Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of active pump-signal synchronization technique for a ps-pulse pumped OPCPA

Li Gang Guo Yi Zeng Xiao-Ming Xie Na Shao Zhong-Xi Huang Zheng Sun Li Jiang Dong-Bin Lu Feng Zhu Bin Zhou Kai-Nan Su Jing-Qin

Citation:

Investigation of active pump-signal synchronization technique for a ps-pulse pumped OPCPA

Li Gang, Guo Yi, Zeng Xiao-Ming, Xie Na, Shao Zhong-Xi, Huang Zheng, Sun Li, Jiang Dong-Bin, Lu Feng, Zhu Bin, Zhou Kai-Nan, Su Jing-Qin
PDF
HTML
Get Citation
  • High-precision synchronization between pump and signal is one of the key issues that should be solved in picosecond short pulse pumped optical parametric chirped pulse amplification (ps-OPCPA). Based on the all-OPCPA laser facility in Research Center of Laser Fusion, China Academy of Engineering Physics, the high-precision active pump-signal synchronization technique used in its ps-OPCPA frontend is studied in detail in this paper. The synchronization is actively controlled by an amplified narrowband spectrum from the short ps-pulse pumped optical parametric amplification of a large chirped signal. By reasonably designing the time-domain broadening chirped coefficient of the signal in the feedback optical path, relative timing jitter between pump and signal of the ps-OPCPA frontend decreases from ps to one hundred fs, which greatly improves its energy and spectral stability. The root mean square (RMS) value of the relative timing jitter decreases from 458 to 93 fs, which improves the RMS instability of the output energy from 30.3% to 3.15%, and a stable wide spectrum with width greater than 100 nm is obtained in 7-min measurement.
      Corresponding author: Zhou Kai-Nan, zhoukainan@caep.cn ; Su Jing-Qin, sujingqin@caep.cn
    • Funds: Project supported by the Research Foundation of Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics (CAEP) (Grant No. ZY2020-07), the Innovation and Development Foundation of China Academy of Engineering Physics (Grant No. CX20200022), and the Joint Funds of the National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF) (Grant No. U1930126)
    [1]

    Papadopoulos D N, Pamirez P, Genevrier K, Ranc L, Lebas N, Pellegrina A, Le Blanc C, Monot P, Martin L, Zou J P, Mathieu F, Audebert P, Georges P, Druon F 2017 Opt. Lett. 42 3530Google Scholar

    [2]

    Lureau F, Matras G, Chalus O, Derycke C, Morbieu T, Radier C, Casagrande O, Laux S, Ricaud S, Rey G, Pellegrina A, Richard C, Boudjemaa L, Simon-Boisson C, Baleanu A, Banici R, Gradinariu A, Caldararu C, De Boisdeffre B, Ghenuche P, Naziru A, Kolliopoulos G, Neagu L, Dabu R, Dancus I, Ursescu D 2020 High Power laser Sci. Eng. 8 e43Google Scholar

    [3]

    Archipovaite G, Galletti M, Oliveira P, Galimberti M, Frackiewicz A, Musgrave I, Hernandez-Gomez C 2020 Opt. Commun. 474 126072Google Scholar

    [4]

    Bromage J, Bahk S-W, Begishev I A, Dorrer C, Guardalben M J, Hoffman B N, Oliver J B, Roides R G, Schiesser E M, Shoup III M J, Spilatro M, Webb B, Weiner D, Zuegel J D 2019 High Power laser Sci. Eng. 7 e43Google Scholar

    [5]

    Zeng X M, Zhou K N, Zuo Y L, Zhu Q H, Su J Q, Wang X, Wang X D, Huang X J, Jiang X J, Jiang D B, Guo Y, Xie N, Zhou S, Wu Z H, Mu J, Peng H, Jin F 2017 Opt. Lett. 42 2014Google Scholar

    [6]

    Xiao Q, Pan X, Jiang Y E, Wang J F, Du L F, Guo J T, Huang D J, Lu X H, Cui Z J, Yang S S, Wei H, Wang X C, Xiao Z L, Li G Y, Wang X Q, Yang X P O, Fan W, Li X C, Zhu J Q 2021 Opt. Express 29 15980Google Scholar

    [7]

    Ishii N, Teisset C Y, Fuji T, Köhler S, Schmid K, Veisz L, Baltuska A, Krausz F 2006 IEEE J. Quantum Electron. 12 173Google Scholar

    [8]

    Teisset C Y, Ishii N, Fuji T, Metzger T, Köhler S, Holzwarth R, Baltuška A, Zheltikov A M, Krausz F 2005 Opt. Express 13 6550Google Scholar

    [9]

    Wandt C, Klingebiel S, Keppler S, Hornung M, Loeser M, Siebold M, Skrobol C, Kessel A, Trushin S A, Major Z, Hein J, Kaluza M C, Krausz F, Karsch S 2014 Laser Photonics Rev. 8 875Google Scholar

    [10]

    Riedel R, Schulz M, Prandolini M J, Hage A, Höppner H, Gottschall T, J. Limpert, Drescher M, Tavella F 2013 Opt. Express 21 28987Google Scholar

    [11]

    Wagner F, João C P, Fils J, Gottschall T, Hein J, Körner J, Limpert J, Roth M, Stöhlker T, Bagnoud V 2014 Appl. Phys. B. 116 429Google Scholar

    [12]

    杨超, 顾澄琳, 刘洋, 王超, 李江, 李文雪 2018 物理学报 67 094206Google Scholar

    Yang C, Gu C L, Liu Y, Wang C, Li J, Li W X 2018 Acta Phys. Sin. 67 094206Google Scholar

    [13]

    Schwarz A, Ueffing M, Deng Y P, Gu X, Fattahi H, Metzger T, Ossiander M, Krausz F, Kienberger R 2012 Opt. Express 20 5557Google Scholar

    [14]

    Prinz S, Häfner M, Schultze M, Teisset C Y, Bessing R, Michel K, Kienberger R, T Metzger 2014 Opt. Express 22 31050Google Scholar

    [15]

    Batysta F, Antipenkov R, Green J T, Naylon J A, Novák J, Mazanec T, Hříbek P, Zervos C, Bakule P, Rus B 2014 Opt. Express 22 30281Google Scholar

    [16]

    Bromage J, Rothhardt J, Hädrich S, Dorrer C, Jocher C, Demmler S, Limpert J, Tünnermann A, Zuegel J D 2011 Opt. Express 19 16797Google Scholar

    [17]

    李纲, 刘红杰, 卢峰, 温贤伦, 何颖玲, 张发强, 戴增海 2015 物理学报 64 020602Google Scholar

    Li G, Liu H J, Lu F, Wen X L, He Y L, Zhang F Q, Dai Z H 2015 Acta Phys. Sin. 64 020602Google Scholar

    [18]

    Witte S, Zinkstok R T, Hogervorst W, Eikema K S E 2007 Appl. Phys. B 87 677Google Scholar

    [19]

    Andrianov A, Szabo A, Sergeev A, Kim A, Chvykov V, Kalashnikov M 2016 Opt. Express 24 25974Google Scholar

    [20]

    Klingebiel S 2013 Ph. D. Dissertation (München: Ludwig-Maximilians-Universität München)

    [21]

    Ross I N, Matousek P, New G H C, Osvay K 2002 J. Opt. Soc. Am. B: 19 2945Google Scholar

    [22]

    Trebino R 2002 Frequency-Resolved Optical Gating: The measurement of Ultrashort Laser Pulses (Boston: Kluwer Academic Publishers)

    [23]

    Galletti M, Oliveira P, Galimberti M, Ahmad M, Archipovaite G, Booth N, Dilworth E, Frackiewicz A, Winstone T, Musgrave I, Hernandez-Gomez C 2020 High Power Laser Sci. Eng. 8 e31Google Scholar

  • 图 1  前端 ps-OPCPA系统中泵浦光与信号光高精度同步主动控制原理图. 图中: BS, 分束片; PC, 普克尔盒电光开关; PCF, 光子晶体光纤; CFBG, 啁啾光纤布拉格光栅

    Figure 1.  Schematic of the active pump-signal synchronization for our frontend ps-OPCPA. BS: beam splitter, PC: Pockels cell, PCF: photonic-crystal fiber, CFBG: Chirped fiber Bragg grating.

    图 2  数值模拟泵浦光与信号光同步时间对信号光 (a)输出光谱以及(b)输出能流的影响

    Figure 2.  Numerical simulation the influence of pump-signal synchronization on the (a) signal output spectrum and (b) energy fluence.

    图 3  同步主动控制回路不工作时ps-OPCPA输出能量波动情况

    Figure 3.  Energy fluctuation of the ps-OPCPA when the active pump-signal synchronization is not working.

    图 4  同步主动控制回路不工作时ps-OPCPA输出光谱变化情况

    Figure 4.  Spectral evolution of the ps-OPCPA when the active pump-signal synchronization is not working.

    图 5  同步主动控制回路不工作时反馈光路参量放大输出光谱变化情况

    Figure 5.  Spectral evolution of the feedback OPCPA when the active pump-signal synchronization is not working.

    图 6  同步主动控制回路不工作时 (a)主光路ps-OPCPA输出能量与反馈光路峰值波长之间的对应关系; (b)主光路泵浦光与信号光相对同步时间抖动

    Figure 6.  (a) Relationship between the output energy of the main ps-OPCPA and the peak wavelength of the feedback OPCPA, and (b) relative time jitter between pump and signal when the active pump-signal synchronization is not working.

    图 7  ps-OPCPA泵浦光与信号光同步时间主动控制流程(a)及处理界面(b)

    Figure 7.  Flow chart (a) and interface (b) of the active pump-signal synchronization for our ps-OPCPA.

    图 8  同步主动控制回路工作时ps-OPCPA的输出能量及泵浦光与信号光之间的相对同步时间抖动

    Figure 8.  Output energy of the ps-OPCPA and relative time jitter between pump and signal when the active pump-signal synchronization is working.

    图 9  同步主动控制回路工作时ps-OPCPA稳定的光谱输出

    Figure 9.  Output of stable spectra for the ps-OPCPA when the active pump-signal synchronization is working.

    图 10  信号光输出光束形貌 (a)不加载泵浦情况下; (b)信号光输出能量100 μJ能量下

    Figure 10.  Signal beam profile: (a) without pump; (b) under 100 μJ output energy.

  • [1]

    Papadopoulos D N, Pamirez P, Genevrier K, Ranc L, Lebas N, Pellegrina A, Le Blanc C, Monot P, Martin L, Zou J P, Mathieu F, Audebert P, Georges P, Druon F 2017 Opt. Lett. 42 3530Google Scholar

    [2]

    Lureau F, Matras G, Chalus O, Derycke C, Morbieu T, Radier C, Casagrande O, Laux S, Ricaud S, Rey G, Pellegrina A, Richard C, Boudjemaa L, Simon-Boisson C, Baleanu A, Banici R, Gradinariu A, Caldararu C, De Boisdeffre B, Ghenuche P, Naziru A, Kolliopoulos G, Neagu L, Dabu R, Dancus I, Ursescu D 2020 High Power laser Sci. Eng. 8 e43Google Scholar

    [3]

    Archipovaite G, Galletti M, Oliveira P, Galimberti M, Frackiewicz A, Musgrave I, Hernandez-Gomez C 2020 Opt. Commun. 474 126072Google Scholar

    [4]

    Bromage J, Bahk S-W, Begishev I A, Dorrer C, Guardalben M J, Hoffman B N, Oliver J B, Roides R G, Schiesser E M, Shoup III M J, Spilatro M, Webb B, Weiner D, Zuegel J D 2019 High Power laser Sci. Eng. 7 e43Google Scholar

    [5]

    Zeng X M, Zhou K N, Zuo Y L, Zhu Q H, Su J Q, Wang X, Wang X D, Huang X J, Jiang X J, Jiang D B, Guo Y, Xie N, Zhou S, Wu Z H, Mu J, Peng H, Jin F 2017 Opt. Lett. 42 2014Google Scholar

    [6]

    Xiao Q, Pan X, Jiang Y E, Wang J F, Du L F, Guo J T, Huang D J, Lu X H, Cui Z J, Yang S S, Wei H, Wang X C, Xiao Z L, Li G Y, Wang X Q, Yang X P O, Fan W, Li X C, Zhu J Q 2021 Opt. Express 29 15980Google Scholar

    [7]

    Ishii N, Teisset C Y, Fuji T, Köhler S, Schmid K, Veisz L, Baltuska A, Krausz F 2006 IEEE J. Quantum Electron. 12 173Google Scholar

    [8]

    Teisset C Y, Ishii N, Fuji T, Metzger T, Köhler S, Holzwarth R, Baltuška A, Zheltikov A M, Krausz F 2005 Opt. Express 13 6550Google Scholar

    [9]

    Wandt C, Klingebiel S, Keppler S, Hornung M, Loeser M, Siebold M, Skrobol C, Kessel A, Trushin S A, Major Z, Hein J, Kaluza M C, Krausz F, Karsch S 2014 Laser Photonics Rev. 8 875Google Scholar

    [10]

    Riedel R, Schulz M, Prandolini M J, Hage A, Höppner H, Gottschall T, J. Limpert, Drescher M, Tavella F 2013 Opt. Express 21 28987Google Scholar

    [11]

    Wagner F, João C P, Fils J, Gottschall T, Hein J, Körner J, Limpert J, Roth M, Stöhlker T, Bagnoud V 2014 Appl. Phys. B. 116 429Google Scholar

    [12]

    杨超, 顾澄琳, 刘洋, 王超, 李江, 李文雪 2018 物理学报 67 094206Google Scholar

    Yang C, Gu C L, Liu Y, Wang C, Li J, Li W X 2018 Acta Phys. Sin. 67 094206Google Scholar

    [13]

    Schwarz A, Ueffing M, Deng Y P, Gu X, Fattahi H, Metzger T, Ossiander M, Krausz F, Kienberger R 2012 Opt. Express 20 5557Google Scholar

    [14]

    Prinz S, Häfner M, Schultze M, Teisset C Y, Bessing R, Michel K, Kienberger R, T Metzger 2014 Opt. Express 22 31050Google Scholar

    [15]

    Batysta F, Antipenkov R, Green J T, Naylon J A, Novák J, Mazanec T, Hříbek P, Zervos C, Bakule P, Rus B 2014 Opt. Express 22 30281Google Scholar

    [16]

    Bromage J, Rothhardt J, Hädrich S, Dorrer C, Jocher C, Demmler S, Limpert J, Tünnermann A, Zuegel J D 2011 Opt. Express 19 16797Google Scholar

    [17]

    李纲, 刘红杰, 卢峰, 温贤伦, 何颖玲, 张发强, 戴增海 2015 物理学报 64 020602Google Scholar

    Li G, Liu H J, Lu F, Wen X L, He Y L, Zhang F Q, Dai Z H 2015 Acta Phys. Sin. 64 020602Google Scholar

    [18]

    Witte S, Zinkstok R T, Hogervorst W, Eikema K S E 2007 Appl. Phys. B 87 677Google Scholar

    [19]

    Andrianov A, Szabo A, Sergeev A, Kim A, Chvykov V, Kalashnikov M 2016 Opt. Express 24 25974Google Scholar

    [20]

    Klingebiel S 2013 Ph. D. Dissertation (München: Ludwig-Maximilians-Universität München)

    [21]

    Ross I N, Matousek P, New G H C, Osvay K 2002 J. Opt. Soc. Am. B: 19 2945Google Scholar

    [22]

    Trebino R 2002 Frequency-Resolved Optical Gating: The measurement of Ultrashort Laser Pulses (Boston: Kluwer Academic Publishers)

    [23]

    Galletti M, Oliveira P, Galimberti M, Ahmad M, Archipovaite G, Booth N, Dilworth E, Frackiewicz A, Winstone T, Musgrave I, Hernandez-Gomez C 2020 High Power Laser Sci. Eng. 8 e31Google Scholar

  • [1] Wang Ke-Jian, Teng Hao, Xing Xiao-Wei, Dong Shuo, Cao Kai-Qiang, Jiang Yu-Jiao, Zhao Kun, Zhu Jiang-Feng, Liu Wen-Jun, Wei Zhi-Yi. Attosecond delay locking of large arm pump-probe system. Acta Physica Sinica, 2024, 73(19): 194201. doi: 10.7498/aps.73.20241061
    [2] Chen Jing-Wei, Luo Bin, Zeng Xiao-Ming, Mu Jie, Wang Xiao. Ultra-short pulse focusing algorithm for optical parametric chirp pulse amplification numerical simulation platform. Acta Physica Sinica, 2023, 72(9): 094204. doi: 10.7498/aps.72.20222387
    [3] Ye Rong, Zhong Zhe-Qiang, Wu Xian-Yun. Scanning broadband optical parametric chirped pulse amplification based on optical beam deflection. Acta Physica Sinica, 2019, 68(2): 024205. doi: 10.7498/aps.68.20181538
    [4] Liu Jian-Qiang, Wang Xu-Yang, Bai Zeng-Liang, Li Yong-Min. Highprecision auto-balance of the time-domain pulsed homodyne detector. Acta Physica Sinica, 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [5] Deng Qing-Hua, Zhang Xiao-Min, Ding Lei, Tang Jun, Xie Xu-Dong, Lu Zhen-Hua, Zhao Run-Chang, Dong Yi-Fang. Stabilizing second harmonic generation output using cascaded crystals. Acta Physica Sinica, 2011, 60(2): 024213. doi: 10.7498/aps.60.024213
    [6] Zhu Qi-Hua, Zhou Shou-Huan, Zhao Lei, Zeng Xiao-Ming, Huang Zheng, Zhou Kai-Nan, Wang Xiao, Huang Xiao-Jun, Feng Guo-Ying. Theoretical and experimental studies on ultra-broad-bandwavelength tunableness by optical soliton mechanism. Acta Physica Sinica, 2011, 60(8): 084215. doi: 10.7498/aps.60.084215
    [7] Deng Qing-Hua, Ding Lei, He Shao-Bo, Tang Jun, Xie Xu-Dong, Lu Zhen-Hua, Dong Yi-Fang. Methods for determining and detuning the length of nonlinear crystal in optical pulse chirped amplifier. Acta Physica Sinica, 2010, 59(4): 2525-2531. doi: 10.7498/aps.59.2525
    [8] Xie Xu-Dong, Zhu Qi-Hua, Zeng Xiao-Ming, Wang Xiao, Huang Xiao-Jun, Zuo Yan-Lei, Zhang Ying, Zhou Kai-Nan, Huang Zheng. Generation of 100-J sub-picosecond laser pulse in high energy Nd:glass chirped pulse amplification system. Acta Physica Sinica, 2009, 58(11): 7690-7694. doi: 10.7498/aps.58.7690
    [9] Zeng Shu-Guang, Zhang Bin. Inverse problem of optical parametric chirped pulse amplification. Acta Physica Sinica, 2009, 58(4): 2476-2481. doi: 10.7498/aps.58.2476
    [10] Jiang Yang, Yu Jin-Long, Hu Hao, Zhang Ai-Xu, Zhang Li-Tai, Wang Wen-Rui, Yang En-Ze. The improvement of fiber parametric amplifier pulse source via modulation of signal light. Acta Physica Sinica, 2008, 57(5): 2994-3000. doi: 10.7498/aps.57.2994
    [11] Zhao Huan, Zhao Yan-Ying, Tian Jin-Rong, Wang Peng, Zhu Jiang-Feng, Ling Wei-Jun, Wei Zhi-Yi. Highly precise active-synchronization between two independent femotosecond Ti: sapphire oscillators. Acta Physica Sinica, 2008, 57(2): 892-896. doi: 10.7498/aps.57.892
    [12] Liu Hua-Gang, Zhang Ruo-Bing, Zhu Chen, Chai Lu, Wang Qing-Yue. Bandwidth and gain of optical parametric chirped pulse amplification pumped by non-monochromatic light. Acta Physica Sinica, 2008, 57(5): 2981-2986. doi: 10.7498/aps.57.2981
    [13] Jiang Yong-Liang, Zhao Bao-Zhen, Liang Xiao-Yan, Leng Yu-Xin, Li Ru-Xin, Xu Zhi-Zhan, Hu Xiao-Peng, Zhu Shi-Ning. High-gain degenerated optical parametric chirped-pulse amplification in periodically poled LiTaO3. Acta Physica Sinica, 2007, 56(5): 2709-2713. doi: 10.7498/aps.56.2709
    [14] Zhai Hui, Xu Shi-Xiang, Xu Zhi-Xiong, Cai Hua, Yang Xuan, Wu Kun, Zeng He-Ping. Generation of background-free pulses at 1064nm accurately synchronized with femtosecond laser pulses at 794nm. Acta Physica Sinica, 2007, 56(5): 2821-2827. doi: 10.7498/aps.56.2821
    [15] Liu Hua-Gang, Zhang Ruo-Bing, Zhang Hai-Qing, Zhu Chen, Ma Jing, Wang Qing-Yue. Theoretical study of optical parametric chirped pulse amplification pumped by divergent beams. Acta Physica Sinica, 2007, 56(8): 4635-4641. doi: 10.7498/aps.56.4635
    [16] Wang Peng, Zhao Huan, Wang Zhao-Hua, Li De-Hua, Wei Zhi-Yi. Active synchronization of two independent femtosecond and picosecond lasers and sum frequency generation of two laser pulses. Acta Physica Sinica, 2006, 55(8): 4161-4165. doi: 10.7498/aps.55.4161
    [17] Xia Guang-Qiong, Wu Zheng-Mao, Lin Gong-Ru. Studies on the amplified picosecond optical pulse by semiconductor light amplifiers using an improved model. Acta Physica Sinica, 2004, 53(2): 490-493. doi: 10.7498/aps.53.490
    [18] Zhu Peng-Fei, Qian Lie-Jia, Xue Shao-Lin, Lin Zun-Qi. Numerical studies of characteristics and the design of 1PW optical parametric chirped pulse amplifier for the “Shenguang-Ⅱ” facility. Acta Physica Sinica, 2003, 52(3): 587-594. doi: 10.7498/aps.52.587
    [19] LIU HONG-JUN, CHEN GUO-FU, ZHAO WEI, WANG YI-SHAN, ZHAO SHANG-HONG. OPTIMIZED DESIGN OF A SYSTEM OF GENERATING TERAWATT LASER PULSES BY USE OF OPTICAL PARAMETRIC CHIRPED PULSE AMPLIFICATION. Acta Physica Sinica, 2001, 50(9): 1717-1722. doi: 10.7498/aps.50.1717
    [20] SHE WEI-LONG, LI QING-XING, YU ZHEN-XIN, GAO ZHAO-LAN, MO DANG, ZHU DE-RUI. DIRECT OBSERVATION AND RECORD OF THE PHASE CONJUGATION OF PICOSECOND OPTICAL PULSES. Acta Physica Sinica, 1993, 42(2): 264-272. doi: 10.7498/aps.42.264
Metrics
  • Abstract views:  4694
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  22 October 2021
  • Accepted Date:  03 December 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回