Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spatial coherence analysis of intense ultra-flat white laser

YANG Lan LIU Junming HONG Lihong LIU Liqiang LI Zhiyuan

Citation:

Spatial coherence analysis of intense ultra-flat white laser

YANG Lan, LIU Junming, HONG Lihong, LIU Liqiang, LI Zhiyuan
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • White light is typically considered incoherent; however, the recently popular supercontinuum laser, also known as white laser, spans the visible spectrum and features high laser intensity and good coherence, challenging this traditional limitation. The white laser has a wide range of applications, including multi-channel confocal microscopy, color holography, and white light interferometric surface topography. Although white lasers have been proposed and developed extensively in terms of technology, specific analyses of their optical wave properties—especially spatial coherence—are still lacking. Since many applications impose certain requirements on the spatial coherence of white light, the lack of research into the spatial coherence of white lasers has, to some extent, limited their practical use.This paper presents a detailed experimental study and analysis of the wavefront intensity, polarization characteristics, and spatial coherence of the high-intensity ultra-flat spectrum white laser that was independently developed by our research group in 2023. The laser is generated by broadening the spectrum of a high-intensity Ti:sapphire femtosecond laser through second- and third-order nonlinear effects.A bandpass filter is used to extract eight components from the white laser, with a central wavelength range from 405 nm to 700 nm and a bandwidth of 10 nm for each component. By measuring the performance of these eight quasi-monochromatic lasers, the characteristics of the white laser of the entire visible spectrum can be evaluated.The CCD imaging of the collimated quasi-monochromatic laser spots reveals that their wavefront intensities exhibit a quasi-Gaussian distribution with uniform beam profiles. Polarization measurements by using polarizers at various angles show that the white laser is linearly polarized. A Young’s double-slit interferometer (YDSI) is used to measure the interference fringe contrast of the eight quasi-monochromatic beams to assess their spatial coherence. The experimental results show that the average interference fringe contrast of the entire visible spectrum is 0.77, and the difference between different wavelengths is very small.This indicates that the white laser has excellent spatial coherence in the visible range.The eight quasi-monochromatic lasers in the visible spectrum all exhibit quasi-Gaussian wavefront intensity distributions, linear polarization, and high spatial coherence. This indicates that the white laser inherits the excellent properties of the Ti:sapphire laser. All of these data provide valuable guidance for the application of white lasers in color holography, white light interferometric surface tomography, microscopic imaging, and other fields that require white light with a certain degree of coherence.
  • 图 1  对白激光空间相干性等激光特性的分析流程

    Figure 1.  Analysis scheme of laser characteristics such as spatial coherence of white laser.

    图 2  白激光的产生原理和基本信息 (a) 产生飞秒白激光的光路图, 该激光通过高强度钛宝石飞秒脉冲激光束经过熔融石英-CPPLN二阶与三阶非线性协同频率转换模块产生; (b)经过熔融石英平板后的光谱测量结果; (c) 经过熔融石英平板后的激光光斑; (d) 白激光的测量光谱, 展现出超平坦的光谱特性, 其中彩色带表示可见光范围, 其放大图显示在插图中; (e) 系统最终输出的白激光的光斑

    Figure 2.  Basic information of the white laser: (a) Schematic diagram of a homemade femtosecond white laser created by sending an intense Ti:sapphire femtosecond pulse laser beam through a fused silica-CPPLN 2 nd-NL and 3 rd-NL synergistic nonlinear frequency conversion module (b) The measured spectrum of the light after the fused silica plate. (c) The spot of the laser after the fused silica plate. (d) The measured spectrum of the white laser shows the ultra-flat spectral profile. The color band represents the visible range, whose enlarged view is shown in the inset. (e) The spot of the white laser beam.

    图 3  波前强度分析, 即白激光通过中心波长分别为 (a) 405 nm, (b) 450 nm, (c) 500 nm, (d) 532 nm, (e) 580 nm, (f) 600 nm, (g) 635 nm, (h) 700 nm, 带宽为 10 nm 的滤波片后, 不同光谱成分的波前强度(左)、线强度分布(中)和光谱分布(右)

    Figure 3.  Wavefront analysis. Wavefront (left), line profile (center), and spectral profile (right) of the white laser at different spectral components in the visible band when it passes through 10 nm bandwidth filters centering at the wavelength of (a) 405 nm, (b) 450 nm, (c) 500 nm, (d) 532 nm, (e) 580 nm, (f) 600 nm, (g) 635 nm, and (h) 700 nm

    图 4  杨氏双缝实验的实验结果 (a)杨氏双缝实验的光路图, 其中F为带有不同滤波片的可旋转支架, CE为光束准直扩束系统; (b)—(i) 八种波长的干涉条纹和强度线轮廓图, 其中(b) λ = 405 nm, $ \upsilon $ = 0.86; (c) λ = 450 nm, $ \upsilon $ = 0.86; (d) λ = 500 nm, $ \upsilon $ = 0.75; (e) λ = 532 nm, $ \upsilon $ = 0.82; (f) λ = 580 nm, $ \upsilon $ = 0.77; (g) λ = 600 nm, $ \upsilon $ = 0.62; (h) λ = 635 nm, $ \upsilon $ = 0.80; (i) λ = 700 nm, $ \upsilon $ = 0.67

    Figure 4.  Experimental results in the Young’s double-slit experiment: (a) The architecture of Young’s double-slit experiment, where F represents rotatable holder embedded with different filters, CE represents collimated beam expanding system; (b)—(i) the interference fringes and intensity line profile of the eight wavelengths, where (b) λ = 405 nm, $ \upsilon $ = 0.86; (c) λ = 450 nm, $ \upsilon $ = 0.86; (d) λ = 500 nm, $ \upsilon $ = 0.75; (e) λ = 532 nm, $ \upsilon $ = 0.82; (f) λ = 580 nm, $ \upsilon $ = 0.77; (g) λ = 600 nm, $ \upsilon $ = 0.62; (h) λ = 635 nm, $ \upsilon $ = 0.80; (i) λ = 700 nm, $ \upsilon $ = 0.67.

    表 1  从白激光中提取光波所使用的滤波片的中心波长和带宽

    Table 1.  Central wavelength and bandwidth of the filter used to extract the light wave from the white laser.

    Wavelength/nm
    405450500532580600635700
    Bandwidth/nm1010101010101010
    DownLoad: CSV

    表 2  各准单色光经过滤波片后功率随偏振片角度的变化

    Table 2.  Power variation with polarizer angle for each quasi-monochromatic light after filtering.

    $ \lambda /{\mathrm{n}}{\mathrm{m}} $
    405 450 500 532 580 600 635 700
    $ {I}_{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}} $/$ {\mathrm{\mu }}{\mathrm{W}} $ 43.7 42.5 43.5 40.1 45.7 46.8 45.0 46.2
    $ {\theta }_{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}} $/(°) 0 0 1 0 1 0 0 0
    $ {I}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}} $/$ {\mathrm{\mu }}{\mathrm{W}} $ 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2
    $ {\theta }_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}} $/(°) 90 90 89 90 89 90 90 90
    DownLoad: CSV
  • [1]

    Alfano R R 1990 Appl. Opt. 29 1242Google Scholar

    [2]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 592Google Scholar

    [3]

    Fork R L, Tomlinson W J, Shank C V, Hirlimann C, Yen R, Tomlinson W J 1983 Opt. Lett. 8 1Google Scholar

    [4]

    Froehly L, Meteau J 2012 Opt. Fiber Technol. 18 411Google Scholar

    [5]

    Travers J C, Grigorova T F, Brahms C, Belli F 2019 Nat. Photonics 13 547Google Scholar

    [6]

    Elu U, Maidment L, Vamos L, Tani F, Novoa D, Frozs H, Badikov V, Badikov D, Petrov V, Russell J, Biegert J 2021 Nat. Photonics 15 277Google Scholar

    [7]

    Schliesser A, Picqué N, Hänsch T W 2012 Nat. Photonics 6 440Google Scholar

    [8]

    Udem T, olzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [9]

    Petersen C R, Møller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830Google Scholar

    [10]

    Jiang X, Joly N Y, Finger M A, Babic F, Wong K L, Travers J C, Russell J 2015 Nat. Photonics 9 133Google Scholar

    [11]

    He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474Google Scholar

    [12]

    Mollenauer L F, Stolen R H, Gordon J P, Tomlinson W J 1983 Opt. Lett. 8 289Google Scholar

    [13]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [14]

    Chen B Q, Ren M L, Liu R J, Zhang C, Sheng Y, Ma B Q, Li Z Y 2014 Light Sci. Appl. 3 e189Google Scholar

    [15]

    Chen B Q, Zhang C, Hu C Y, Liu R J, Li Z Y 2015 Phys. Rev. Lett. 115 083902Google Scholar

    [16]

    Chen B Q, Hong L H, Hu C Y, Li Z Y 2021 Research 2021 1539730

    [17]

    Li M Z, Hong L H, Li Z Y 2022 Research 2022 9871729

    [18]

    Hong L H, Hu C, Liu Y Y, He H J, Liu L Q, Wei Z Y, Li Z Y 2023 PhotoniX 4 11Google Scholar

    [19]

    Hong L H, Liu L Q, Liu Y Y, Qian J Y, Feng R Y, Li W K, Li Y Y, Peng Y J, Leng Y X, Li R X, Li Z Y 2023 Light Sci. Appl. 12 199Google Scholar

    [20]

    Hong L H, Yang H Y, Li Z Y 2023 Research 6 0210Google Scholar

    [21]

    Knapp T, Lima N, Daigle N, Duan S, Merchant J L, Sawyer T W 2024 J. Biomed. Opt. 29 016007

    [22]

    Hassan M A 2025 Appl. Opt. 64 654Google Scholar

    [23]

    Shimobaba T, Ito T 2003 Opt. Rev. 10 339Google Scholar

    [24]

    Kueny E, Meier J, Levecq X, Varkentina N, Kärtner F X, Calendron L 2018 Opt. Express 26 31299Google Scholar

    [25]

    Genty G, Friberg A T, Turunen J 2016 Prog. Opt. 61 71

    [26]

    Melnik M V, Tcypkin A N, Kozlov S A 2018 Rom. J. Phys. 63 203

    [27]

    Zeylikovich I, Alfano R R 2003 Appl. Phys. B 77 265

    [28]

    Su Y B, Fang S B, Gao Y T, Zhao K, Chang G Q, Wei Z Y 2021 Appl. Phys. Lett. 118 261102Google Scholar

    [29]

    Wang P, Huang J, Xie S, Troles J, Russell J 2021 Photon. Res. 9 630Google Scholar

    [30]

    Zhu X, Zhao D, Zhang B, Yang L Y, Yang Y K, Liu S, Hou J 2023 Opt. Express 31 13182Google Scholar

    [31]

    Chang K Y, Chen G Y, Yu H C, Liu J M 2023 Opt. Commun. 533 129281Google Scholar

    [32]

    冯柳宾, 鲁欣, 刘晓龙, 葛绪雷, 马景龙, 李玉同, 陈黎明, 董全力, 王伟民, 滕浩, 王兆华, 盛政明, 魏志义, 贺端威, 张杰 2021 物理学报 61 174206

    Feng L B, Lu X, Liu X L, Ge X L, Ma J L, Li Y T, Chen L M, D Q L, Wang W M, Teng H, Wang Z H, Sheng Z M, Wei Z Y, He D W, Zhang J 2021 Acta Phys. Sin. 61 174206

  • [1] Xiao Yang-Yang, Wang Xiao-Fang. Effect of magnetic fields on the contrast of Kα emission generated by hot electrons. Acta Physica Sinica, doi: 10.7498/aps.74.20250144
    [2] LIAN Zhenzhong, HONG Qianqian, JIA Lijuan, MENG Jianqiao, SHU Chuancun. Measurement analysis of coherence in femtosecond laser-induced molecular alignment. Acta Physica Sinica, doi: 10.7498/aps.74.20241400
    [3] Li Yan-Ling, Mei Hai-Ping, Ren Yi-Chong, Zhang Jun-Xin, Tao Zhi-Wei, Abdukirim Azezigul, Liu Shi-Wei. Simulation of spatial coherence of laser echo light field from random rough surface in turbulent atmosphere. Acta Physica Sinica, doi: 10.7498/aps.71.20212420
    [4] Zhou Bo-Rui, Tan Yi-Dong, Shen Xue-Ju, Zhu Kai-Yi, Bao Li-Ping. Mechanism of contrast-enhancement in ultrasound-modulated laser feedback imaging with ultrasonicmicrobubble contrast agent. Acta Physica Sinica, doi: 10.7498/aps.68.20190770
    [5] Fan Qi-Meng, Yin Cheng-You. Super-resolution imaging of high-contrast target in elctromagnetic inverse scattering. Acta Physica Sinica, doi: 10.7498/aps.67.20180266
    [6] Tian Heng, Zhu Jing-Ping, Zhang Yun-Yao, Guan Jin-Ge, Hou Xun. Image contrast for different imaging methods in turbid media. Acta Physica Sinica, doi: 10.7498/aps.65.084201
    [7] Man Tian-Long, Wan Yu-Hong, Jiang Zhu-Qing, Wang Da-Yong, Tao Shi-Quan. Measurement of the spatial coherence of extended light source by twin beams-interference method. Acta Physica Sinica, doi: 10.7498/aps.62.214203
    [8] Li Yu-Ye, Jia Bing, Gu Hua-Guang. Multiple spatial coherence resonances induced by white gaussian noise in excitable network composed of Morris-Lecar model with class Ⅱ excitability. Acta Physica Sinica, doi: 10.7498/aps.61.070504
    [9] Meng Xiang-Fu, Wang Chen, An Hong-Hai, Jia Guo, Fang Zhi-Heng, Zhou Hua-Zhen, Sun Jin-Ren, Wang Wei, Fu Si-Zu. Research of coherence between driven-laser beams and its influence on backscatter. Acta Physica Sinica, doi: 10.7498/aps.61.185202
    [10] Wang Hua, Yan Shuai, Yan Fen, Jiang Sheng, Mao Cheng-Wen, Liang Dong-Xu, Yang Ke, Li Ai-Guo, Yu Xiao-Han. Research on spatial coherence of undulator source in Shanghai synchrotron radiation facility. Acta Physica Sinica, doi: 10.7498/aps.61.144102
    [11] Chang Hong, Yang Fu-Gui, Dong Lei, Wang An-Ting, Xie Jian-Ping, Ming Hai. Effect of structure and size of laser spot on speckle contrast in laser scanning display. Acta Physica Sinica, doi: 10.7498/aps.59.4634
    [12] Xiao Rui, Hou Jing, Jiang Zong-Fu. Effect of partial coherence laser arrays on far-field output properties. Acta Physica Sinica, doi: 10.7498/aps.57.853
    [13] Chen Xiao-Wen, Tang Ming-Yue, Ji Xiao-Ling. The influence of atmospheric turbulence on the spatial correlation property of partially coherent Hermite-Gaussian beams. Acta Physica Sinica, doi: 10.7498/aps.57.2607
    [14] Han Jun-He, Yao Bao-Li, Gao Peng, Chen Li-Ju, Wang Ying-Li, Lei Ming. Influence of auxiliary violet light on holographic diffraction efficiency under different recording intensities in bacteriorhodopsin film. Acta Physica Sinica, doi: 10.7498/aps.57.2199
    [15] Wang Hua, Wang Xiang-Zhao, Zeng Ai-Jun, Yang Kun. Effect of atmospheric turbulence on the spatial coherence of quasi-monochromatic Gaussian Schell-model beams propagating in the slant path. Acta Physica Sinica, doi: 10.7498/aps.57.634
    [16] Xiao Rui, Zhou Pu, Hou Jing, Jiang Zong-Fu, Liu Ming. Effect of partial coherence of laser has on the irradiance distribution of coherent combining of fiber laser arrays in far field. Acta Physica Sinica, doi: 10.7498/aps.56.819
    [17] Yi Xu-Nong, Hu Wei, Luo Hai-Lu, Zhu Jing. Study of small-scale self-focusing in laser beams by high-order contrast. Acta Physica Sinica, doi: 10.7498/aps.54.749
    [18] YIN JIAN-PING, ZHU SHI-QUN, GAO WEI-JIAN, WANG YU-ZHU. . Acta Physica Sinica, doi: 10.7498/aps.44.72
    [19] NI GUANG-JIONG, CHEN SU-QING, ZHOU GU-SHENG. THE COHERENCE OF RADIATION AND INCREASE IN ENTROPY. Acta Physica Sinica, doi: 10.7498/aps.31.585
    [20] WANG CHIH-CHIANG. COHERENCE PROPERTIES OF ELECTROMAGNETIC RADIATION. Acta Physica Sinica, doi: 10.7498/aps.19.320
Metrics
  • Abstract views:  340
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  23 March 2025
  • Accepted Date:  07 April 2025
  • Available Online:  17 April 2025

/

返回文章
返回