搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光束偏转的扫描式宽带光参量啁啾脉冲放大

叶荣 钟哲强 吴显云

引用本文:
Citation:

基于光束偏转的扫描式宽带光参量啁啾脉冲放大

叶荣, 钟哲强, 吴显云

Scanning broadband optical parametric chirped pulse amplification based on optical beam deflection

Ye Rong, Zhong Zhe-Qiang, Wu Xian-Yun
PDF
HTML
导出引用
  • 光参量啁啾脉冲放大(OPCPA)是超短激光脉冲领域的重要技术之一, 增大增益带宽对提高OPCPA的转换效率、实现宽带光参量放大具有重要的意义. 本文将光束偏转和非共线OPCPA有机结合, 提出了基于光束偏转的扫描式宽带OPCPA模型. 分析了通过光束偏转来时刻改变非共线角, 以保证各频率成分的相位匹配, 从而增大增益带宽的基本原理. 采用提出的扫描式宽带OPCPA, 针对800 nm中心波长、带宽约为100 nm信号光的光参量放大进行了数值计算. 结果表明: 经过扫描式OPCPA后, 信号光的带宽与放大之前几乎相同, 光谱没有窄化; 扫描式OPCPA比固定非共线角方式的放大极大地增加了增益带宽和转换效率, 实现了宽带的光参量放大; 要满足信号光各频率成分的相位匹配, 达到最大的增益带宽和转换效率, 需要尽量减小加载到钽铌酸钾(KTa1−xNbxO3, KTN)电光晶体上的电压抖动和电压延时.
    One of the goals pursued in laser pulse is to achieve a laser with a shorter duration and higher intensity. In the past two decades, the laser pulse duration has been shortened by more than 7 orders of magnitude due to the development of Q-switched, Mode-locked and pulse compression technology. The peak power of laser pulse has been increased to PW, even EW and ZW from initial MW with the development of pulse amplification technology, whose focused intensity can reach to 1023 W/cm2. Thus, it provides unprecedented extreme conditions, and speeds up the laser applications in ultrafast nonlinear optics, strong field physics, fast ignition of laser nuclear fusion, optic communication, etc. The optical parametric chirped pulse amplification (OPCPA) is one of the important technologies in ultra-short laser pulse field. It is of great significance to increase the gain bandwidth for improving the conversion efficiency of OPCPA and achieving broadband optical parametric amplification. Combining the optical beam deflection and non-collinear OPCPA, a novel scanning broadband OPCPA model is proposed based on the optical beam deflection. The basic principle of increasing the gain bandwidth for the scanning broadband OPCPA is analyzed theoretically, which ensures the phase matching of each frequency component of signal by optical beam deflecting to change the non-collinear angle constantly. Namely, the non-collinear angles of incident frequency components of signal are different from each other, which, however, makes the whole phase matching of signal, i.e. momentum conservation in optics. The optical parametric amplification of signal pulse with 800 nm central wavelength and almost 100 nm bandwidth is simulated numerically by the proposed scanning broadband OPCPA. The results show that the bandwidth after being amplified is almost the same as before and there is no spectral narrowing, and the scanning broadband OPCPA increases the gain bandwidth and conversion efficiency greatly compared with the amplification with a constant given non-collinear angle, which leads to broadband optical parametric amplification. Finally, it is necessary to make sure that the on-load voltage to the KTN crystal matches with the frequency of signal pulse in time and reduces the unfavorable voltage deviation and time-delay for the maximizing gain bandwidth and conversion efficiency and ensuring the phase matching of each signal frequency component. The results of this paper not only provide an approach to increasing the gain bandwidth of OPCPA, but also supply some theoretical references and the basis for the experimental work of OPCPA in ultra-short laser pulse system.
      通信作者: 叶荣, yj1987211@163.com
    • 基金项目: 四川省科技计划苗子工程(批准号: 2018100)和成都师范学院培育项目(批准号: CS17ZD03)资助的课题.
      Corresponding author: Ye Rong, yj1987211@163.com
    • Funds: Project supporte by the Seeding Project of Science and Technology Program of Sichuan, China (Grant No. 2018100) and the Cultivating Program of Chengdu Normal University, China (Grant No. CS17ZD03).
    [1]

    Chini M, Zhao K, Chang Z 2014 Nat. Photonics 8 79

    [2]

    魏志义 2014 超快光学研究前沿 (上海: 上海交通大学出版社) 第10−15页

    Wei Z Y 2014 Advances in Ultrafast Optics (Shanghai: Shanghai Jiaotong University Press) pp10−15 (in Chinese)

    [3]

    Peter S, Vincent T, Arthur Z, Tamas R, Matthias R, Philipp M, Thomas W 2016 Phys. Rev. Lett. 116 1

    [4]

    Seuthe T, Mermillod-blondin A, Grehn M, Bonse J, Wondraczek L, Eberstein M 2017 Sci. Rep. 7 43815Google Scholar

    [5]

    Shiraga H, Nagatomo H, Theobald W, Thebald W, Solodov A A, Tabak M 2014 Nucl. Fusion 54 1464

    [6]

    陈险峰 2014 非线性光学研究前沿 (上海: 上海交通大学出版社) 第1−6页

    Chen X F 2014 Advances in Nonlinear Optics (Shanghai: Shanghai Jiaotong University Press) pp1−6 (in Chinese)

    [7]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [8]

    Pittman M, Ferre S, Rousseau J R, Chambaret J P, Cheriaux G 2002 Appl. Phy. B 74 529

    [9]

    Sung J H, Lee H W, Yoo J Y, Yoon J W, Lee C W, Yang J M, Son Y J, Jang Y H, Lee S K, Nam C H 2017 Opt. Lett. 42 2058Google Scholar

    [10]

    Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar

    [11]

    Bagnoud V, Begishev I A, Guardalben M J, Puth J, Zuegel J 2005 Opt. Lett. 30 1843Google Scholar

    [12]

    Miyanaga N, Kawanaka J 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Sydeney, August 28−September 1, 2011 p794

    [13]

    Hugonnot E, Luce J, Coic H 2006 Appl. Opt. 45 377Google Scholar

    [14]

    Yan S S, Liu D Z, Kong X, Ouyang X P, Zhu B Q, Zhu J Q 2018 Fusion Eng. Des. 132 18Google Scholar

    [15]

    Driscoll T J, Gale G M, Hache F 1994 Opt. Commun. 110 638Google Scholar

    [16]

    Gale G M, Cavallari M, Driscoll T J, Hache F 1995 Opt. Lett. 20 1562Google Scholar

    [17]

    夏江帆, 魏志义, 张杰 2000 物理学报 49 256Google Scholar

    Xia J F, Wei Z Y, Zhang J 2000 Acta Phys. Sin. 49 256Google Scholar

    [18]

    马晶, 章若冰, 刘博, 朱晨, 张伟力, 张志刚, 王清月 2005 物理学报 54 4765Google Scholar

    Ma J, Zhang R B, Liu B, Zhu C, Zhang W L, Zhang Z G, Wang Q Y 2005 Acta Phys. Sin. 54 4765Google Scholar

    [19]

    Arisholm G, Biegert J, Schlup P, Hauri C P, Keller U 2004 Opt. Express 12 518Google Scholar

    [20]

    Wang C, Leng Y, Liang X, Liang X Y, Zhao B Z, Xu Z Z 2005 Opt. Commun. 246 323Google Scholar

    [21]

    Wang C, Leng Y X, Zhao B Z, Zhang Z Q, Xu Z Z 2004 Opt. Commun. 237 169Google Scholar

    [22]

    刘华刚, 章若冰, 张海清, 朱晨, 马晶, 王清月 2007 物理学报 56 4635Google Scholar

    Liu H G, Zhang R B, Zhang H Q, Zhu C, Ma J, Wang Q Y 2007 Acta Phys. Sin. 56 4635Google Scholar

    [23]

    刘华刚, 章若冰, 朱晨, 柴路, 王清月 2008 物理学报 57 2981Google Scholar

    Liu H G, Zhang R B, Zhu C, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 2981Google Scholar

    [24]

    Frantisek B, Roman A, Jakub N, Jonathan T G, Jack A N, Jakub H, Martin H, Zbynek H, Robert B, Tomas M, Bedrich H, Pavel B, Bedrich R 2016 Opt. Express 24 17843Google Scholar

    [25]

    Naganuma K, Miyazu J, Yagi S 2009 NTT Tech. Rev. 7 1

    [26]

    Gong D W, Wu Y, Liang Y G, Ou W J, Wang J J, Liu B, Zhou Z X 2015 Laser Phys. 25 056102Google Scholar

    [27]

    Gong D W, Liang Y G, Ou W J, Wang J J, Wu Y, Liu B, Zhou Z X 2016 Mater. Res. Bull. 75 7Google Scholar

    [28]

    Chao J H, Zhu W B, Wang C, Yao J M, Yin S, Hoffman R C 2015 Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, SPIE 9586 p1

    [29]

    Zhu W B, Chao J H, Chen C J, Yin S Z, Hoffman R C 2016 Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X, SPIE 9958 p1

    [30]

    Koichiro N, Jun M, Masahiro S, Kazuo F 2006 Appl. Phys. Lett. 89 388

    [31]

    Grace E J, Tsangarts C L, New G H C 2006 Opt. Commun. 261 225Google Scholar

    [32]

    Liu H, Liu B Y, Bai Y L, Ouyang X, Gou Y S, Zheng J K 2011 Chin. J. Opt. 4 60

  • 图 1  相位失配量随相位匹配角和信号光波长的等高线分布

    Fig. 1.  Contour plot of phase-mismatching, signal wavelength, and phase-matching angle.

    图 2  相位失配量随非共线角增量和信号光波长的等高线分布

    Fig. 2.  Contour plot of phase-mismatching, signal wavelength, and increment of non-collinear angle.

    图 3  满足相位匹配的非共线角随信号波长的变化

    Fig. 3.  Variation of non-collinear angle with signal wavelength under phase matching.

    图 4  扫描式光参量啁啾脉冲放大示意图, 内插图为相位匹配几何关系

    Fig. 4.  Schematic drawing of scanning OPCPA, and the inset is the geometry of phase matching.

    图 5  不同方式放大后信号光的时域波形和频谱分布对比 (a)时域波形; (b)频谱分布

    Fig. 5.  Comparison of time domain waveform and frequency spectrum with different amplification: (a) Time domain waveform; (b) frequency spectrum.

    图 6  光束偏转产生非共线角增量所需要的电压和相位失配量随信号波长的变化 (a) 需要的电压; (b) 相位失配量的变化

    Fig. 6.  The required voltage for Non-collinear angular increments by optical beam deflection and the variation of phase-mismatching with signal wavelength: (a) Required voltage; (b) variation of phase-mismatching.

    图 7  电压抖动对扫描式OPCPA放大后信号脉冲的影响 (a) 时域波形; (b) 频谱分布; (c) 带宽

    Fig. 7.  Effect of voltage deviation on signal pulse after scanning OPCPA: (a) Time domain waveform; (b) frequency spectrum; (c) bandwidth.

    图 8  扫描式宽带OPCPA转换效率随电压抖动和电压延时 (a) 电压抖动; (b) 电压延时

    Fig. 8.  Variation of conversion efficiency with voltage deviations and voltage time-delay for scanning broadband OPCPA: (a) Voltage deviation; (b) voltage time-delay.

  • [1]

    Chini M, Zhao K, Chang Z 2014 Nat. Photonics 8 79

    [2]

    魏志义 2014 超快光学研究前沿 (上海: 上海交通大学出版社) 第10−15页

    Wei Z Y 2014 Advances in Ultrafast Optics (Shanghai: Shanghai Jiaotong University Press) pp10−15 (in Chinese)

    [3]

    Peter S, Vincent T, Arthur Z, Tamas R, Matthias R, Philipp M, Thomas W 2016 Phys. Rev. Lett. 116 1

    [4]

    Seuthe T, Mermillod-blondin A, Grehn M, Bonse J, Wondraczek L, Eberstein M 2017 Sci. Rep. 7 43815Google Scholar

    [5]

    Shiraga H, Nagatomo H, Theobald W, Thebald W, Solodov A A, Tabak M 2014 Nucl. Fusion 54 1464

    [6]

    陈险峰 2014 非线性光学研究前沿 (上海: 上海交通大学出版社) 第1−6页

    Chen X F 2014 Advances in Nonlinear Optics (Shanghai: Shanghai Jiaotong University Press) pp1−6 (in Chinese)

    [7]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [8]

    Pittman M, Ferre S, Rousseau J R, Chambaret J P, Cheriaux G 2002 Appl. Phy. B 74 529

    [9]

    Sung J H, Lee H W, Yoo J Y, Yoon J W, Lee C W, Yang J M, Son Y J, Jang Y H, Lee S K, Nam C H 2017 Opt. Lett. 42 2058Google Scholar

    [10]

    Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar

    [11]

    Bagnoud V, Begishev I A, Guardalben M J, Puth J, Zuegel J 2005 Opt. Lett. 30 1843Google Scholar

    [12]

    Miyanaga N, Kawanaka J 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Sydeney, August 28−September 1, 2011 p794

    [13]

    Hugonnot E, Luce J, Coic H 2006 Appl. Opt. 45 377Google Scholar

    [14]

    Yan S S, Liu D Z, Kong X, Ouyang X P, Zhu B Q, Zhu J Q 2018 Fusion Eng. Des. 132 18Google Scholar

    [15]

    Driscoll T J, Gale G M, Hache F 1994 Opt. Commun. 110 638Google Scholar

    [16]

    Gale G M, Cavallari M, Driscoll T J, Hache F 1995 Opt. Lett. 20 1562Google Scholar

    [17]

    夏江帆, 魏志义, 张杰 2000 物理学报 49 256Google Scholar

    Xia J F, Wei Z Y, Zhang J 2000 Acta Phys. Sin. 49 256Google Scholar

    [18]

    马晶, 章若冰, 刘博, 朱晨, 张伟力, 张志刚, 王清月 2005 物理学报 54 4765Google Scholar

    Ma J, Zhang R B, Liu B, Zhu C, Zhang W L, Zhang Z G, Wang Q Y 2005 Acta Phys. Sin. 54 4765Google Scholar

    [19]

    Arisholm G, Biegert J, Schlup P, Hauri C P, Keller U 2004 Opt. Express 12 518Google Scholar

    [20]

    Wang C, Leng Y, Liang X, Liang X Y, Zhao B Z, Xu Z Z 2005 Opt. Commun. 246 323Google Scholar

    [21]

    Wang C, Leng Y X, Zhao B Z, Zhang Z Q, Xu Z Z 2004 Opt. Commun. 237 169Google Scholar

    [22]

    刘华刚, 章若冰, 张海清, 朱晨, 马晶, 王清月 2007 物理学报 56 4635Google Scholar

    Liu H G, Zhang R B, Zhang H Q, Zhu C, Ma J, Wang Q Y 2007 Acta Phys. Sin. 56 4635Google Scholar

    [23]

    刘华刚, 章若冰, 朱晨, 柴路, 王清月 2008 物理学报 57 2981Google Scholar

    Liu H G, Zhang R B, Zhu C, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 2981Google Scholar

    [24]

    Frantisek B, Roman A, Jakub N, Jonathan T G, Jack A N, Jakub H, Martin H, Zbynek H, Robert B, Tomas M, Bedrich H, Pavel B, Bedrich R 2016 Opt. Express 24 17843Google Scholar

    [25]

    Naganuma K, Miyazu J, Yagi S 2009 NTT Tech. Rev. 7 1

    [26]

    Gong D W, Wu Y, Liang Y G, Ou W J, Wang J J, Liu B, Zhou Z X 2015 Laser Phys. 25 056102Google Scholar

    [27]

    Gong D W, Liang Y G, Ou W J, Wang J J, Wu Y, Liu B, Zhou Z X 2016 Mater. Res. Bull. 75 7Google Scholar

    [28]

    Chao J H, Zhu W B, Wang C, Yao J M, Yin S, Hoffman R C 2015 Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, SPIE 9586 p1

    [29]

    Zhu W B, Chao J H, Chen C J, Yin S Z, Hoffman R C 2016 Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X, SPIE 9958 p1

    [30]

    Koichiro N, Jun M, Masahiro S, Kazuo F 2006 Appl. Phys. Lett. 89 388

    [31]

    Grace E J, Tsangarts C L, New G H C 2006 Opt. Commun. 261 225Google Scholar

    [32]

    Liu H, Liu B Y, Bai Y L, Ouyang X, Gou Y S, Zheng J K 2011 Chin. J. Opt. 4 60

  • [1] 李纲, 郭仪, 曾小明, 谢娜, 邵忠喜, 黄征, 孙立, 蒋东镔, 卢峰, 朱斌, 周凯南, 粟敬钦. 皮秒短脉冲光参量啁啾脉冲放大中泵浦信号高精度同步主动控制技术研究. 物理学报, 2022, 71(7): 074203. doi: 10.7498/aps.71.20211961
    [2] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [3] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏. 物理学报, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [4] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证. 物理学报, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [5] 梁文耀, 张玉霞, 陈武喝. 低对称性光子晶体超宽带全角自准直传输的机理研究. 物理学报, 2015, 64(6): 064209. doi: 10.7498/aps.64.064209
    [6] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [7] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [8] 赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢. 人工磁导体正交布阵的宽带低雷达截面反射屏. 物理学报, 2013, 62(15): 154204. doi: 10.7498/aps.62.154204
    [9] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [10] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [11] 陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成. 具有缓变折射率的太赫兹宽带增透器件. 物理学报, 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [12] 冯野, 杨毅彪, 王安帮, 王云才. 利用半导体激光器环产生27 GHz的平坦宽带混沌激光. 物理学报, 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [13] 邓青华, 丁磊, 贺少勃, 唐军, 谢旭东, 卢振华, 董一芳. 光参量啁啾脉冲放大系统非线性晶体长度确定及调谐方法研究. 物理学报, 2010, 59(4): 2525-2531. doi: 10.7498/aps.59.2525
    [14] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响. 物理学报, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
    [15] 曾曙光, 张彬. 光参量啁啾脉冲放大的逆问题. 物理学报, 2009, 58(4): 2476-2481. doi: 10.7498/aps.58.2476
    [16] 刘华刚, 章若冰, 朱 晨, 柴 路, 王清月. 非单色光抽运的光参量啁啾脉冲放大的带宽及增益特性研究. 物理学报, 2008, 57(5): 2981-2986. doi: 10.7498/aps.57.2981
    [17] 翟 惠, 徐世祥, 许智雄, 蔡 华, 杨 旋, 吴 昆, 曾和平. 与794nm飞秒激光精确同步的无直流背底的1064nm脉冲光的产生. 物理学报, 2007, 56(5): 2821-2827. doi: 10.7498/aps.56.2821
    [18] 刘华刚, 章若冰, 张海清, 朱 晨, 马 晶, 王清月. 发散光束抽运的宽带光参量啁啾脉冲放大系统的理论研究. 物理学报, 2007, 56(8): 4635-4641. doi: 10.7498/aps.56.4635
    [19] 王晓慧, 吕志伟, 林殿阳, 王 超, 汤秀章, 龚 坤, 单玉生. 宽带KrF激光抽运的受激布里渊散射反射率研究. 物理学报, 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
    [20] 何国华, 张俊祥, 叶莉华, 崔一平, 李振华, 来建成, 贺安之. 一种新型有机染料的宽带双光子吸收和光限幅特性的研究. 物理学报, 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
计量
  • 文章访问数:  7139
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-15
  • 修回日期:  2018-10-22
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回