Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of squeezed light source in band of alkali atom transitions based on cascaded optical parametric amplifiers

Han Ya-Shuai Zhang Xiao Zhang Zhao Qu Jun Wang Jun-Min

Citation:

Analysis of squeezed light source in band of alkali atom transitions based on cascaded optical parametric amplifiers

Han Ya-Shuai, Zhang Xiao, Zhang Zhao, Qu Jun, Wang Jun-Min
PDF
HTML
Get Citation
  • The squeezed light field in the band of alkali metal atomic transitions is an important quantum resource in the field of quantum information and precision measurement. The wavelengths of atomic transition lines (760–860 nm) are relatively short. Limited by the gray-tracking effect of nonlinear crystals, the squeezing degree of the squeezed light in this band generated by the optical parametric amplifiers is low. Now, the squeezing is about 3–5 dB. Considering the problems in the experimental generation of the squeezed light at the wavelengths of atomic transitions, the variation law of quantum noise of the light field output from the single optical parametric amplifier with its physical parameters is studied theoretically, and the optimal physical parameters are obtained. To further improve the squeezing in the band of alkali metal atomic transitions, the cascaded optical parametric amplifiers are considered. Based on the basic theory of the optical parametric amplifiers, the theoretical model of the cascaded optical parametric amplifiers is constructed, in which the optical loss and phase noise of the cascaded optical loops are considered. Based on this, the quantum noise characteristics of the light field output from the cascaded system versus the optical loss and phase noise are analyzed at the frequencies of 2 MHz and 100 kHz, respectively. It is found that for the squeezing at 2 MHz, cascading 2 to 3 optical parametric amplifiers can significantly improve the squeezing under the premise of the low optical path loss and phase noise; for the squeezing in the low-frequency band, the enhancement of the squeezing for the cascaded system is quite weak. Under the current experimental parameters, the squeezing at 2 MHz of the squeezed light on rubidium resonance can be improved from –5 dB to –7 dB by cascading another DOPA. For the squeezing at low frequency band, the cascaded system proves to be useless, and the efforts should be made to reduce the technique noise in the low frequency band. Furthermore, the quantum limit and spectral characteristics of the squeezed light field output from the cascaded system are further explored. This study can provide reference and guidance for the improvement in the squeezing degree of the band of atomic transitions.
      Corresponding author: Han Ya-Shuai, hanyashuai@ahnu.edu.cn ; Wang Jun-Min, wwjjmm@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104013, 12074005, 11974226), the Key Program of Innovation and Entrepreneurship Support Plan for Returned Talents in Anhui Province (Grant No. 2020LCX007), theNatural Science Research Projects of the Universities in Anhui Province (Grant No. KJ2020A0052), and the Anhui Province Key Laboratory of Optoelectric Materials Science and Technology (Grant No. OMST202107).
    [1]

    Li B B, Bilek J, Hoff U B, Madsen L S, Forstner S, Prakash V, Schäfermeier C, Gehring T, Bowen W P, Andersen U L 2018 Optica 5 850Google Scholar

    [2]

    Lawrie B J, Lett P D, Marino A M, Pooser R C 2019 ACS Photonics 6 1307Google Scholar

    [3]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nat. Commun. 4 2828Google Scholar

    [4]

    Usenko V C 2018 Phys. Rev. A 98 032321Google Scholar

    [5]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [6]

    Wolfgramm F, Cerè A, Beduini F A, Predojević A, Koschorreck M, Mitchell M W 2010 Phys. Rev. Lett. 105 053601Google Scholar

    [7]

    Bai L L, Wen X, Yang Y L, Zhang L L, He J, Wang Y H, Wang J M 2021 J. Opt. 23 085202Google Scholar

    [8]

    Wu L A, Kimble H J, Hall J L, Wu H F 1986 Phys. Rev. Lett. 57 2520Google Scholar

    [9]

    Vahlbruch H, Mehmet M, Danzmann K, R Schnabel 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [10]

    Sun X C, Wang Y J, Tian L, Zheng Y H, Peng K C 2019 Chin. Opt. Lett. 17 072701Google Scholar

    [11]

    Suzukia S, Yonezawa H, Kannari F, Sasaki M, Furusawa A 2006 Appl. Phys. Lett. 89 061116Google Scholar

    [12]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar

    [13]

    左冠华, 杨晨, 赵俊祥, 田壮壮, 朱诗尧, 张玉驰, 张天才 2020 物理学报 69 014207Google Scholar

    Zuo G H, Yang C, Zhao J X, Tian Z Z, Zhu S Y, Zhang Y C, Zhang T C 2020 Acta Phys. Sin. 69 014207Google Scholar

    [14]

    Tanimura T, Akamatsu D, Yokoi Y, Furusawa A, Kozuma M 2006 Opt. Lett. 31 2344Google Scholar

    [15]

    Hétet G, Glöckl O, Pilypas K A, Harb C C, Buchler B C, Bachor H A, Lam P K 2007 J. Phys. B 40 221Google Scholar

    [16]

    Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 24 2350Google Scholar

    [17]

    温馨, 韩亚帅, 刘金玉, 白乐乐, 何军, 王军民 2018 物理学报 67 024207Google Scholar

    Wen X, Han Y S, Liu J Y, Bai L L, He J, Wang J M 2018 Acta Phys. Sin. 67 024207Google Scholar

    [18]

    Yang W H, Wang Y J, Zheng Y. H, Lu H D 2015 Opt. Express 23 19624Google Scholar

    [19]

    Wang Y J, Yang W H, Li Z X, Zheng Y H 2017 Sci. Rep. 7 41405Google Scholar

    [20]

    Wang S, Pasiskevicius V, Laurell F 2004 J. Appl. Phys. 96 2023Google Scholar

    [21]

    Boulanger B, Rousseau I, Fève J P, Maglione M, Ménaert B, Marnier G 1999 IEEE J. Quantum. Electron. 35 281Google Scholar

    [22]

    Zhang J, Ye C G, Gao F, Xiao M 2008 Phys. Rev. Lett. 101 233602Google Scholar

    [23]

    Wang D, Zhang Y, Xiao M 2013 Phys. Rev. A 87 023834Google Scholar

    [24]

    Ye C, Zhang J 2006 Phys. Rev. A 73 023818Google Scholar

    [25]

    Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar

    [26]

    He W P, Li F L 2007 Phys. Rev. A 76 012328Google Scholar

  • 图 1  DOPA腔示意

    Figure 1.  Schematic diagram of theDOPA cavity.

    图 2  级联DOPA结构示意图

    Figure 2.  Schematic diagram of cascade DOPA.

    图 3  DOPA输出光场压缩度随输出耦合镜透过率的变化

    Figure 3.  Squeezing degree of the output field versus the transmissivity of output coupler for the DOPA.

    图 4  在各个分析频率对应的最佳输出耦合镜透过率Topt下, DOPA输出的光场压缩度随分析频率f的变化, 插图给出了Topt与分析频率f的依赖关系

    Figure 4.  Squeezing degree of the output filed versus analysis frequency for the DOPA at Topt of each frequency, inset shows dependence of Topt versus analysis frequency f.

    图 5  级联DOPA输出光场压缩度随传输光路损耗L的变化 (a)分析频率f = 2 MHz; (b)分析频率f = 100 kHz

    Figure 5.  Squeezing degree of the output field versus the loss of optical loop for the cascaded DOPA: (a) f = 2 MHz; (b) f = 100 kHz.

    图 6  (a)和(c)为级联DOPA系统输出光场压缩度随传输光路位相延迟$\phi $的变化; (b)和(d)为级联DOPA可实现压缩增强的相位区间RE随级联DOPA个数的变化 (a)和(b)为分析频率f = 2 MHz的结果; (c)和(d)为分析频率f = 100 kHz结果

    Figure 6.  (a) and (c) are the results for squeezing degree of the output field versus the phase delay $\phi $ of optical loop for the cascaded DOPA; (b) and (d) are the results for the phase region RE versus numbers of DOPA; (a) and (b) are the results for f = 2 MHz; (b) and (d) are the results for f = 100 kHz.

    图 7  考虑传输光路损耗以及位相噪声情况下, 级联DOPA系统输出光场在2 MHz分析频率处的压缩度随DOPA数目的变化

    Figure 7.  The squeezing of the output field at 2 MHz from the cascaded DOPA versus the numbers of DOPA, at the circumstance of considering the loss and phase noise induced by optical loop.

    图 8  级联DOPA输出光场的压缩特性随分析频率的变化 (a)忽略传输光路位相噪声结果; (b)考虑4.42 mrad位相噪声的结果

    Figure 8.  Squeezing characteristics of the output light for the cascaded DOPA versus analysis frequency: (a) The result when the phase noise induced by optical loop is ignored; (b) the result when the phase noise of 4.42 mrad is considered.

  • [1]

    Li B B, Bilek J, Hoff U B, Madsen L S, Forstner S, Prakash V, Schäfermeier C, Gehring T, Bowen W P, Andersen U L 2018 Optica 5 850Google Scholar

    [2]

    Lawrie B J, Lett P D, Marino A M, Pooser R C 2019 ACS Photonics 6 1307Google Scholar

    [3]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nat. Commun. 4 2828Google Scholar

    [4]

    Usenko V C 2018 Phys. Rev. A 98 032321Google Scholar

    [5]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [6]

    Wolfgramm F, Cerè A, Beduini F A, Predojević A, Koschorreck M, Mitchell M W 2010 Phys. Rev. Lett. 105 053601Google Scholar

    [7]

    Bai L L, Wen X, Yang Y L, Zhang L L, He J, Wang Y H, Wang J M 2021 J. Opt. 23 085202Google Scholar

    [8]

    Wu L A, Kimble H J, Hall J L, Wu H F 1986 Phys. Rev. Lett. 57 2520Google Scholar

    [9]

    Vahlbruch H, Mehmet M, Danzmann K, R Schnabel 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [10]

    Sun X C, Wang Y J, Tian L, Zheng Y H, Peng K C 2019 Chin. Opt. Lett. 17 072701Google Scholar

    [11]

    Suzukia S, Yonezawa H, Kannari F, Sasaki M, Furusawa A 2006 Appl. Phys. Lett. 89 061116Google Scholar

    [12]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar

    [13]

    左冠华, 杨晨, 赵俊祥, 田壮壮, 朱诗尧, 张玉驰, 张天才 2020 物理学报 69 014207Google Scholar

    Zuo G H, Yang C, Zhao J X, Tian Z Z, Zhu S Y, Zhang Y C, Zhang T C 2020 Acta Phys. Sin. 69 014207Google Scholar

    [14]

    Tanimura T, Akamatsu D, Yokoi Y, Furusawa A, Kozuma M 2006 Opt. Lett. 31 2344Google Scholar

    [15]

    Hétet G, Glöckl O, Pilypas K A, Harb C C, Buchler B C, Bachor H A, Lam P K 2007 J. Phys. B 40 221Google Scholar

    [16]

    Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 24 2350Google Scholar

    [17]

    温馨, 韩亚帅, 刘金玉, 白乐乐, 何军, 王军民 2018 物理学报 67 024207Google Scholar

    Wen X, Han Y S, Liu J Y, Bai L L, He J, Wang J M 2018 Acta Phys. Sin. 67 024207Google Scholar

    [18]

    Yang W H, Wang Y J, Zheng Y. H, Lu H D 2015 Opt. Express 23 19624Google Scholar

    [19]

    Wang Y J, Yang W H, Li Z X, Zheng Y H 2017 Sci. Rep. 7 41405Google Scholar

    [20]

    Wang S, Pasiskevicius V, Laurell F 2004 J. Appl. Phys. 96 2023Google Scholar

    [21]

    Boulanger B, Rousseau I, Fève J P, Maglione M, Ménaert B, Marnier G 1999 IEEE J. Quantum. Electron. 35 281Google Scholar

    [22]

    Zhang J, Ye C G, Gao F, Xiao M 2008 Phys. Rev. Lett. 101 233602Google Scholar

    [23]

    Wang D, Zhang Y, Xiao M 2013 Phys. Rev. A 87 023834Google Scholar

    [24]

    Ye C, Zhang J 2006 Phys. Rev. A 73 023818Google Scholar

    [25]

    Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar

    [26]

    He W P, Li F L 2007 Phys. Rev. A 76 012328Google Scholar

  • [1] Sun Xiao-Cong, Li Wei, Wang Ya-Jun, Zheng Yao-Hui. Quantum-enhanced optical phase tracking via squeezed state. Acta Physica Sinica, 2024, 73(5): 054203. doi: 10.7498/aps.73.20231835
    [2] Liu Ting-Ting, Yang Xiao-Hua, Han Ya-Shuai, Wang Jun-Min. Research on intensity–difference squeezing enhancement of phase-sensitive amplifier based on coherent feedback. Acta Physica Sinica, 2024, 73(13): 134203. doi: 10.7498/aps.73.20240407
    [3] Li Qing-Hui, Yao Wen-Xiu, Li Fan, Tian Long, Wang Ya-Jun, Zheng Yao-Hui. Manipulations and quantum tomography of bright squeezed states. Acta Physica Sinica, 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [4] Liu Kui, Ma Long, Su Bi-Da, Li Jia-Ming, Sun Heng-Xin, Gao Jiang-Rui. Generation of continuous variable frequency comb entanglement based on nondegenerate optical parametric amplifier. Acta Physica Sinica, 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [5] Zuo Guan-Hua, Yang Chen, Zhao Jun-Xiang, Tian Zhuang-Zhuang, Zhu Shi-Yao, Zhang Yu-Chi, Zhang Tian-Cai. Generation of bright polarization squeezed light at cesium D2 line based on optical parameter amplifier. Acta Physica Sinica, 2020, 69(1): 014207. doi: 10.7498/aps.69.20191009
    [6] Wang Jun-Ping, Zhang Wen-Hui, Li Rui-Xin, Tian Long, Wang Ya-Jun, Zheng Yao-Hui. Design of optical parametric cavity for broadband squeezed light field. Acta Physica Sinica, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [7] Feng Jin-Xia, Du Jing-Shi, Jin Xiao-Li, Li Yuan-Ji, Zhang Kuan-Shou. Generation of audio-band frequency squeezed light at 1.34 μm. Acta Physica Sinica, 2018, 67(17): 174203. doi: 10.7498/aps.67.20180301
    [8] Liu Zeng-Jun, Zhai Ze-Hui, Sun Heng-Xin, Gao Jiang-Rui. Generation of low-frequency squeezed states. Acta Physica Sinica, 2016, 65(6): 060401. doi: 10.7498/aps.65.060401
    [9] You Lang-Fang, Ling Wei-Jun, Li Ke, Zhang Ming-Xia, Zuo Yin-Yan, wang Yi-Shan. High efficient CEP-stabilized infrared optical parametric amplifier made from a BBO single crystal. Acta Physica Sinica, 2014, 63(21): 214203. doi: 10.7498/aps.63.214203
    [10] Yan Xiao-Bo, Yang Liu, Tian Xue-Dong, Liu Yi-Mou, Zhang Yan. Optomechanically induced transparency and normal mode splitting in an optical parametric amplifier cavity. Acta Physica Sinica, 2014, 63(20): 204201. doi: 10.7498/aps.63.204201
    [11] Yu Li-Xian, Liang Qi-Feng, Wang Li-Rong, Zhu Shi-Qun. Photon squeezing of the Rabi model. Acta Physica Sinica, 2013, 62(16): 160301. doi: 10.7498/aps.62.160301
    [12] Zhang Yan, Yu Xu-Dong, Di Ke, Li Wei, Zhang Jing. Locking the phase of balanced homodyne detection system for squeezed light. Acta Physica Sinica, 2013, 62(8): 084204. doi: 10.7498/aps.62.084204
    [13] Li Ming, Tang Tao, Chen Ding-Han. Squeezing properties of two-mode squeezed field interacting with V-type three-level atoms. Acta Physica Sinica, 2011, 60(7): 073203. doi: 10.7498/aps.60.073203
    [14] Zhao Chao-Ying, Tan Wei-Han, Guo Qi-Zhi. The solution of the Fokker-Planck equation of non-degenerate parametric amplific ation system for generation of squeezed light. Acta Physica Sinica, 2003, 52(11): 2694-2699. doi: 10.7498/aps.52.2694
    [15] Sun Tao, Huang Jin-Sheng, Zhang Wei-Li, Wang Qing-Yue. . Acta Physica Sinica, 2002, 51(10): 2281-2285. doi: 10.7498/aps.51.2281
    [16] Feng Xun-Li, Xu Zhi-Zhan, Xia Yu-Xing. . Acta Physica Sinica, 2000, 49(2): 235-240. doi: 10.7498/aps.49.235
    [17] ZHANG JUN-XIANG, HE LING-XIANG, ZHANG TIAN-CAI, XIE CHANG-DE, PENG KUN-CHI. THE FOURTH-ORDER INTERFERENCE BETWEEN TWO INDEPENDENT SQUEEZED FIELDS. Acta Physica Sinica, 1999, 48(7): 1230-1235. doi: 10.7498/aps.48.1230
    [18] XIE RUI-HUA. STUDY OF DYNAMICAL SYMMETRY BETWEEN THE FIELD AND ATOMIC DIPOLE SQUEEZING IN A TWO-LEVEL SYSTEM. Acta Physica Sinica, 1996, 45(9): 1463-1478. doi: 10.7498/aps.45.1463
    [19] HE LIN-SHENG, JIANG HAI-HE. . Acta Physica Sinica, 1995, 44(12): 1904-1913. doi: 10.7498/aps.44.1904
    [20] PENG KUN-CHI, HUANG MAO-QUAN, LIU JING, LIAN YI-MIN, ZHANG TIAN-CAI, YU CHEN, XIE CHANG-DE, GUO GUANG-CAN. EXPERIMENTAL INVESTIGATION ABOUT TWO-MODE SQUEEZED STATE GENERATION OF LIGHT FIELD. Acta Physica Sinica, 1993, 42(7): 1079-1085. doi: 10.7498/aps.42.1079
Metrics
  • Abstract views:  3971
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  19 November 2021
  • Accepted Date:  12 December 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回