Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

206 nm deep ultraviolet laser generated from fifth harmonic of femtosecond fiber laser

Shi Liang-Zhu Zhang Meng Chu Yu-Xi Liu Bo-Wen Hu Ming-Lie

Citation:

206 nm deep ultraviolet laser generated from fifth harmonic of femtosecond fiber laser

Shi Liang-Zhu, Zhang Meng, Chu Yu-Xi, Liu Bo-Wen, Hu Ming-Lie
PDF
HTML
Get Citation
  • Deep ultraviolet (DUV) femtosecond laser, which combines the advantages of high single-photon energy of DUV laser with high peak power of femtosecond laser, is widely used in scientific research, biomedicine, material processing and so on. However, in the process of generating DUV femtosecond laser based on nonlinear frequency conversion is encountered a problem that the group velocity mismatch caused by dispersion makes the temporal walk-off of the nonlinear frequency conversion larger than the pulse duration of the femtosecond laser, thus making the generation of the DUV femtosecond laser very difficult. In this work, based on a Yb-doped fiber femtosecond laser, the delay line is optimized to precisely compensate for the spatial and temporal walk-off, so DUV femtosecond laser possesses the following performances: the center wavelength is 206 nm, the repetition rate is 1 MHz, the maximum output power is 102 mW, the maximum conversion efficiency is 4.25% from near infrared to DUV, the root mean square (RMS) power stability is 0.88% within 3 h, and the peak-to-peak power stability is 3.75%. The evolution of laser spectra and beam quality in the process of second harmonic generation (SHG), fourth harmonic generation (FHG) and sum-frequency generation (SFG) are also systematically studied. The experimental results provide a basis for generating DUV femtosecond laser from femtosecond fiber lasers.
      Corresponding author: Hu Ming-Lie, huminglie@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805174, 61535009, 61827821, 61377041, 11527808, U1730115), the Research and Development Plan in Key Fields of Guangdong Province, China (Grant No. 2020B090922004), and the Natural Science Foundation of Tianjin, China (Grant No. 20JCQNJC01180).
    [1]

    Tuschel D D, Mikhonin A V, Lemoff B E, Asher S A 2010 Appl. Spectrosc. 64 425Google Scholar

    [2]

    Kang Y F, Zhao J Y, Wu J X, Zhang L, Zhao J, Zhang Y Q, Zhao Y Q, Wang X F 2020 IEEE T. Electron Dev. 67 3391Google Scholar

    [3]

    Herman P R, Marjoribanks R S, Oettl A, Chen K, Konovalov I, Ness S 2000 Appl. Surf. Sci. 154 577

    [4]

    Stern R S, Zierler S, Parrish J A 1980 Lancet 315 732Google Scholar

    [5]

    Vengris M, Gabryte E, Aleknavicius A, Barkauskas M, Ruksenas O, Vaiceliunaite A, Danielius R 2010 J. Cataract Refract. Surg. 36 1579Google Scholar

    [6]

    Kohler B, Andres T, Nebel A, Wallenstein R 2000 Conference on Lasers and Electro-Optics San Jose, The United States of America, May 9, 2000 p142

    [7]

    Turcicova H, Novak O, Roskot L, Smrz M, Mocek T 2019 Opt. Express 27 24286Google Scholar

    [8]

    Willenberg B, Brunner F, Phillips C R, Keller U 2020 Optica 7 485Google Scholar

    [9]

    Chu Y X, Zhang X D, Chen B B, Wang J Z, Yang J H, Jiang R, Hu M L 2021 Opt. Laser Technol. 134 1

    [10]

    Willenberg B, Brunner F, Phillips C R, Keller U 2019 Conference on Lasers and Electro-Optics San Jose, USA, March 16, 2019 p1

    [11]

    Cui Z J, Sun M Y, Liu D A, Zhu J Q 2022 Opt. Express 30 43354Google Scholar

    [12]

    Fu X Y, Chen Z D, Han D D, Zhang Y L, Xia H, Sun H B 2020 Photonics Res. 8 577Google Scholar

    [13]

    Yan D Y, Liu B W, Chu Y X, Song H Y, Chai L, Hu M L, Wang Q Y 2019 Chin. Opt. Lett. 17 041404Google Scholar

    [14]

    Zhang X, Wang Z M, Luo S Y, Wang G L, Zhu Y, Xu Z Y, Chen C T 2011 Appl. Phys. B 102 825Google Scholar

    [15]

    Wang G L, Wang X Y, Zhou Y, Li C M, Zhu Y, Xu Z Y, Chen C T 2008 Appl. Opt. 47 486Google Scholar

    [16]

    孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄 2015 物理学报 64 164205Google Scholar

    Meng X H, Liu H G, Huang J H, Dai S T, Deng J, Ruan K M, Chen J M, Lin W X 2015 Acta Phys. Sin. 64 164205Google Scholar

    [17]

    Susnjar P, Demidovich A, Kurdi G, Cinquegrana P, Nikolov I, Sigalotti P, Danailov M B 2023 Opt. Commun. 528 129031Google Scholar

    [18]

    Otsu T, Ishida Y, Ozawa A, Shin S, Kobayashi Y 2014 19th International Conference on Ultrafast Phenomena OSA Technical Digest (online), July 7, 2014 p1

    Otsu T, Ishida Y, Ozawa A, Shin S, Kobayashi Y 2014 19th International Conference on Ultrafast Phenomena OSA Technical Digest (online), July 7, 2014 p1

    [19]

    Chaitanya N A, Aadhi A, Jabir M V, Samanta G K 2015 Opt. Lett. 40 4269Google Scholar

    [20]

    Liu H G, Hu M L, Liu B W, Song Y J, Chai L, Wang Q Y 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 2284

    [21]

    Ran Q D, Short J S, Wang Q J, Li H 2023 Front. Phys. 10 1391

  • 图 1  实验装置示意图. λ/2, 半波片; TFP, 薄膜偏振片; M1—M5, 1030 nm反射镜; M6, M7, 515 nm反射镜; F1, 450 mm透镜; F2, 125 mm透镜; F3, 150 mm透镜; DM1, DM2, 双色镜; SHG, 3 mm LBO倍频晶体; FHG, 1 mm BBO四倍频晶体; FiHG, 1 mm BBO五倍频晶体; PP, 佩林布洛卡棱镜

    Figure 1.  Schematic of experimental setup. λ/2, half-wave plate; TFP, thin-film polarizer; M1—M5, plano mirror at 1030 nm; M6, M7, plano mirror at 515 nm; F1, 450 mm lenses; F2, 125 mm lenses; F3, 150 mm lenses; DM1, DM2, dichroic mirror; SHG, second harmonic generation, 3 mm LBO crystal; FHG, fourth harmonic generation, 1 mm BBO crystal; FiHG, fifth harmonic generation, 1 mm BBO crystal; PP, Pellin-Broca prism.

    图 2  (a) 基频光光谱图; (b) 基频光脉宽图, 插图为近场光斑图

    Figure 2.  (a) Spectrum of the fundamental frequency laser; (b) pulse width of the fundamental frequency laser, and the inset is the near-field beam profile of the fundamental frequency laser.

    图 3  (a) 倍频光的平均功率和倍频转换效率随入射基频光功率变化关系图, 插图为最高平均功率输出时倍频光的近场光斑图; (b) 倍频光光谱图

    Figure 3.  (a) Average output power and conversion efficiency of the SH beam as functions of the fundamental power, inset, the near-field beam profile of the SH beam at maximum average power output; (b) spectrum of the SH.

    图 4  (a) 四倍频光的平均功率和四倍频转换效率随入射基频光功率变化关系图, 插图为最高功率输出时的四倍频光光斑图; (b) 四倍频光光谱图

    Figure 4.  (a) Average output power and conversion efficiency of the FH beam as functions of the fundamental power. Inset, the near-field beam profile of the FH beam at maximum average power output; (b) spectrum of the FH.

    图 5  (a) 五倍频光的平均功率和五倍频转换效率随入射基频光功率变化关系图, 插图为最高功率输出时的五倍频光光斑图; (b) 五倍频光的平均功率随延迟线系统位置变化关系图, 插图为BBO晶体表面膜损伤; (c) 五倍频光谱图; (d) 功率稳定性测试

    Figure 5.  (a) Average output power and conversion efficiency of the FiH beam as functions of the fundamental power, inset, the near-field beam profile of the FiH beam at maximum average power output; (b) average output power of the FiH beam as functions of the location. Inset, damage to the surface film of the BBO crystal; (c) spectrum of the FiH; (d) power stability tests.

    表 1  基频光和四倍频光之间的时间走离

    Table 1.  Delay time between fourth harmonic and fundamental frequency laser.

    LBOF2F3BBO (FHG)BBO (FiHG)
    Δt/fs155.8337.6409.21042.51327.1
    DownLoad: CSV
  • [1]

    Tuschel D D, Mikhonin A V, Lemoff B E, Asher S A 2010 Appl. Spectrosc. 64 425Google Scholar

    [2]

    Kang Y F, Zhao J Y, Wu J X, Zhang L, Zhao J, Zhang Y Q, Zhao Y Q, Wang X F 2020 IEEE T. Electron Dev. 67 3391Google Scholar

    [3]

    Herman P R, Marjoribanks R S, Oettl A, Chen K, Konovalov I, Ness S 2000 Appl. Surf. Sci. 154 577

    [4]

    Stern R S, Zierler S, Parrish J A 1980 Lancet 315 732Google Scholar

    [5]

    Vengris M, Gabryte E, Aleknavicius A, Barkauskas M, Ruksenas O, Vaiceliunaite A, Danielius R 2010 J. Cataract Refract. Surg. 36 1579Google Scholar

    [6]

    Kohler B, Andres T, Nebel A, Wallenstein R 2000 Conference on Lasers and Electro-Optics San Jose, The United States of America, May 9, 2000 p142

    [7]

    Turcicova H, Novak O, Roskot L, Smrz M, Mocek T 2019 Opt. Express 27 24286Google Scholar

    [8]

    Willenberg B, Brunner F, Phillips C R, Keller U 2020 Optica 7 485Google Scholar

    [9]

    Chu Y X, Zhang X D, Chen B B, Wang J Z, Yang J H, Jiang R, Hu M L 2021 Opt. Laser Technol. 134 1

    [10]

    Willenberg B, Brunner F, Phillips C R, Keller U 2019 Conference on Lasers and Electro-Optics San Jose, USA, March 16, 2019 p1

    [11]

    Cui Z J, Sun M Y, Liu D A, Zhu J Q 2022 Opt. Express 30 43354Google Scholar

    [12]

    Fu X Y, Chen Z D, Han D D, Zhang Y L, Xia H, Sun H B 2020 Photonics Res. 8 577Google Scholar

    [13]

    Yan D Y, Liu B W, Chu Y X, Song H Y, Chai L, Hu M L, Wang Q Y 2019 Chin. Opt. Lett. 17 041404Google Scholar

    [14]

    Zhang X, Wang Z M, Luo S Y, Wang G L, Zhu Y, Xu Z Y, Chen C T 2011 Appl. Phys. B 102 825Google Scholar

    [15]

    Wang G L, Wang X Y, Zhou Y, Li C M, Zhu Y, Xu Z Y, Chen C T 2008 Appl. Opt. 47 486Google Scholar

    [16]

    孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄 2015 物理学报 64 164205Google Scholar

    Meng X H, Liu H G, Huang J H, Dai S T, Deng J, Ruan K M, Chen J M, Lin W X 2015 Acta Phys. Sin. 64 164205Google Scholar

    [17]

    Susnjar P, Demidovich A, Kurdi G, Cinquegrana P, Nikolov I, Sigalotti P, Danailov M B 2023 Opt. Commun. 528 129031Google Scholar

    [18]

    Otsu T, Ishida Y, Ozawa A, Shin S, Kobayashi Y 2014 19th International Conference on Ultrafast Phenomena OSA Technical Digest (online), July 7, 2014 p1

    Otsu T, Ishida Y, Ozawa A, Shin S, Kobayashi Y 2014 19th International Conference on Ultrafast Phenomena OSA Technical Digest (online), July 7, 2014 p1

    [19]

    Chaitanya N A, Aadhi A, Jabir M V, Samanta G K 2015 Opt. Lett. 40 4269Google Scholar

    [20]

    Liu H G, Hu M L, Liu B W, Song Y J, Chai L, Wang Q Y 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 2284

    [21]

    Ran Q D, Short J S, Wang Q J, Li H 2023 Front. Phys. 10 1391

  • [1] Li Ming-Zhou, Li Zhi-Yuan. Structure design and numerical simulation of chirped periodically polarized lithium niobate crystal for broadband mid-infrared laser generation. Acta Physica Sinica, 2022, 71(13): 134206. doi: 10.7498/aps.71.20220016
    [2] Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui. Effect of edge on nonlinear optical property of graphene quantum dots. Acta Physica Sinica, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [3] Bai Rui-Xue, Yang Jue-Han, Wei Da-Hai, Wei Zhong-Ming. Research progress of low-dimensional semiconductor materials in field of nonlinear optics. Acta Physica Sinica, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [4] Liu Zhi-Wei, Zhang Bin, Chen Yu. Two-dimensional nanomaterials and their derivatives for laser protection. Acta Physica Sinica, 2020, 69(18): 184201. doi: 10.7498/aps.69.20200313
    [5] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [6] Lü Hao-Chang, Zhao Yun-Chi, Yang Guang, Dong Bo-Wen, Qi Jie, Zhang Jing-Yan, Zhu Zhao-Zhao, Sun Yang, Yu Guang-Hua, Jiang Yong, Wei Hong-Xiang, Wang Jing, Lu Jun, Wang Zhi-Hong, Cai Jian-Wang, Shen Bao-Gen, Yang Feng, Zhang Shen-Jin, Wang Shou-Guo. High resolution imaging based on photo-emission electron microscopy excited by deep ultraviolet laser. Acta Physica Sinica, 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [7] Cheng Meng-Yao, Wang Zhao-Hua, He Hui-Jun, Wang Xian-Zhi, Zhu Jiang-Feng, Wei Zhi-Yi. Efficient third harmonic generation of 355 nm picosecond laser pulse. Acta Physica Sinica, 2019, 68(12): 124205. doi: 10.7498/aps.68.20190513
    [8] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [9] Ren Feng, Yin Sheng-Yi, Lu Zhi-Peng, Li Yang, Wang Yu, Zhang Shen-Jin, Yang Feng, Wei Dong. Applications of deep ultraviolet laser photo-and thermal-emission electron microscope in thermal dispenser cathode research. Acta Physica Sinica, 2017, 66(18): 187901. doi: 10.7498/aps.66.187901
    [10] Chen Wei-Jun, Lu Ke-Qing, Hui Juan-Li, Zhang Bao-Ju. Propagation and interactions of Airy-Gaussian beams in saturable nonliear medium. Acta Physica Sinica, 2016, 65(24): 244202. doi: 10.7498/aps.65.244202
    [11] Meng Xiang-Hao, Liu Hua-Gang, Huang Jian-Hong, Dai Shu-Tao, Deng Jing, Ruan Kai-Ming, Chen Jin-Ming, Lin Wen-Xiong. Tunable deep ultraviolet femtosecond sum frequency laser based on Ba1-xB2-y-zO4SixAlyGaz crystal. Acta Physica Sinica, 2015, 64(16): 164205. doi: 10.7498/aps.64.164205
    [12] Zhang Long, Han Hai-Nian, Hou Lei, Yu Zi-Jiao, Zhu Zheng, Jia Yu-Lei, Wei Zhi-Yi. Supercontinuum generation in photonic crystal fiber and tapered single-mode fiber. Acta Physica Sinica, 2014, 63(19): 194208. doi: 10.7498/aps.63.194208
    [13] Su Qian-Qian, Zhang Guo-Wen, Pu Ji-Xiong. The propagation characteristics of a Gaussian beam passing through the thick nonlinear medium with defects. Acta Physica Sinica, 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [14] Sun Bo, Liu Jin-Song, Ling Fu-Ri, Wang Ke-Jia, Zhu Da-Qing, Yao Jian-Quan. Investigation of the operation characteristics of terahertz-wave parametric oscillator based on LiTaO3. Acta Physica Sinica, 2009, 58(3): 1745-1751. doi: 10.7498/aps.58.1745
    [15] Li Lin-Li, Feng Guo-Ying, Yang Hao, Zhou Guo-Rui, Zhou Hao, Zhu Qi-Hua, Wang Jian-Jun, Zhou Shou-Huan. Dispersion properties and supercontinuum generation in nanofiber. Acta Physica Sinica, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [16] Huang Xiao-Ming, Tao Li-Min, Guo Ya-Hui, Gao Yun, Wang Chuan-Kui. Theoretical studies of nonlinear optical properties of a novel double-conjugated-segment molecule. Acta Physica Sinica, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [17] Yang Guang, Chen Zheng-Hao. Large optical nonlinearities in Ag-doped BaTiO3 nanocomposite films. Acta Physica Sinica, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [18] Liang Xiao-Rui, Zhao Bo, Zhou Zhi-Hua. Ab initio study on the second-order nonlinear optical properties of some coumarin derivatives. Acta Physica Sinica, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [19] Zhang Xian-Bin, Shi Wei. Optimize the output performance by shortening the cavity length of the THz electromagnetic wave parametric oscillator. Acta Physica Sinica, 2006, 55(10): 5237-5241. doi: 10.7498/aps.55.5237
    [20] Zhang Ming-Xin, Wu Ke-Chen, Liu Cai-Ping, Wei Yong-Qin. Computational study on the exchange-correlation function in density functional theory and optical nonlinearity of transition-metal complexes. Acta Physica Sinica, 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
Metrics
  • Abstract views:  3345
  • PDF Downloads:  197
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2023
  • Accepted Date:  29 July 2023
  • Available Online:  12 September 2023
  • Published Online:  20 November 2023

/

返回文章
返回