Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultra-short pulse focusing algorithm for optical parametric chirp pulse amplification numerical simulation platform

Chen Jing-Wei Luo Bin Zeng Xiao-Ming Mu Jie Wang Xiao

Citation:

Ultra-short pulse focusing algorithm for optical parametric chirp pulse amplification numerical simulation platform

Chen Jing-Wei, Luo Bin, Zeng Xiao-Ming, Mu Jie, Wang Xiao
PDF
HTML
Get Citation
  • The development of optical parametric chirp pulse amplification (OPCPA) numerical simulation platform involves physical models such as broadening and compression of optical pulse, parametric amplification and focusing output. In the simulation platform, the Fresnel far-field diffraction equation is usually used to simulate the characteristics of ultrashort pulse focusing. Firstly, we need to calculate the optical field distribution of different wavelength components in the ultrashort pulse, and then use the inverse Fourier transform to obtain the temporal and spatial distribution characteristics of the pulse. However, for different wavelength components, the sizes of focused field grids obtained by the far-field algorithm are not equal, and subsequent resampling is required, which will increase the amount of calculation. In addition, due to the limitation of the calculation range of the light field in the pulse broadening and compression, there is also a problem of poor resolution of the focused field. In this work, the mathematical expression that can adjust the range of the output light field and use the fast fourier algorithm is derived. The main mechanism of this algorithm is as follows. Based on the Fresnel far-field diffraction equation, the output field is sampled independently in the discrete calculation process to meet the requirements for adjustable range of the output field. After identity transformation, the output field results can be calculated by the fast Fourier algorithm. Furthermore, the sampling conditions that need to be satisfied when using the algorithm are further analyzed and discussed. It solves the problem of how to improve the resolution of light field and keep the computational grid size of each wavelength component consistent when the traditional Fresnel far field diffraction is used to simulate the focusing process, which provides the convenience for the subsequent direct time-frequency inverse transformation. The numerical simulation results reveal that the dark ring region of the ultrashort pulse focusing field shows strong spatiotemporal coupling characteristics. This algorithm has been successfully applied to the development of OPCPA numerical simulation platform, and is expected to play an important role in optimizing the design of ultrashort laser pulse device.
      Corresponding author: Luo Bin, bluo@swjtu.edu.cn
    • Funds: Project supported by the Science and Technology on Plasma Physics Laboratory (Grant No. 22-ZDJJ-06-03).
    [1]

    Wang D H, Shou Y R, Wang P J, Liu J B, Mei Z S, Cao Z X, Zhang J M, Yang P L, Feng G B, Chen S Y, Zhao Y Y, Joerg S, Ma W J 2020 High Power Laser Sci. 8 04000e41Google Scholar

    [2]

    Danson C, Hillier D, Hopps N, Neely D 2015 High Power Laser Sci. 3 010000e3Google Scholar

    [3]

    Wang X B, Guang Y H, Zhang Z M, Gu Y Q, Zhao B, Zuo Y, Zheng J 2020 High Power Laser Sci. 8 04000e34Google Scholar

    [4]

    Zeng X M, Zhou K N, Zuo Y L, Zhu Q H, Su J Q, Wang X, Wang X D, Huang X J, Jiang X J, Jiang D B, Guo Y, Xie N, Zhou S, Wu Z H, Mu J, Peng H, Jing F 2017 Opt. Lett. 42 2014Google Scholar

    [5]

    Xiao Q, Pan X, Jiang Y E, Wang J F, Du L F, Guo J T, Huang D J, Lu X H, Cui Z J, Yang S S, Wei H, Wang X C, Xiao Z L, Li G Y, Wang X Q, Ouyang X P, Fan W, Li X C, Zhu J Q 2021 Opt. Express 29 15980Google Scholar

    [6]

    Begishev I A, Bagnoud V, Bahk S W, Bittle W A, Brent G, Cuffney R, Dorrer C, Froula D H, Haberberger D, Mileham C, Nilson P M, Okishev A V, Shaw J L, Shoup M J, Stillman C R, Stoeckl C, Turnbull D, Wager B, Zuegel J D, Bromage J 2021 Appl. Opt. 60 11104Google Scholar

    [7]

    胡必龙, 王逍, 李伟, 曾小明, 母杰, 左言磊, 王晓东, 吴朝辉, 粟敬钦 2020 光学学报 40 222Google Scholar

    Hu B L, Wang X, Li W, Zeng X M, MU J, Zuo Y L, Wang X D, Wu C H, Su J Q 2020 Acta Opt. Sin. 40 222Google Scholar

    [8]

    麦克斯 波恩, 埃米尔 沃尔夫著 (杨葭荪译) 2009 光学原理(第七版) (北京: 电子工业出版社) 第353—357页

    Born M, Wolf E (translated by Yang J S) 2009 Principles of optics (7th Ed.) (Beijing: Electronic Industry Press) pp353–357 (in Chinese)

    [9]

    古德曼 J W (秦克诚, 刘培森, 陈家璧, 曹其智 译) 2016 傅里叶光学导论 (第三版) (北京: 电子工业出版社) 第46—49页

    Goodman J W (translated by Qin K C, Liu P S, Chen J B, Cao Q Z) 2016 Introduction to Fourier Optics (3rd Ed.) (Beijing: Electronic Industry Press) pp46–49 (in Chinese)

    [10]

    Talanov V I 1970 JETP Lett. 11 199

    [11]

    Feigenbaum E, Sacks R A, McCandless K P, MacGowan B J 2013 Appl. Opt. 52 5030Google Scholar

    [12]

    Kozacki T, Falaggis K, Kujawinska M 2012 Appl. Opt. 51 7080Google Scholar

    [13]

    杨美霞, 钟鸣, 任钢, 何衡湘, 刘文兵, 夏惠军, 薛亮平 2011 光学学报 31 72Google Scholar

    Yang M X, Zhong M, Ren G, He H X, Liu W B, Xia H J, Xue L P 2011 Acta Optic Sinica 31 72Google Scholar

    [14]

    Hu Y L, Wang Z Y, Wang X W, Ji S Y, Zhang C C, Li J W, Zhu W L, Wu D, Chu J R 2020 Light Sci. Appl. 9 119Google Scholar

    [15]

    Voelz D G 2010 Computational Fourier Optics (Bellingham: Washington SPIE Press) pp199−201

  • 图 1  超短脉冲光谱分布

    Figure 1.  Spectral distribution of ultrashort pulses.

    图 2  传统衍射算法聚焦光场分布 (a), (b)和(c)分别是波长λ = 0.74, 0.80和0.86 μm时的归一化二维强度分布; (d), (e)和(f)分别是波长λ = 0.74, 0.80 μm和0.86 μm时${x'}$轴上归一化一维强度分布

    Figure 2.  Focusing light field distribution of traditional diffraction algorithm: (a), (b) and (c) The normalized two-dimensional intensity distribution at λ = 0.74, 0.80, and 0.86 μm, respectively; (d), (e) and (f) the normalized one-dimensional intensity distributions on the ${x'}$ axis at λ = 0.74, 0.80, and 0.86 μm, respectively.

    图 3  本文算法聚焦光场分布 (a), (b)和(c)分别是波长λ = 0.74, 0.80和0.86 μm时的归一化二维强度分布; (d), (e)和(f)分别是波长λ = 0.74, 0.80和0.86 μm时${x'}$轴上归一化一维强度分布

    Figure 3.  Focusing light field distribution of the proposed algorithm: (a), (b) and (c) The normalized two-dimensional intensity distribution at λ = 0.74, 0.80, and 0.86 μm, respectively; (d), (e) and (f) are the normalized one-dimensional intensity distributions on the ${x'}$ axis at λ = 0.74, 0.80, and 0.86 μm, respectively.

    图 4  聚焦场的时空分布图 (a) 整体脉冲光的二维空间分布; (b)整体脉冲光和中心波长分量在${x'}$轴上的一维分布对比(内插图为红色矩形方框范围内的放大图); (c) ${y'} = 0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{μm}}$处的时空分布; (d) ${y'} = 8.0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{μm}}$处的时空分布

    Figure 4.  Spatial-temporal distribution of the focused field: (a) The two-dimensional spatial distribution of the whole pulsed light; (b) one-dimensional distribution comparison of the whole pulse light and the central wavelength component on the ${x'}$ axis (the interpolation image is an enlarged image within the red rectangular box); (c) spatio-temporal distribution at${y'} = 0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{μm}}$; (d) spatio-temporal distribution at ${y'} = 8.0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{μm}}$.

    图 5  聚焦场${x'}$轴上暗环附近时间波形演变图 (a)—(i)分别对应${x'}$轴上位置从7.6 μm以步长0.1 μm变化到8.4 μm

    Figure 5.  Evolution of pulse shapes near the dark ring on ${x'}$ axis of focal field: (a)–(i) Corresponding to the axis position from 7.6 μm to 8.4 μm with a step of 0.1 μm.

    表 1  超短脉冲聚焦模拟计算参数

    Table 1.  Calculation parameters of ultrashort pulse focusing.

    计算参数名称和符号/单位参数数值
    时域脉宽 ${\tau _{{\text{FWHM}}}}$/fs20
    中心波长 ${\lambda _0}$/μm0.8
    脉冲时间采样间隔 $\Delta t$/ fs0.3
    时域采样点数 ${N_{\text{t}}}$512
    超高斯阶数 $n$12
    输入光束半径 $R$/mm50
    输入光场采样点数 $N \times N$$2048 \times 2048$
    输入光场采样间隔 $\text{δ} x$($\text{δ} y$)/mm0.1
    透镜后的传输距离 $z$/mm800
    DownLoad: CSV
  • [1]

    Wang D H, Shou Y R, Wang P J, Liu J B, Mei Z S, Cao Z X, Zhang J M, Yang P L, Feng G B, Chen S Y, Zhao Y Y, Joerg S, Ma W J 2020 High Power Laser Sci. 8 04000e41Google Scholar

    [2]

    Danson C, Hillier D, Hopps N, Neely D 2015 High Power Laser Sci. 3 010000e3Google Scholar

    [3]

    Wang X B, Guang Y H, Zhang Z M, Gu Y Q, Zhao B, Zuo Y, Zheng J 2020 High Power Laser Sci. 8 04000e34Google Scholar

    [4]

    Zeng X M, Zhou K N, Zuo Y L, Zhu Q H, Su J Q, Wang X, Wang X D, Huang X J, Jiang X J, Jiang D B, Guo Y, Xie N, Zhou S, Wu Z H, Mu J, Peng H, Jing F 2017 Opt. Lett. 42 2014Google Scholar

    [5]

    Xiao Q, Pan X, Jiang Y E, Wang J F, Du L F, Guo J T, Huang D J, Lu X H, Cui Z J, Yang S S, Wei H, Wang X C, Xiao Z L, Li G Y, Wang X Q, Ouyang X P, Fan W, Li X C, Zhu J Q 2021 Opt. Express 29 15980Google Scholar

    [6]

    Begishev I A, Bagnoud V, Bahk S W, Bittle W A, Brent G, Cuffney R, Dorrer C, Froula D H, Haberberger D, Mileham C, Nilson P M, Okishev A V, Shaw J L, Shoup M J, Stillman C R, Stoeckl C, Turnbull D, Wager B, Zuegel J D, Bromage J 2021 Appl. Opt. 60 11104Google Scholar

    [7]

    胡必龙, 王逍, 李伟, 曾小明, 母杰, 左言磊, 王晓东, 吴朝辉, 粟敬钦 2020 光学学报 40 222Google Scholar

    Hu B L, Wang X, Li W, Zeng X M, MU J, Zuo Y L, Wang X D, Wu C H, Su J Q 2020 Acta Opt. Sin. 40 222Google Scholar

    [8]

    麦克斯 波恩, 埃米尔 沃尔夫著 (杨葭荪译) 2009 光学原理(第七版) (北京: 电子工业出版社) 第353—357页

    Born M, Wolf E (translated by Yang J S) 2009 Principles of optics (7th Ed.) (Beijing: Electronic Industry Press) pp353–357 (in Chinese)

    [9]

    古德曼 J W (秦克诚, 刘培森, 陈家璧, 曹其智 译) 2016 傅里叶光学导论 (第三版) (北京: 电子工业出版社) 第46—49页

    Goodman J W (translated by Qin K C, Liu P S, Chen J B, Cao Q Z) 2016 Introduction to Fourier Optics (3rd Ed.) (Beijing: Electronic Industry Press) pp46–49 (in Chinese)

    [10]

    Talanov V I 1970 JETP Lett. 11 199

    [11]

    Feigenbaum E, Sacks R A, McCandless K P, MacGowan B J 2013 Appl. Opt. 52 5030Google Scholar

    [12]

    Kozacki T, Falaggis K, Kujawinska M 2012 Appl. Opt. 51 7080Google Scholar

    [13]

    杨美霞, 钟鸣, 任钢, 何衡湘, 刘文兵, 夏惠军, 薛亮平 2011 光学学报 31 72Google Scholar

    Yang M X, Zhong M, Ren G, He H X, Liu W B, Xia H J, Xue L P 2011 Acta Optic Sinica 31 72Google Scholar

    [14]

    Hu Y L, Wang Z Y, Wang X W, Ji S Y, Zhang C C, Li J W, Zhu W L, Wu D, Chu J R 2020 Light Sci. Appl. 9 119Google Scholar

    [15]

    Voelz D G 2010 Computational Fourier Optics (Bellingham: Washington SPIE Press) pp199−201

  • [1] Wu Qin-Fei, Wen Jin-Hui. Reconstructing algorithm for frequency-resolved optical gating based on intelligent seeker optimization. Acta Physica Sinica, 2021, 70(9): 090601. doi: 10.7498/aps.70.20201731
    [2] Jiang Yu-Jiao, Gao Yi-Tan, Huang Pei, Zhao Kun, Xu Si-Yuan, Zhu Jiang-Feng, Fang Shao-Bo, Teng Hao, Hou Xun, Wei Zhi-Yi. Phase control and stabilization in attosecond beamline with fast Fourier transform. Acta Physica Sinica, 2019, 68(21): 214204. doi: 10.7498/aps.68.20191164
    [3] Wen Jin-Hui, Hu Ting, Wu Qin-Fei. Measurement of ultrashort laser pulses with rapid-scanning frequency-resolved optical gating device. Acta Physica Sinica, 2019, 68(11): 110601. doi: 10.7498/aps.68.20190034
    [4] Wang Shao-Qi, Deng Ying, Zhang Yong-Liang, Li Chao, Wang Fang, Kang Min-Qiang, Luo Yun, Xue Hai-Tao, Hu Dong-Xia, Su Jing-Qin, Zheng Kui-Xing, Zhu Qi-Hua. Theoretical study on generating mid-infrared ultrashort pulse in mode-locked Er3+: ZBLAN fiber laser. Acta Physica Sinica, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [5] Ma Xiao-Lu, Li Pei-Li, Guo Hai-Li, Zhang Yi, Zhu Tian-Yang, Cao Feng-Jiao. Cross-phase modulation typed frequency resolved optical gating measurement for ultra-short pulses using a single mode fiber. Acta Physica Sinica, 2014, 63(24): 240601. doi: 10.7498/aps.63.240601
    [6] Chen Shao-Kuan, Wei Wei, Mao Bao-Hua, Guan Wei. Analysis on urban traffic status based on improved spatio-temporal Moran's I. Acta Physica Sinica, 2013, 62(14): 148901. doi: 10.7498/aps.62.148901
    [7] Zhou Qing-Yong, Ji Jian-Feng, Ren Hong-Fei. Quick search algorithm of X-ray pulsar period based on unevenly spaced timing data. Acta Physica Sinica, 2013, 62(1): 019701. doi: 10.7498/aps.62.019701
    [8] Lu Da-Quan, Hu Wei, Qian Lie-Jia, Fan Dian-Yuan. Propagation and spatiotemporal coupling of iso-diffraction ultra-short pulsed Hermite Gaussian beams in free space. Acta Physica Sinica, 2009, 58(3): 1655-1661. doi: 10.7498/aps.58.1655
    [9] Chen Ji-Gen, Chen Gao, Zeng Si-Liang, Yang Yu-Jun, Zhu Qi-Ren. Effect of the carrier phase of ultra-short laser pulses on high-order harmonic generation spectra. Acta Physica Sinica, 2008, 57(7): 4104-4109. doi: 10.7498/aps.57.4104
    [10] Feng Ze-Hu, Fu Xi-Quan, Zhang Li-Fu, Xu Hui-Wen, Wen Shuang-Chun. Experimental research of small-scale self-focusing of ultrashort pulse with spatial modulation. Acta Physica Sinica, 2008, 57(4): 2253-2259. doi: 10.7498/aps.57.2253
    [11] Deng Yu-Qiang, Cao Shi-Ying, Yu Jing, Xu Tao, Wang Qing-Yue, Zhang Zhi-Gang. Carrier-envelope phase extraction with wavelet-transform technique of amplified ultrashort optical pulses. Acta Physica Sinica, 2008, 57(11): 7017-7021. doi: 10.7498/aps.57.7017
    [12] Bi Lei, Bao Jing-Dong. Influence of nonlinear coupling on quantum decay rate of metastable dissipative systems. Acta Physica Sinica, 2007, 56(4): 1919-1923. doi: 10.7498/aps.56.1919
    [13] Ma Zai-Ru, Feng Guo-Ying, Chen Jian-Guo, Zhu Qi-Hua, Zeng Xiao-Ming, Liu Wen-Bing, Zhou Shou-Huan. Research on the formation of narrow bandwidth long flat-top pulse via coherent addition of ultra-short pulses. Acta Physica Sinica, 2007, 56(2): 933-940. doi: 10.7498/aps.56.933
    [14] Deng Yu-Qiang, Wang Qing-Yue, Wu Zu-Bin, Zhang Zhi-Gang. Influence of carrier-envelope phase on synthesizing of fundamental and its second-harmonic pulses. Acta Physica Sinica, 2006, 55(2): 737-742. doi: 10.7498/aps.55.737
    [15] Wang Peng, Zhao Huan, Wang Zhao-Hua, Li De-Hua, Wei Zhi-Yi. Active synchronization of two independent femtosecond and picosecond lasers and sum frequency generation of two laser pulses. Acta Physica Sinica, 2006, 55(8): 4161-4165. doi: 10.7498/aps.55.4161
    [16] Deng Yu-Qiang, Wu Zu-Bin, Chen Sheng-Hua, Chai Lu, Wang Qing-Yue, Zhang Zhi-Gang. Wavelet transform analysis for phase reconstruction of spectral shearing interferometry of ultrashort optical pulses. Acta Physica Sinica, 2005, 54(8): 3716-3721. doi: 10.7498/aps.54.3716
    [17] Liu Lan-Qin, Peng Han-Sheng, Wei Xiao-Feng, Zhu Qi-Hua, Huang Xiao-Jun, Wang Xiao-Dong, Zhou Kai-Nan, Zeng Xiao-Ming, Wang Xiao, Guo Yi, Yuan Xiao-Dong, Peng Zhi-Tao, Tang Xiao-Dong. Compensation of gain narrowing by using AOPDF in high-power ultra-short pulse laser systems. Acta Physica Sinica, 2005, 54(6): 2764-2768. doi: 10.7498/aps.54.2764
    [18] Song Zhen-Ming, Pang Dong-Qing, Zhang Zhi-Gang, Wang Qing-Yue. Spectrum broadening of ultrashort pulse propagation in cascaded hollow fibers and pulse compression. Acta Physica Sinica, 2005, 54(6): 2769-2773. doi: 10.7498/aps.54.2769
    [19] Li Shu-Guang, Zhou Gui-Yao, Xing Guang-Long, Hou Lan-Tian, Wang Qing-Yue, Li Yan-Feng, Hu Ming-Lie. Numerical simulation on ultrashort laser pulses propagating in microstructure fi bers. Acta Physica Sinica, 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
    [20] Deng Yu-Qiang, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue. Effects of noise on spectral phase reconstruction with wavelet analysis. Acta Physica Sinica, 2005, 54(9): 4176-4181. doi: 10.7498/aps.54.4176
Metrics
  • Abstract views:  3001
  • PDF Downloads:  84
  • Cited By: 0
Publishing process
  • Received Date:  14 December 2022
  • Accepted Date:  22 February 2023
  • Available Online:  18 March 2023
  • Published Online:  05 May 2023

/

返回文章
返回