Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Highprecision auto-balance of the time-domain pulsed homodyne detector

Liu Jian-Qiang Wang Xu-Yang Bai Zeng-Liang Li Yong-Min

Citation:

Highprecision auto-balance of the time-domain pulsed homodyne detector

Liu Jian-Qiang, Wang Xu-Yang, Bai Zeng-Liang, Li Yong-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum key distributions, which could make legitimate communication parties Alice and Bob achieve the same random key with unconditional security, will have broad applications in defense, commerce, and communication. The protocol of the continuous variable quantum key distribution (CVQKD) has many advantages, such as easy preparation of the light source, high detector efficiency, and good compatibility with the classic fiber-optic communication systems. In recent years, great progress in the research of CVQKD has been made both theoretically and experimentally. In the protocol, the quadratures of the optical field with Gaussian or Non-Gaussian modulation are employed as the carriers of the key.The quadratures of the pulsed optical quantum states in CVQKD can be detected with a time-domain pulsed homodyne detector. The performance of the detector has great influences on the excess noises and the safe key rate of the quantum communication system. The measurement accuracy, which depends crucially on the common mode rejection ratio and the long-term stability, is the key performance of the detector. In order to improve the accuracy of measurement and avoid saturating the detector, we propose and demonstrate a technique to balance the two output beams of a 50/50 fiber coupler of the homodyne detector automatically. The auto-balance technique, which improves the long-term stability and high common mode rejection ratio, is described in the following.Firstly, the relation between the balance degree and the measurement accuracy is theoretically analyzed in detail. The result shows that a balance degree larger than 10-4 should be reached to ensure a high precision measurement when the intensity of the local oscillator pulse is 108 photons per pulse. Secondly, a fiber-based variable attenuator based on computer-controlled linear stepper motor is designed. The linear stepper motor that is used to drive the fiber coils has a small dimension of 20 cm20 cm28 cm and a minimum step size of 78 nm, and is controlled through the I/O port of a multifunction data acquisition card connected to a computer. The attenuations of the fiber coils of different radii are detected. The precision of attenuation is estimated to be on the order of 10-6 per 100 nm.The principle of the feedback control is described. A method of changing step-size which depends on the balance degree is proposed to fulfill a fast auto-balance process. Using the auto-feedback-control system, a balance degree of about 1.5610-6 can be achieved. The procedure of auto-balance takes about 1 s, and the evolution curves that represent the transformation process from various unbalanced states to the balanced state are presented.The auto-balance apparatus can ensure that the time-domain pulsed homodyne detector run stably in a longterm with a high common mode rejection ratio. The nonlinear and saturation effects due to the drift of the balance point are eliminated. The presented auto-balance time-domain pulsed homodyne detector can be well integrated into the continuous variable quantum key distribution system, and is expected to play an important role in improving the measurement accuracy and reducing the excess noises of the system. We believe that it could also be found to have potential applications in other areas.
      Corresponding author: Wang Xu-Yang, wangxuyang@sxu.edu.cn;yongmin@sxu.edu.cn ; Li Yong-Min, wangxuyang@sxu.edu.cn;yongmin@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61378010, 11504219), the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011007-1), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China.
    [1]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595

    [2]

    Gisin N, Ribordy G, Tittle W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [3]

    Scarani V, Pasquinucci H B, Cerf N J, Dusek M, Lutkenhaus N, Peev Momtchil 2009 Rev. Mod. Phys. 81 1301

    [4]

    Weedbrook C, Pirandola S, Patron R G, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621

    [5]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902

    [6]

    Grosshans F, Grangier P 2002 Proceeding of the 6th International Conference on Quantum Communication, Measurement and Computing MIT, Cambridge, MA, July 22-26, 2002 p351

    [7]

    Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238

    [8]

    Lodewyck J, Debuisschert T, Brouri R T, Grangier P 2005 Phys. Rev. A 72 050303

    [9]

    Lodewyck J, Bloch M, Patron R G, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf R G, Brouri R T, Mclaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305

    [10]

    Qi B, Huang L L, Qian L, Lo H K 2007 Phys. Rev. A 76 052323

    [11]

    Fossier S, Diamanti E, Debuisschert, Villing A, Brouri R T, Grangier P 2009 New J. Phys. 11 045023

    [12]

    Xuan Q D, Zhang Z S, Voss P L 2009 Opt. Express 17 24244

    [13]

    Wang X Y, Bai Z L, Wang S F, Li Y M, Peng K C 2013 Chin. Phys. Lett. 30 010305

    [14]

    Jouguet P, Jacques S K, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 379

    [15]

    Wang S F, Wang X Y, Bai Z L, Li Y M 2014 Acta Sin. Quan. Opt. 2 167 (in Chinese) [王少锋, 王旭阳, 白增亮, 李永民 2014 量子光学学报 2 167]

    [16]

    Smithey D T, Beck M, Raymer M G 1993 Phys. Rev. Lett. 70 1244

    [17]

    Breitenbach G, Schiller S, Mlynek J 1997 Nature 387 471

    [18]

    Zavatta A, Viciani S, Bellini M 2006 Laser Phys. Lett. 3 3

    [19]

    Lvovsky A I, Raymer M G 2009 Rev. Mod. Phys. 81 299

    [20]

    Hansen H, Aichele T, Hettich C, Lodahl P, Lvovsky A I, Mlynek J, Schiller S 2001 Opt. Lett. 26 1714

    [21]

    Chi Y M, Qi B, Zhu W, Qian L, Lo H K, Youn S H, Lvovsky A I, Tian L 2011 New J. Phys. 13 013003

    [22]

    Wang X Y, Bai Z L, Du P Y, Li Y M, Peng K C 2012 Chin. Phys. Lett. 29 124202

    [23]

    Jin X L, Su J, Zheng Y H, Chen C Y, Wang W Z, Peng K C 2015 Opt. Express 23 023859

    [24]

    Wang X Y 2013 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese) [王旭阳 2013 博士学位论文(太原: 山西大学)]

    [25]

    Ma R L 2006 Quantum Cryptography Communication (Beijing: Science Press) p125 (in Chinese) [马瑞霖 2006 量子密码通信(北京: 科学出版社) 第125页]

    [26]

    Chen J J, Hang Z P, Zhao Y B, Gui Y Z, Guo G C 2007 Acta Phys. Sin. 56 0005 (in Chinese) [陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿 2007 物理学报 56 0005]

  • [1]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595

    [2]

    Gisin N, Ribordy G, Tittle W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [3]

    Scarani V, Pasquinucci H B, Cerf N J, Dusek M, Lutkenhaus N, Peev Momtchil 2009 Rev. Mod. Phys. 81 1301

    [4]

    Weedbrook C, Pirandola S, Patron R G, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621

    [5]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902

    [6]

    Grosshans F, Grangier P 2002 Proceeding of the 6th International Conference on Quantum Communication, Measurement and Computing MIT, Cambridge, MA, July 22-26, 2002 p351

    [7]

    Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238

    [8]

    Lodewyck J, Debuisschert T, Brouri R T, Grangier P 2005 Phys. Rev. A 72 050303

    [9]

    Lodewyck J, Bloch M, Patron R G, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf R G, Brouri R T, Mclaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305

    [10]

    Qi B, Huang L L, Qian L, Lo H K 2007 Phys. Rev. A 76 052323

    [11]

    Fossier S, Diamanti E, Debuisschert, Villing A, Brouri R T, Grangier P 2009 New J. Phys. 11 045023

    [12]

    Xuan Q D, Zhang Z S, Voss P L 2009 Opt. Express 17 24244

    [13]

    Wang X Y, Bai Z L, Wang S F, Li Y M, Peng K C 2013 Chin. Phys. Lett. 30 010305

    [14]

    Jouguet P, Jacques S K, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 379

    [15]

    Wang S F, Wang X Y, Bai Z L, Li Y M 2014 Acta Sin. Quan. Opt. 2 167 (in Chinese) [王少锋, 王旭阳, 白增亮, 李永民 2014 量子光学学报 2 167]

    [16]

    Smithey D T, Beck M, Raymer M G 1993 Phys. Rev. Lett. 70 1244

    [17]

    Breitenbach G, Schiller S, Mlynek J 1997 Nature 387 471

    [18]

    Zavatta A, Viciani S, Bellini M 2006 Laser Phys. Lett. 3 3

    [19]

    Lvovsky A I, Raymer M G 2009 Rev. Mod. Phys. 81 299

    [20]

    Hansen H, Aichele T, Hettich C, Lodahl P, Lvovsky A I, Mlynek J, Schiller S 2001 Opt. Lett. 26 1714

    [21]

    Chi Y M, Qi B, Zhu W, Qian L, Lo H K, Youn S H, Lvovsky A I, Tian L 2011 New J. Phys. 13 013003

    [22]

    Wang X Y, Bai Z L, Du P Y, Li Y M, Peng K C 2012 Chin. Phys. Lett. 29 124202

    [23]

    Jin X L, Su J, Zheng Y H, Chen C Y, Wang W Z, Peng K C 2015 Opt. Express 23 023859

    [24]

    Wang X Y 2013 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese) [王旭阳 2013 博士学位论文(太原: 山西大学)]

    [25]

    Ma R L 2006 Quantum Cryptography Communication (Beijing: Science Press) p125 (in Chinese) [马瑞霖 2006 量子密码通信(北京: 科学出版社) 第125页]

    [26]

    Chen J J, Hang Z P, Zhao Y B, Gui Y Z, Guo G C 2007 Acta Phys. Sin. 56 0005 (in Chinese) [陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿 2007 物理学报 56 0005]

  • [1] He Ying, Wang TianYi, Li YingYing. Composable security analysis of linear optics cloning machine enhanced discretized polar modulation continuous-variable quantum key distribution. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.20241094
    [2] He Ying, Wang Tian-Yi, Li Ying-Ying. Composable security analysis of linear optics cloning machine improved discretized polar modulation continuous-variable quantum key distribution. Acta Physica Sinica, 2024, 73(23): 230303. doi: 10.7498/aps.73.20241094
    [3] Wu Xiao-Dong, Huang Duan. Underwater continuous variable quantum key distribution scheme based on imperfect measurement basis choice. Acta Physica Sinica, 2024, 73(21): 210302. doi: 10.7498/aps.73.20240804
    [4] Zhang Yun-Jie, Wang Xu-Yang, Zhang Yu, Wang Ning, Jia Yan-Xiang, Shi Yu-Qi, Lu Zhen-Guo, Zou Jun, Li Yong-Min. Four-state discrete modulation continuous variable quantum key distribution based on hardware synchronization. Acta Physica Sinica, 2024, 73(6): 060302. doi: 10.7498/aps.73.20231769
    [5] Zhang Guang-Wei, Bai Jian-Dong, Jie Qi, Jin Jing-Jing, Zhang Yong-Mei, Liu Wen-Yuan. Research on dynamic polarization control in continuous variable quantum key distribution systems. Acta Physica Sinica, 2024, 73(6): 060301. doi: 10.7498/aps.73.20231890
    [6] Liao Qin, Liu Hai-Jie, Wang Zheng, Zhu Ling-Jin. Gaussian-modulated continuous-variable quantum key distribution based on untrusted entanglement source. Acta Physica Sinica, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [7] Wu Xiao-Dong, Huang Duan. Plug-and-play discrete modulation continuous variable quantum key distribution based on non-Gaussian state-discrimination detection. Acta Physica Sinica, 2023, 72(5): 050303. doi: 10.7498/aps.72.20222253
    [8] Wu Xiao-Dong, Huang Duan, Huang Peng, Guo Ying. Discrete modulation continuous-variable measurement-device-independent quantum key distribution scheme based on realistic detector compensation. Acta Physica Sinica, 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [9] Mao Yi-Yu, Wang Yi-Jun, Guo Ying, Mao Yu-Hao, Huang Wen-Ti. Continuous-variable quantum key distribution based on peak-compensation. Acta Physica Sinica, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [10] Ye Wei, Guo Ying, Xia Ying, Zhong Hai, Zhang Huan, Ding Jian-Zhi, Hu Li-Yun. Discrete modulation continuous-variable quantum key distribution based on quantum catalysis. Acta Physica Sinica, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [11] Cao Zheng-Wen, Zhang Shuang-Hao, Feng Xiao-Yi, Zhao Guang, Chai Geng, Li Dong-Wei. The design and realization of continuous-variable quantum key distribution system based on real-time shot noise variance monitoring. Acta Physica Sinica, 2017, 66(2): 020301. doi: 10.7498/aps.66.020301
    [12] Zhang Yan, Yu Xu-Dong, Di Ke, Li Wei, Zhang Jing. Locking the phase of balanced homodyne detection system for squeezed light. Acta Physica Sinica, 2013, 62(8): 084204. doi: 10.7498/aps.62.084204
    [13] Xu Bing-Jie, Tang Chun-Ming, Chen Hui, Zhang Wen-Zheng, Zhu Fu-Chen. Improving the maximum transmission distance of coutinuous variable no-switching QKD protocol. Acta Physica Sinica, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [14] Song Han-Chong, Gong Li-Hua, Zhou Nan-Run. Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Physica Sinica, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [15] Li Rui, Zhai Ze-Hui, Zhao Shu-Jin, Gao Jiang-Rui. Experimental investigation of displacement measurement with homodyne detection. Acta Physica Sinica, 2010, 59(11): 7724-7728. doi: 10.7498/aps.59.7724
    [16] Shen Yong, Zou Hong-Xin. Security bound of continuous-variable quantum key distribution with discrete modulation. Acta Physica Sinica, 2010, 59(3): 1473-1480. doi: 10.7498/aps.59.1473
    [17] Zhu Chang-Hua, Chen Nan, Pei Chang-Xing, Quan Dong-Xiao, Yi Yun-Hui. Adaptive continuous variable quantum key distribution based on channel estimation. Acta Physica Sinica, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [18] Chen Jie, Li Yao, Wu Guang, Zeng He-Ping. Stable quantum key distribution with polarization control. Acta Physica Sinica, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [19] Chen Jin-Jian, Han Zheng-Fu, Zhao Yi-Bo, Gui You-Zhen, Guo Guang-Can. The effect of balanced homodyne detection on continuous variable quantum key distribution. Acta Physica Sinica, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [20] ZHANG YOU-WEN. CALCULATION OF STATICAL AND DYNAMICAL EQUILIBRIUM OF THE 45°SCAN MIRROR. Acta Physica Sinica, 1979, 28(2): 183-200. doi: 10.7498/aps.28.183
Metrics
  • Abstract views:  6979
  • PDF Downloads:  243
  • Cited By: 0
Publishing process
  • Received Date:  19 October 2015
  • Accepted Date:  16 March 2016
  • Published Online:  05 May 2016

/

返回文章
返回