-
Spectral gain narrowing is one of the key factors affecting broadband amplification of ultrashort pulses. In this paper, the spectral gain characteristics in broadband amplification are studied theoretically and experimentally by using the characteristic of Nd,Gd:SrF2 crystal, i.e. the emission spectrum that has a certain width at the higher stimulated emission cross section. Through the numerical simulation, the evolution law of output spectrum of the laser gain medium under different spectral gain lineshapes and different gain values is studied in detail. Theoretical calculation shows that the spectral gain is narrowed obviously with the increase of gain value of the traditional Gaussian emission spectrum, and that increasing the spectral bandwidth at the maximum stimulated emission cross section can obviously suppress the spectral gain narrowing. Furthermore, the spectral gain narrowing characteristics of the Nd,Gd:SrF2 crystal are studied experimentally. The Ф 13 mm× 150 mm Nd,Gd:SrF2 crystals are used as the gain medium which are pumped by flash lamps in the experimental study. The experimental results show that the output spectra of Nd,Gd:SrF2 crystals are not obviously narrowed when the full width at half maximum (FWHM) of spectral width of the input laser is 5 nm and the gain is 140 times. The experimental results are consistent with the theoretical calculation and analysis. The crystal can work normally at a repetition rate of 0.2 Hz and 1.0 Hz in the experiment, but due to the influence of thermal effect, the gain will decrease to a certain extent with the increase of pump energy and repetition rate. The research results lay the foundation for the application of fluoride crystal in broadband chirped pulse amplification.
-
Keywords:
- broadband laser amplifier /
- gain narrowing /
- fluoride crystals /
- flash lamp pump
1. 引 言
当前, 超短脉冲激光技术发展的趋势是更窄的脉冲宽度、更高的单脉冲能量以及更高的输出功率. 要实现这些技术要求, 激光增益介质的选择是关键技术条件之一. 目前常用的产生1 μm波段的激光介质主要有: Nd:YAG, Nd:YLF及Nd:Glass等材料. 其中Nd:YAG与Nd:YLF的增益高、导热性好, 但受制于尺寸及增益带宽, 其输出能量有限, 且输出光谱宽度只能支持数皮秒至数十皮秒的短脉冲输出; Nd:Glass具有较宽的增益带宽和较大的尺寸, 但其较差的热性能, 限制了激光器在重复频率下的运行[1]. 因此选择一种既要有良好的热导性, 又要有较宽受激发射光谱带宽的激光材料具有重要的科学应用价值. 新生的双掺氟化物晶体具有较高的热导率、较宽的发射光谱、较低的折射率及能生长出较大尺寸的特点, 是一种比较有潜力应用到大功率超短脉冲宽带重频激光中的晶体.
在宽带高能激光放大系统中, 增益窄化与增益介质的热性能是制约超短脉冲宽带重频放大的主要因素. 克服增益窄化效应方式一种是对种子激光进行整形[2–5]; 另一种是增加增益介质的发射光谱带宽, 一般是指半高宽(full width at half maximum, FWHM), 像钕玻璃的发射光谱类似于高斯型, 其半高宽相对较宽, 但是其最大受激发射截面处的光谱并不是很“宽”, 仍然存在增益窄化的效应. 因此, 增大最大受激发射截面处的光谱带宽, 将是克服增益窄化效应一种有效的方法. Gaul等[6]采用混合玻璃(硅酸盐与磷酸盐玻璃)作为放大器的增益介质, 就是利用了两种玻璃的不同受激发射光谱来增大最大受激发射截面处的光谱带宽. 目前双掺氟化物晶体具有发射光谱可控的特性, 可根据不同掺杂得到不同发射光谱的氟化物晶体(双峰或近似平顶). 关于氟化物晶体的光学特性[7,8], 以及氟化物晶体作为激光增益介质产生超短脉冲[9]与窄带下的增益放大均有详细报道[10,11]. 本文利用Nd, Gd: SrF2晶体在较高的受激发射截面处有一定宽度光谱的特点, 开展宽带光谱增益窄化的理论分析及实验研究.
2. 理论分析计算
由于氟化物晶格中存在多种不同的电荷补偿方式, 掺入三价稀土离子后, 晶格中的三价稀土离子会形成各种各样的对称格位, 结果就会形成较宽的吸收和发射光谱, 但是单掺Nd3+的氟化物晶体会产生团簇效应, 进而产生浓度淬灭的现象. 为解决这一现象, 通常是往掺杂Nd3+的氟化物晶体中加入缓冲离子, 如: Y3+, Gd3+等离子, 来抑制晶体的团簇效应, 双掺的氟化物晶体具有较高的受激发射截面, 较宽的吸收与发射光谱, 有利于多种泵浦方式及超短脉冲的产生及放大[12–14]. 目前, 双掺氟化物晶体具有双峰发射光谱特征, 这为发射光谱最高处提供了一定的光谱宽度, 本文利用这个特点开展宽带光谱增益窄化的理论实验研究.
种子激光进入放大器后, 尽管传统放大器增益介质(具有高斯增益线型)的发射光谱半高带宽较宽, 但只有在增益光谱中心附近才有最大的受激发射截面, 因此种子脉冲经增益介质放大后光谱中心部分会被充分放大, 光谱两边的部分不能被充分放大, 这就是我们常说的光谱增益窄化[15].
以高斯增益线型的发射光谱为基础进行模拟, 注入激光的中心波长为1053 nm, 光谱宽度设为8 nm, 增益介质的总增益倍数为10—1000倍, 模型中不考虑增益饱和. 小信号增益表达式为[16]
$$ {{g}}\left(\lambda \right)=\frac{{{g}}\left({\lambda }_{0}\right)}{1+{\left(\dfrac{\lambda -{\lambda }_{0}}{\Delta{\lambda }_{{\rm{F}}{\rm{W}}{\rm{H}}{\rm{M}}}}\right)}^{2}}, $$ (1) 其中
$ {\lambda }_{0} $ 为中心波长,$ {\lambda }_{0} $ =1053 nm,$ {\Delta\lambda }_{{\rm{F}}{\rm{W}}{\rm{H}}{\rm{M}}} $ 为半高全宽. 激光在增益介质中获得的总增益为$$ {G}\left(\lambda \right)={\rm{e}}{\rm{x}}{\rm{p}}\left[{{g}}\left(\lambda \right)L\right]. $$ (2) 对于线性啁啾脉冲, 光谱形状
$ I\left(\lambda \right) $ 和时间波形$ I\left(\lambda \right) $ 相同, 假设入射光谱表示为$ {I}_{{\rm{i}}{\rm{n}}}\left(\lambda \right) $ , 则输出光谱表示为$$\begin{split} {I}_{{\rm{o}}{\rm{u}}{\rm{t}}}\left(\lambda \right)=\;& {I}_{{\rm{i}}{\rm{n}}}\left(\lambda \right)G\left(\lambda \right) \\ =\;& {I}_{{\rm{i}}{\rm{n}}}\left(\lambda \right){\rm{e}}{\rm{x}}{\rm{p}}\left[{{g}}\left(\lambda \right)L\right]. \end{split} $$ (3) 对不同增益线型的发射光谱、不同增益倍数下, 对宽带啁啾激光脉冲的增益窄化效应进行了模拟. 模拟输入宽带啁啾激光脉冲的光谱分布如图1所示, 中心波长1053 nm, 光谱带宽8 nm的平顶脉冲. 在3种不同增益线型的发射光谱下, 宽带啁啾激光脉冲的增益窄化情况, 如图2所示, 第1种增益线形的发射光谱为高斯型, 中心波长为1053 nm, 带宽(FWHM)为 23 nm; 第2种增益线形是在第1种材料发射光谱的基础上, 将中心波长两侧8 nm宽度改为平顶分布; 第3种增益线形是在第1种材料发射光谱中心波长位置处两边分开为双峰线形(两峰间距8 nm).
据图2模拟计算显示, 在传统高斯增益线形发射光谱下, 激光光谱窄化现象随增益倍数的增加而越加明显; 具有一定平顶宽度的发射光谱, 随着增益倍数的增加, 宽带光谱几乎保持不变, 可以说对宽带激光放大的增益窄化效应有明显的改善; 双峰形状的发射光谱, 在增益倍数较低的情况下, 宽带激光的光谱整体宽度变化不大, 中心光谱会有一定的凹陷, 但是随着增益倍数的增加, 光谱中间就会产生较深的光谱调制, 文献[17]中宽带光谱经再生放大后产生了相同的现象, 如要采用这种形状的发射光谱, 其发射光谱的调制不能太深及放大器的增益具体还要进一步优化.
3. 实验结果及分析
采用两根Ф13 mm×150 mm的Nd, Gd:SrF2 (0.5%Nd, 5%Gd: SrF2掺钕、钆离子氟化锶)晶体串联作为增益介质, 其吸收及发射光谱如图3和图4所示. 从其吸收光谱来看, 既适用于二极管泵浦又适用于氙灯泵浦, 其具有较高的受激发射截面(5×10–20 cm2), 虽然发射光谱的半高宽只有17 nm, 小于传统钕玻璃的发射光谱(半高宽约20 nm), 但其发射峰有两个, 分别为1052 nm和1059 nm, 峰峰之间约有7 nm的宽度, 仍然可作为宽带增益测试研究材料.
Assmann和Weikum [18]提出了重复频率在20 Hz以下时, 氙灯泵浦技术在激光器的建造和运维成本上较二极管泵浦技术是有优势的. 本实验测试光路采用棒状氙灯泵浦放大器、双通放大结构, 利用5 nm (FWHM)的宽带光作为种子光源, 对Nd, Gd: SrF2晶体的光谱增益窄化特性进行了测试, 测试光路示意图如图5所示.
系统泵浦能量约为1770 J (泵浦电压1850 V)时, 注入激光约50 μJ, 双程增益为140倍, 输入宽带光(半高宽约5 nm)进行测试, 实验结果如图6和图7所示, 图6给出了输出激光光谱是在不同增益条件下衰减60倍所测的数据; 图7为实测(0.2 Hz, 1 Hz)和理论计算增益与泵浦电压的关系图.
测试结果得出, 输入激光带宽5 nm, 经最大140倍增益放大后, 光谱宽度未见明显增益窄化, 与前期理论计算相符合. 由于Nd, Gd:SrF2晶体发射光谱具有双峰, 在短波方向(1052 nm)处具有较高的发射截面, 激光放大后输出的光谱在短波处要高于长波处, 随着增益倍数的增大, 输出光谱的形状将会与理论计算图2(c)的类型相符合. 在增益测试中, 0.2 Hz和1 Hz均可正常工作, 受热效应的影响, 随着泵浦能量和重复频率的增大, 增益会有一定的下降.
4. 结 论
本文对Nd, Gd:SrF2晶体在宽带放大中的光谱增益特性进行了理论模拟, 理论计算表明传统高斯型发射光谱线型随着增益倍数的增加, 光谱增益窄化现象明显, 增加最大受激发射截面处光谱带宽的发射光谱线型, 对光谱增益窄化的现象有明显的改善, 特别是具有平顶(或近似平顶)的发射光谱. 同时开展了0.5%Nd, 5%Gd:SrF2晶体宽带增益窄化实验研究, 输入光谱带宽为5 nm (FWHM), 最大140倍的增益条件下, 输出光谱宽度未见明显窄化. 其实验结果与理论计算分析相符合, 在一定的增益范围内, 氟化锶晶体对宽带激光的光谱具有保形的作用. 氟化物晶体作为宽带激光增益介质具有良好的研究前景. [1] Kuzmin A A, Khazanov E A, Shaykin A A 2011 Opt. Express 19 14223Google Scholar
[2] 刘兰琴, 彭翰生, 魏晓峰, 曾小明, 彭志涛, 黄小军, 王晓东, 周凯南, 王逍, 朱启华, 楚晓亮, 郭仪 2005 强激光与粒子束 17 856
Liu L Q, Peng H S, Wei X F, Zeng X M, Peng Z T, Huang X J, Wang X D, Zhou K N, Wang X, Zhu Q H, Chu X L, Gou Y 2005 High Power Laser Part. Beams 17 856
[3] 刘兰琴, 彭翰生, 魏晓峰, 朱启华, 黄小军, 王晓东, 周凯南, 曾小明, 王逍, 郭仪, 袁晓东, 彭志涛, 唐晓东 2005 物理学报 54 2764Google Scholar
Liu L Q, Peng H S, Wei X F, Zhu Q H, Huang X J, Wang X D, Zhou K N, Zeng X M, Wang X, Gou Y, Yuan X D, Peng Z T, Tang X D 2005 Acta Phys. Sin. 54 2764Google Scholar
[4] 贺晓旭, 白晋涛, 侯洵 2001 光子学报 30 957
He X X, Bai J T, Hou X 2001 Acta Photonica Sin. 30 957
[5] 曹东茂, 魏志义, 滕浩, 夏江帆, 张杰, 侯洵 2000 物理学报 49 1202Google Scholar
Cao D M, Wei Z Y, Teng H, Xia J F, Zhang J, Hou X 2000 Acta Phys. Sin. 49 1202Google Scholar
[6] Gaul E W, Martinez M, Blakeney J, Jochmann A, Ringuette M, Hammond D, Borger T, Escamilla R, Douglas S, Henderson W, Dyer G, Erlandson A, Cross R, Caird J, Ebbers C, Ditmire T 2010 Appl. Opt. 49 1676Google Scholar
[7] Su L B, Wang Q G, Li H J, Brasse G, Camy P, Doualan J L, Braud A, Moncorge R, Zhan Y Y, Zheng L H, Qian X B, Xu J 2013 Laser Phys. Lett. 10 035804Google Scholar
[8] Jiang D P, Zhan Y Y, Zhang Q, Ma F K, Su L B, Tang F, Qian X B, Xu J 2015 Cryst. Eng. Comm. 17 7398Google Scholar
[9] Qin Z P, Xie G Q, Ma J, Ge W Y, Yuan P, Qian L J, Su L B, Jiang D P, Ma F K, Zhang Q, Cao Y X, Xu J 2014 Opt. Lett. 39 1737Google Scholar
[10] 唐熊忻, 邱基斯, 樊仲维, 王昊成, 刘悦亮, 刘昊, 苏良碧 2016 物理学报 65 204206Google Scholar
Tang X X, Qiu J S, Fan Z W, Wang H C, Liu Y L, Liu H, Su L B 2016 Acta Phys. Sin. 65 204206Google Scholar
[11] Tang X X, Qiu J S, Fan Z W, Su L B, Wang H C 2016 Opt. Mater. 58 445Google Scholar
[12] 张菊婷, 朱江峰, 王军利, 魏志义, 苏良碧, 徐军 2016 光子学报 45 0114001Google Scholar
Zhang J T, Zhu J F, Wang J L, Wei Z Y, Su L B, Xu J 2016 Acta Photonica Sin. 45 0114001Google Scholar
[13] Doualan J L, Su L B, Brasse G, Benayad A, Menard V, Zhan Y Y, Braud A, Camy P, Xu J, Moncorge R 2013 J. Opt. Soc. Am. B 30 3018Google Scholar
[14] Stephen A P, John A C, Chase L L, Smith L K, Nielsen N D, William F K 1991 J. Opt. Soc. Am. B 8 726Google Scholar
[15] Zhao S H, Wang Y S, Chen G F, Wang S H, Hou X 1997 Acta Photonica Sin. 26 197 (in chinese) [赵尚弘, 王屹山, 陈国夫, 王贤华, 侯洵 1997 光子学报 26 197
Zhao S H, Wang Y S, Chen G F, Wang S H, Hou X 1997 Acta Photonica Sin.26 197 (in chinese)[16] 刘兰琴, 粟敬钦, 罗斌, 王文义, 景峰, 魏晓峰 2007 物理学报 56 6749Google Scholar
Liu L Q, Su J Q, Luo B, Wang W Y, Jing F, Wei X F 2007 Acta Phys. Sin. 56 6749Google Scholar
[17] Chen J C, Peng Y J, Zhang Z X, Su H P, Leng Y X, Jiang D P, Ma F K, Qian X B, Tang F, Su L B 2017 Opt. Commun. 382 201Google Scholar
[18] Assmann R W, Weikum M K 2020 Eur. Phys. J. Special Topics 229 3675Google Scholar
-
-
[1] Kuzmin A A, Khazanov E A, Shaykin A A 2011 Opt. Express 19 14223Google Scholar
[2] 刘兰琴, 彭翰生, 魏晓峰, 曾小明, 彭志涛, 黄小军, 王晓东, 周凯南, 王逍, 朱启华, 楚晓亮, 郭仪 2005 强激光与粒子束 17 856
Liu L Q, Peng H S, Wei X F, Zeng X M, Peng Z T, Huang X J, Wang X D, Zhou K N, Wang X, Zhu Q H, Chu X L, Gou Y 2005 High Power Laser Part. Beams 17 856
[3] 刘兰琴, 彭翰生, 魏晓峰, 朱启华, 黄小军, 王晓东, 周凯南, 曾小明, 王逍, 郭仪, 袁晓东, 彭志涛, 唐晓东 2005 物理学报 54 2764Google Scholar
Liu L Q, Peng H S, Wei X F, Zhu Q H, Huang X J, Wang X D, Zhou K N, Zeng X M, Wang X, Gou Y, Yuan X D, Peng Z T, Tang X D 2005 Acta Phys. Sin. 54 2764Google Scholar
[4] 贺晓旭, 白晋涛, 侯洵 2001 光子学报 30 957
He X X, Bai J T, Hou X 2001 Acta Photonica Sin. 30 957
[5] 曹东茂, 魏志义, 滕浩, 夏江帆, 张杰, 侯洵 2000 物理学报 49 1202Google Scholar
Cao D M, Wei Z Y, Teng H, Xia J F, Zhang J, Hou X 2000 Acta Phys. Sin. 49 1202Google Scholar
[6] Gaul E W, Martinez M, Blakeney J, Jochmann A, Ringuette M, Hammond D, Borger T, Escamilla R, Douglas S, Henderson W, Dyer G, Erlandson A, Cross R, Caird J, Ebbers C, Ditmire T 2010 Appl. Opt. 49 1676Google Scholar
[7] Su L B, Wang Q G, Li H J, Brasse G, Camy P, Doualan J L, Braud A, Moncorge R, Zhan Y Y, Zheng L H, Qian X B, Xu J 2013 Laser Phys. Lett. 10 035804Google Scholar
[8] Jiang D P, Zhan Y Y, Zhang Q, Ma F K, Su L B, Tang F, Qian X B, Xu J 2015 Cryst. Eng. Comm. 17 7398Google Scholar
[9] Qin Z P, Xie G Q, Ma J, Ge W Y, Yuan P, Qian L J, Su L B, Jiang D P, Ma F K, Zhang Q, Cao Y X, Xu J 2014 Opt. Lett. 39 1737Google Scholar
[10] 唐熊忻, 邱基斯, 樊仲维, 王昊成, 刘悦亮, 刘昊, 苏良碧 2016 物理学报 65 204206Google Scholar
Tang X X, Qiu J S, Fan Z W, Wang H C, Liu Y L, Liu H, Su L B 2016 Acta Phys. Sin. 65 204206Google Scholar
[11] Tang X X, Qiu J S, Fan Z W, Su L B, Wang H C 2016 Opt. Mater. 58 445Google Scholar
[12] 张菊婷, 朱江峰, 王军利, 魏志义, 苏良碧, 徐军 2016 光子学报 45 0114001Google Scholar
Zhang J T, Zhu J F, Wang J L, Wei Z Y, Su L B, Xu J 2016 Acta Photonica Sin. 45 0114001Google Scholar
[13] Doualan J L, Su L B, Brasse G, Benayad A, Menard V, Zhan Y Y, Braud A, Camy P, Xu J, Moncorge R 2013 J. Opt. Soc. Am. B 30 3018Google Scholar
[14] Stephen A P, John A C, Chase L L, Smith L K, Nielsen N D, William F K 1991 J. Opt. Soc. Am. B 8 726Google Scholar
[15] Zhao S H, Wang Y S, Chen G F, Wang S H, Hou X 1997 Acta Photonica Sin. 26 197 (in chinese) [赵尚弘, 王屹山, 陈国夫, 王贤华, 侯洵 1997 光子学报 26 197
Zhao S H, Wang Y S, Chen G F, Wang S H, Hou X 1997 Acta Photonica Sin.26 197 (in chinese)[16] 刘兰琴, 粟敬钦, 罗斌, 王文义, 景峰, 魏晓峰 2007 物理学报 56 6749Google Scholar
Liu L Q, Su J Q, Luo B, Wang W Y, Jing F, Wei X F 2007 Acta Phys. Sin. 56 6749Google Scholar
[17] Chen J C, Peng Y J, Zhang Z X, Su H P, Leng Y X, Jiang D P, Ma F K, Qian X B, Tang F, Su L B 2017 Opt. Commun. 382 201Google Scholar
[18] Assmann R W, Weikum M K 2020 Eur. Phys. J. Special Topics 229 3675Google Scholar
Catalog
Metrics
- Abstract views: 1900
- PDF Downloads: 37