Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-parallel continuous variable quantum random number generator with real-time entropy source evaluation

GUO Xiaomin WANG Qiqi LUO Yue SONG Zhijie LI Zhengya QU Yikun GUO Yanqiang XIAO Liantuan

Citation:

Dual-parallel continuous variable quantum random number generator with real-time entropy source evaluation

GUO Xiaomin, WANG Qiqi, LUO Yue, SONG Zhijie, LI Zhengya, QU Yikun, GUO Yanqiang, XIAO Liantuan
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Continuous-variable quantum random number generator (cv-QRNG) is appealing for its convenience of state preparation and high measurement bandwidth. Chip-size integration of this type of QRNG is expectable because all components involved have been integrated on a single chip recently. Most of the existing schemes, including all existing commercial schemes, usually take a once-and-for-all approach to the evaluation of quantum entropy. In this work, we propose a double-level parallel cv-QRNG scheme that integrates real-time phase-space monitoring and entropy evaluation. By dynamically threshold monitoring and self-adapting scaling of Toeplitz matrix, the security and generation rate of QRNG can be simultaneously enhanced.
    Experimentally, a parallel extraction system of vacuum state double quadratures and multiple sideband modes is constructed based on heterodyne, providing sufficient raw data for high-precision and high-speed tomography reconstruction of quantum entropy source and parallel extraction of QRNG. Based on the statistical analysis of data under long-term stable operation of the system, dynamic KLD-sensitive security threshold for statistical distribution of Husimi-Q function of the entropy source is established. When a weak chaotic field is injected to simulate a thermal state attack, the KLD value jumps and quickly deviates from the steady state baseline, manifesting a sensitive attack recognition. It is worth pointing out that the threshold parameter can be dynamically optimized according to the security requirements of actual application scenarios. An FPGA-based real-time feedback Toeplitz-hash extractor employs a maximum matrix bit-width truncation method to dynamically adjust Toeplitz matrix parameters. This optimization reduces the maximum extraction ratio interval from 6% to 1.8%, with all intervals below 1% for extraction ratios ≤76%, significantly mitigating entropy losses caused by discrete adjustment of the Toeplitz matrix, and achieving a minimum extraction ratio of 16.9%. This flexibility enables the system to accurately control the response sensitivity of abnormal signals while maintaining the real-time generation of quantum random bits. Finally, real-time generation rate of 17.512 Gbps is attained with security parameters at the level of 10-50 and the generated random numbers passed NIST SP 800-22, Diehard, and TestU01 standard tests.
    This research provides a technical path for real-time entropy source security assessment for QRNG. The proposed scheme has well integrability and scalability, offering a feasible solution for QRNG to enter the application stage.
  • [1]

    Wahl M, Leifgen M, Berlin M, Röhlicke T, Rahn H J, Benson O 2011 Appl. Phys. Lett. 98 171105

    [2]

    Nie Y Q, Zhang H F, Zhang Z, Wang J, Ma X, Zhang J, Pan J W 2014 Appl. Phys. Lett. 104 051110

    [3]

    Ma H Q, Xie Y, Wu L A 2005 Appl. Opt. 44 7760

    [4]

    Aungskunsiri K, Jantarachote S, Wongpanya K, Amarit R, Punpetch P, Sumriddetchkajorn S 2023 ACS Omega 8 35085

    [5]

    Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675

    [6]

    Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H 2011 Phys. Rev. A 83 023820

    [7]

    Lian-Tuan X, Yan-Ting Z, Tao H, Jian-Ming Z, Wang-Bao Y, Suo-Tang J 2004 Chin. Phys. Lett. 21 489

    [8]

    Eaton M, Hossameldin A, Birrittella R J, Alsing P M, Gerry C C, Dong H, Cuevas C, Pfister O 2023 Nat. Photonics 17 106

    [9]

    Wei W, Guo H 2009 Opt. Lett. 34 1876

    [10]

    Applegate M J, Thomas O, Dynes J F, Yuan Z L, Ritchie D A, Shields A J 2015 Appl. Phys. Lett. 107 071106

    [11]

    Guo H, Tang W, Liu Y, Wei W 2010 Phys. Rev. E 81 051137

    [12]

    Raffaelli F, Sibson P, Kennard J E, Mahler D H, Thompson M G, Matthews J C F 2018 Opt. Express 26 19730

    [13]

    Li J, Huang Z, Yu C, Wu J, Zhao T, Zhu X, Sun S 2024 Opt. Express 32 5056

    [14]

    Liu W, Cao Y, Wang X, Li Y 2020 Phys. Rev. A 102 032625

    [15]

    Shen Y, Tian L, Zou H 2010 Phys. Rev. A 81 063814

    [16]

    Symul T, Assad S M, Lam P K 2011 Appl. Phys. Lett. 98 231103

    [17]

    Bruynsteen C, Gehring T, Lupo C, Bauwelinck J, Yin X 2023 PRX Quantum 4 010330

    [18]

    Gehring T, Lupo C, Kordts A, Solar Nikolic D, Jain N, Rydberg T, Pedersen T B, Pirandola S, Andersen U L 2021 Nat. Commun. 12 605

    [19]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621

    [20]

    Gabriel C, Wittmann C, Sych D, Dong R, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711

    [21]

    Guo X, Liu R, Li P, Cheng C, Wu M, Guo Y 2018 Entropy 20 819

    [22]

    Haw J Y, Assad S M, Lance A M, Ng N H Y, Sharma V, Lam P K, Symul T 2015 Phys. Rev. Appl. 3 054004

    [23]

    Guo X, Cheng C, Wu M, Gao Q, Li P, Guo Y 2019 Opt. Lett. 44 5566

    [24]

    Kumar R, Barrios E, MacRae A, Cairns E, Huntington E H, Lvovsky A I 2012 Opt. Commun. 285 5259

    [25]

    Zheng Z, Zhang Y, Huang W, Yu S, Guo H 2019 Rev. Sci. Instrum. 90 043105

    [26]

    Shalm L K, Zhang Y, Bienfang J C, Schlager C, Stevens M J, Mazurek M D, Abellán C, Amaya W, Mitchell M W, Alhejji M A, Fu H, Ornstein J, Mirin R P, Nam S W, Knill E 2021 Nat. Phys. 17 452

    [27]

    Liu Y, Zhao Q, Li M H, Guan J Y, Zhang Y, Bai B, Zhang W, Liu W Z, Wu C, Yuan X, Li H, Munro W J, Wang Z, You L, Zhang J, Ma X, Fan J, Zhang Q, Pan J W 2018 Nature 562 548

    [28]

    Zhang J, Li Y, Zhao M, Han D, Liu J, Wang M, Gong Q, Xiang Y, He Q, Su X 2025 Light Sci. Appl. 14 25

    [29]

    Liu L, Yang J, Wu M, Liu J, Huang W, Li Y, Xu B 2025 Entropy 27 68

    [30]

    Cao Z, Zhou H, Yuan X, Ma X 2016 Phys. Rev. X 6 011020

    [31]

    Nie Y Q, Zhou H, Bai B, Xu Q, Ma X, Zhang J, Pan J W 2024 Quantum Sci. Technol. 9 025024

    [32]

    Michel T, Haw J Y, Marangon D G, Thearle O, Vallone G, Villoresi P, Lam P K, Assad S M 2019 Phys. Rev. Appl. 12 034017

    [33]

    Pivoluska M, Plesch M, Farkas M, Ružičková N, Flegel C, Valencia N H, McCutcheon W, Malik M, Aguilar E A 2021 npj Quantum Inf. 7 1

    [34]

    Marangon D G, Vallone G, Villoresi P 2017 Phys. Rev. Lett. 118 060503

    [35]

    Xu B, Chen Z, Li Z, Yang J, Su Q, Huang W, Zhang Y, Guo H 2019 Quantum Sci. Technol. 4 025013

    [36]

    Ma X, Yuan X, Cao Z, Qi B, Zhang Z 2016 npj Quantum Inf 2 1

    [37]

    Tomamichel M, Schaffner C, Smith A, Renner R 2011 IEEE Trans. Inf. Theory 57 5524

    [38]

    Drahi D, Walk N, Hoban M J, Fedorov A K, Shakhovoy R, Feimov A, Kurochkin Y, Kolthammer W S, Nunn J, Barrett J, Walmsley I A 2020 Phys. Rev. X 10 041048

    [39]

    Huang W, Zhang Y, Zheng Z, Li Y, Xu B, Yu S 2020 Phys. Rev. A 102 012422

    [40]

    Gabriel C, Wittmann C, Sych D, Dong R, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711

    [41]

    Shi Y, Chng B, Kurtsiefer C 2016 Appl. Phys. Lett. 109

    [42]

    Lin F, Ge W, Song Z, Cui X, Guo Y, Guo X, Xiao L 2024 J. Lightwave Technol. 42 8606

    [43]

    Tanizawa K, Kato K, Futami F 2024 J. Lightwave Technol. 42 1209

    [44]

    Haylock B, Peace D, Lenzini F, Weedbrook C, Lobino M 2019 Quantum 3 141

    [45]

    Smithey D T, Beck M, Raymer M G, Faridani A 1993 Phys. Rev. Lett. 70 1244

    [46]

    Ourjoumtsev A, Tualle-Brouri R, Grangier P 2006 Phys. Rev. Lett. 96 213601

    [47]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604

    [48]

    Avesani M, Marangon D G, Vallone G, Villoresi P 2018 Nat Commun 9 5365

    [49]

    Shapiro J, Wagner S 1984 IEEE J. Quantum Electron. 20 803

    [50]

    Radhakrishna Rao C 2021 A Tribute to the Legend of Professor C. R. Rao (Singapore: Springer) pp1–13

    [51]

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601 (in Chinese)[任志红, 李岩, 李艳娜, 李卫东2019 物理学报68 040601]

    [52]

    Arthurs E, Kelly J L 1965 Bell Syst. Tech. J. 44 725

    [53]

    Řeháček J, Teo Y S, Hradil Z, Wallentowitz S 2015 Sci. Rep. 5 1

    [54]

    Müller C R, Peuntinger C, Dirmeier T, Khan I, Vogl U, Marquardt C, Leuchs G, Sánchez-Soto L L, Teo Y S, Hradil Z, Řeháček J 2016 Phys. Rev. Lett. 117 070801

    [55]

    Cramér H 1949 Mathematical Methods of Statistics (Princeton: Princeton University Press) pp1-575

    [56]

    Hershey J R, Olsen P A 2007 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP ’07, Hawaii, 2007-04, ppIV-317–IV-320

    [57]

    Rached Z, Alajaji F, Campbell L L 2004 IEEE Trans. Inf. Theory 50 917

    [58]

    Lu Y, Stuart A, Weber H 2017 SIAM/ASA J. Uncertain. Quantif. 5 1136

    [59]

    Popescu P G, Dragomir S S, Slusanschi E I, Sta O N 2016 Electron. J. Differ. Equ. 237 pp1

    [60]

    Wu Y, Ma X 2022 Renew. Energy 181 554

    [61]

    Smithey D T, Beck M, Cooper J, Raymer M G 1993 Phys. Rev. A 48 3159

    [62]

    Řeháček J, Hradil Z, Knill E, Lvovsky A I 2007 Phys. Rev. A 75 042108

    [63]

    Lvovsky A I 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S556

    [64]

    Lvovsky A I, Raymer M G 2009 Rev. Mod. Phys. 81 299

    [65]

    Smith P R, Marangon D G, Lucamarini M, Yuan Z L, Shields A J 2021 Phys. Rev. Appl. 15 044044

    [66]

    Qin H, Kumar R, Makarov V, Alléaume R 2018 Phys. Rev. A 98 012312

    [67]

    Xia X, Sun J, Liu W 2023 2023 5th International Conference on Circuits and Systems (ICCS), Huzhou, 2023-10, pp108–113

    [68]

    Haw J Y, Assad S M, Lance A M, Ng N H Y, Sharma V, Lam P K, Symul T 2015 Phys. Rev. Appl. 3 054004

    [69]

    Chen Z, Wang X, Yu S, Li Z, Guo H 2023 npj Quantum Inf 9 1

    [70]

    Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C, Han Z F 2014 Phys. Rev. A 89 032304

    [71]

    Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333

  • [1] Wang Pu, Bai Zeng-Liang, Chang Li-Wei. The Influence of Source Intensity Errors in Unidimensional Gaussian Modulation Continuous-Variable Quantum Key Distribution. Acta Physica Sinica, doi: 10.7498/aps.74.20250025
    [2] SUN Xin, GUO Junjie, CHEN Yujie, CHENG Jin, LIU Ao, LIU Wenbo, YIN Peng, CHEN Lanjian, WU Tianyi, DONG Chen. Feasibility analysis study of discrete modulation continuous variable quantum key distribution for spatial channels. Acta Physica Sinica, doi: 10.7498/aps.74.20241682
    [3] Zhang Guang-Wei, Bai Jian-Dong, Jie Qi, Jin Jing-Jing, Zhang Yong-Mei, Liu Wen-Yuan. Research on dynamic polarization control in continuous variable quantum key distribution systems. Acta Physica Sinica, doi: 10.7498/aps.73.20231890
    [4] Wu Xiao-Dong, Huang Duan. Underwater continuous variable quantum key distribution scheme based on imperfect measurement basis choice. Acta Physica Sinica, doi: 10.7498/aps.73.20240804
    [5] Zhang Yun-Jie, Wang Xu-Yang, Zhang Yu, Wang Ning, Jia Yan-Xiang, Shi Yu-Qi, Lu Zhen-Guo, Zou Jun, Li Yong-Min. Four-state discrete modulation continuous variable quantum key distribution based on hardware synchronization. Acta Physica Sinica, doi: 10.7498/aps.73.20231769
    [6] Wu Xiao-Dong, Huang Duan. Practical continuous variable quantum secret sharing scheme based on non-ideal quantum state preparation. Acta Physica Sinica, doi: 10.7498/aps.73.20230138
    [7] Liao Qin, Liu Hai-Jie, Wang Zheng, Zhu Ling-Jin. Gaussian-modulated continuous-variable quantum key distribution based on untrusted entanglement source. Acta Physica Sinica, doi: 10.7498/aps.72.20221902
    [8] Wu Xiao-Dong, Huang Duan. Plug-and-play discrete modulation continuous variable quantum key distribution based on non-Gaussian state-discrimination detection. Acta Physica Sinica, doi: 10.7498/aps.72.20222253
    [9] Wang Mei-Hong, Hao Shu-Hong, Qin Zhong-Zhong, Su Xiao-Long. Research advances in continuous-variable quantum computation and quantum error correction. Acta Physica Sinica, doi: 10.7498/aps.71.20220635
    [10] Wen Zhen-Nan, Yi You-Gen, Xu Xiao-Wen, Guo Ying. Continuous variable quantum teleportation with noiseless linear amplifier. Acta Physica Sinica, doi: 10.7498/aps.71.20212341
    [11] Wu Jia-Chen, Song Zheng, Xie Yi-Feng, Zhou Xin-Yu, Zhou Pei, Mu Peng-Hua, Li Nian-Qiang. High-quality random number sequences extracted from chaos post-processed by phased-array semiconductor laser. Acta Physica Sinica, doi: 10.7498/aps.70.20202034
    [12] Mao Yi-Yu, Wang Yi-Jun, Guo Ying, Mao Yu-Hao, Huang Wen-Ti. Continuous-variable quantum key distribution based on peak-compensation. Acta Physica Sinica, doi: 10.7498/aps.70.20202073
    [13] Ye Wei, Guo Ying, Xia Ying, Zhong Hai, Zhang Huan, Ding Jian-Zhi, Hu Li-Yun. Discrete modulation continuous-variable quantum key distribution based on quantum catalysis. Acta Physica Sinica, doi: 10.7498/aps.69.20191689
    [14] Cao Zheng-Wen, Zhang Shuang-Hao, Feng Xiao-Yi, Zhao Guang, Chai Geng, Li Dong-Wei. The design and realization of continuous-variable quantum key distribution system based on real-time shot noise variance monitoring. Acta Physica Sinica, doi: 10.7498/aps.66.020301
    [15] Xu Bing-Jie, Tang Chun-Ming, Chen Hui, Zhang Wen-Zheng, Zhu Fu-Chen. Improving the maximum transmission distance of coutinuous variable no-switching QKD protocol. Acta Physica Sinica, doi: 10.7498/aps.62.070301
    [16] Song Han-Chong, Gong Li-Hua, Zhou Nan-Run. Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Physica Sinica, doi: 10.7498/aps.61.154206
    [17] Shen Yong, Zou Hong-Xin. Security bound of continuous-variable quantum key distribution with discrete modulation. Acta Physica Sinica, doi: 10.7498/aps.59.1473
    [18] Zhu Chang-Hua, Chen Nan, Pei Chang-Xing, Quan Dong-Xiao, Yi Yun-Hui. Adaptive continuous variable quantum key distribution based on channel estimation. Acta Physica Sinica, doi: 10.7498/aps.58.2184
    [19] Chen Jin-Jian, Han Zheng-Fu, Zhao Yi-Bo, Gui You-Zhen, Guo Guang-Can. The effect of balanced homodyne detection on continuous variable quantum key distribution. Acta Physica Sinica, doi: 10.7498/aps.56.5
    [20] Zhai Ze-Hui, Li Yong-Ming, Wang Shao-Kai, Guo Juan, Zhang Tian-Cai, Gao Jiang-Rui. Experimental study of continuous-variable quantum teleportation. Acta Physica Sinica, doi: 10.7498/aps.54.2710
Metrics
  • Abstract views:  36
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  17 April 2025

/

返回文章
返回