    [19] GUO KE-XIN, LIN BAO-JUN. A TEM STUDY OF PARTIAL DISLOCATIONS IN A NICKEL-CHROMIUM ALLOY. Acta Physica Sinica, 1980, 29(4): 494-499. doi: 10.7498/aps.29.494
    [20] Wu Quan-de. OBSERVATIONS OF SILVER COLLOIDAL PARTICLES AND SILVER GRANULES IN Ag-0-Cs PHOTOCATHODE BY ELECTRON MICROSCOPY. Acta Physica Sinica, 1979, 28(4): 553-562. doi: 10.7498/aps.28.553
Metrics
  • Abstract views:  6154
  • PDF Downloads:  146
  • Cited By: 0
Publishing process
  • Received Date:  04 May 2017
  • Accepted Date:  27 May 2017
  • Published Online:  05 September 2017

/

返回文章
返回