Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of magnetic field on contrast of Kα emission generated by superthermal electrons

XIAO Yangyang WANG Xiaofang

Citation:

Effect of magnetic field on contrast of Kα emission generated by superthermal electrons

XIAO Yangyang, WANG Xiaofang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The interaction of a high-intensity laser with a solid target generates a large number of superthermal electrons. When these superthermal electrons are transported in the target material, X-rays, including Kα line and bremsstrahlung emissions are produced. The contrast of Kα line emission, i.e. the intensity of Kα line relative to the intensity of bremsstrahlung continua around the Kα line, depends on the anisotropy of the bremsstrahlung emission and is related to the energy and transportation of the superthermal electrons. In the past, some researchers used axial or annular magnetic fields to collimate superthermal electrons, but whether these magnetic fields can enhance the contrast of Kα emission has not been studied. In the present work, the effect of an axially uniform magnetic field or an annular magnetic field with a Gaussian distribution on the contrast of Cu Kα emission is investigated by Monte Carlo simulations. The simulation results and analysis show that the axially uniform magnetic field cannot strengthen the anisotropy of the bremsstrahlung emission, so it cannot enhance the contrast of Kα emission efficiently. For the annular magnetic field with a Gaussian distribution, when an electron beam with a Boltzmann energy distribution is incident, due to the weak anisotropy of bremsstrahlung emission by low-energy electrons in the electron beam, the increase of Kα emission contrast is small. When an electron beam with a Boltzmann energy distribution, in which the low-energy part is cut off, or a mono-energetic electron beam is incident, the annular magnetic field with a Gaussian distribution significantly enhances the contrast of Kα emission in the back direction of the electron beam incidence. For an incident electron beam with an energy value in a range of 200–1000 keV, an annular magnetic field with a Gaussian distribution and a peak value of approximately 100 T is optimal for enhancing the contrast of Kα emission. Considering the existing experiments on generating annular magnetic fields and non-Boltzmann energy distribution superthermal electrons, it is possible to generate higher contrast Kα emissions with the enhancement of magnetic field in future experiments.
  • 图 1  模拟中坐标系和角度定义

    Figure 1.  The coordinate and detection angle defined in the simulation.

    图 2  $ {T_{\text{h}}} = 600{\text{ keV}} $的玻尔兹曼能量分布电子束入射产生的X射线谱

    Figure 2.  X-ray spectra produced by Boltzmann distribution electron incidence with $ {T_{\text{h}}} = 600{\text{ keV}} $.

    图 3  靶中无磁场(WOB)或存在$ {{\boldsymbol{B}}_{\boldsymbol{z}}} = 100{\text{ T}} $时的Kα辐射对比度 (a) $ {T_{\text{h}}} = 600{\text{ keV}} $的玻尔兹曼能量分布电子束入射; (b) $ {E_{\text{k}}} = 600{\text{ keV}} $的单能电子束入射

    Figure 3.  Contrasts of Kα emission without a magnetic field (WOB) or with $ {{\boldsymbol{B}}_{\boldsymbol{z}}} = 100{\text{ T}} $ in the target: (a) Boltzmann distribution electron incidence with $ {T_{\text{h}}} = 600{\text{ keV}} $; (b) mono-energetic electron incidence with $ {E_{\text{k}}} = 600{\text{ keV}} $.

    图 4  电子在z方向匀强磁场中运动示意图

    Figure 4.  Schematic diagram of the motion of an electron in a z-direction uniform magnetic field.

    图 5  (a) 高斯分布的环形磁场的示意图; (b) 环形磁场在x-y平面内的分布; (c) 磁场准直电子的示意图

    Figure 5.  (a) Schematic diagram of an annular magnetic field with a Gaussian distribution; (b) distribution of the annular magnetic field in the x-y plane; (c) schematic diagram of the collimation of electrons by the magnetic field.

    图 6  玻尔兹曼能量分布电子束入射的模拟结果 (a) $ {T_{\text{h}}} = 200{\text{ keV}} $和$ 600{\text{ keV}} $时不同方向的$ {C_{{{{\mathrm{K}}\alpha }}}} $; (b) $ \theta = {135^ \circ } $的$ {C_{{{{\mathrm{K}}\alpha }}}} $与$ {T_{\text{h}}} $的关系

    Figure 6.  Simulation results of Boltzmann distribution electron incidences: (a) $ {C_{{{{\mathrm{K}}\alpha }}}} $ in different directions for $ {T_{\text{h}}} = 200{\text{ keV}} $ and 600 keV, respectively; (b) the dependence of $ {C_{{{{\mathrm{K}}\alpha }}}} $ at $ \theta = {135^ \circ } $ on $ {T_{\text{h}}} $.

    图 7  单能电子束入射时的模拟结果 (a) $ {E_{\text{k}}} = 200{\text{ keV}} $和$ 600{\text{ keV}} $不同方向的$ {C_{{{{\mathrm{K}}\alpha }}}} $; (b) $ \theta = {135^ \circ } $的$ {C_{{{{\mathrm{K}}\alpha }}}} $和$ {R_{{\text{in}}}} $与$ {E_{\text{k}}} $的关系

    Figure 7.  Simulation results of mono-energetic electron incidences: (a) $ {C_{{{{\mathrm{K}}\alpha }}}} $ of $ {E_{\text{k}}} = 200{\text{ keV}} $ and $ 600{\text{ keV}} $ in different directions; (b) dependence of $ {C_{{{{\mathrm{K}}\alpha }}}} $ and $ {R_{{\text{in}}}} $at $ \theta = {135^ \circ } $ on $ {E_{\text{k}}} $.

    图 8  $ {T_{\text{h}}} = 600{\text{ keV}} $的玻尔兹曼能量分布的电子中能量大于500 keV的电子入射时不同探测角度的$ {C_{{{{\mathrm{K}}\alpha }}}} $

    Figure 8.  $ {C_{{{{\mathrm{K}}\alpha }}}} $ at different detection angles for Boltzmann distribution electron incidence with $ {T_{\text{h}}} = 600{\text{ keV}} $ and electron energy higher than 500 keV.

    图 9  单能电子束入射时, 无磁场和存在磁场$ {{\boldsymbol{B}}_\phi } $条件下的模拟结果 (a) $ {E_{\text{k}}} = 600{\text{ keV}} $时靶后表面的电子数密度分布; (b) 电子数密度分布的半高全宽与$ {E_{\text{k}}} $的关系

    Figure 9.  Simulation results for mono-energetic electron incidence without a magnetic field and with $ {{\boldsymbol{B}}_\phi } $: (a) Distribution of the electron number density on the rear surface of the target for $ {E_{\text{k}}} = 600{\text{ keV}} $; (b) dependence of full width at half maximum of the distribution of the electron number density on $ {E_{\text{k}}} $.

    图 10  存在不同$ {B_0} $和$ {\sigma _{\text{f}}} $的环形磁场时$ \theta = {135^ \circ } $的Kα辐射的对比度$ {C_{{{{\mathrm{K}}\alpha }}}} $ (a) $ {\sigma _{\text{f}}} = 20{\text{ μm}} $时$ {C_{{{{\mathrm{K}}\alpha }}}} $与$ {B_0} $的关系; (b) $ {B_0} = 100{\text{ T}} $时$ {C_{{{{\mathrm{K}}\alpha }}}} $与$ {\sigma _{\text{f}}} $的关系

    Figure 10.  Contrasts of Kα emission at $ \theta = {135^ \circ } $ versus $ {B_0} $ and $ {\sigma _{\text{f}}} $ of annular magnetic fields: (a) The dependence of $ {C_{{{{\mathrm{K}}\alpha }}}} $ on $ {B_0} $ with $ {\sigma _{\text{f}}} = 20{\text{ μm}} $; (b) the dependence of $ {C_{{{{\mathrm{K}}\alpha }}}} $ on $ {\sigma _{\text{f}}} $ with $ {B_0} = 100{\text{ T}} $.

    图 11  不同环形磁场下的电子轨迹

    Figure 11.  Trajectories of electrons in different annular magnetic fields.

    图 12  能量为600 keV的单能电子束入射不同厚度的铜平面靶时$ \theta = {135^ \circ } $的Kα辐射对比度

    Figure 12.  Contrasts of Kα emission at $ \theta = {135^ \circ } $ for 600 keV mono-energetic electron incidence versus planar target thickness.

  • [1]

    温贤伦, 洪伟, 谷渝秋, 何颖玲, 唐翠明, 王剑 2007 强激光与粒子束 19 1373

    Wen X L, Hong W, Gu Y Q, He Y L, Tang C M, Wang J 2007 High Power Laser and Particle Beams 19 1373

    [2]

    Gambari M, Clady R, Stolidi A, Utéza O, Sentis M, Ferré A 2020 Sci. Rep. 10 6766Google Scholar

    [3]

    Ivanov K A, Gavrilin I M, Volkov R V, Gavrilov S A, Savel Ev A B 2021 Laser Phys. Lett. 18 075401Google Scholar

    [4]

    Sawada H, Lee S, Shiroto T, Nagatomo H, Arikawa Y, Nishimura H, Ueda T, Shigemori K, Sunahara A, Ohnishi N, Beg F N, Theobald W, Pérez F, Patel P K, Fujioka S 2016 Appl. Phys. Lett. 108 254101Google Scholar

    [5]

    Park H S, Chambers D M, Chung H K, Clarke R J, Eagleton R, Giraldez E, Goldsack T, Heathcote R, Izumi N, Key M H, King J A, Koch J A, Landen O L, Nikroo A, Patel P K, Price D F, Remington B A, Robey H F, Snavely R A, Steinman D A, Stephens R B, Stoeckl C, Storm M, Tabak M, Theobald W, Town R P J, Wickersham J E, Zhang B B 2006 Phys. Plasmas 13 056309Google Scholar

    [6]

    Kritcher A L, Neumayer P, Castor J, Döppner T, Falcone R W, Landen O L, Lee H J, Lee R W, Holst B, Redmer R, Morse E C, Ng A, Pollaine S, Price D, Glenzer S H 2009 Phys. Plasmas 16 056308Google Scholar

    [7]

    Westover B, MacPhee A, Chen C, Hey D, Ma T, Maddox B, Park H S, Remington B, Beg F N 2010 Phys. Plasmas 17 082703Google Scholar

    [8]

    Chen L M, Kando M, Xu M H, Li Y T, Koga J, Chen M, Xu H, Yuan X H, Dong Q L, Sheng Z M, Bulanov S V, Kato Y, Zhang J, Tajima T 2008 Phys. Rev. Lett. 100 045004Google Scholar

    [9]

    蔡涓涓, 黄文忠, 谷渝秋, 董克攻, 吴玉迟, 朱斌, 王晓方 2011 强激光与粒子束 23 1082Google Scholar

    Cai J J, Huang W Z, Gu Y Q, Dong K G, Wu Y C, Zhu B, Wang X F 2011 High Power Laser Part. Beams 23 1082Google Scholar

    [10]

    Azamoum Y, Tcheremiskine V, Clady R, Ferré A, Charmasson L, Utéza O, Sentis M 2018 Sci. Rep. 8 4119Google Scholar

    [11]

    Tillman C, Mercer I, Svanberg S, Herrlin K 1996 J. Opt. Soc. Am. B 13 209Google Scholar

    [12]

    陆中伟, 王晓方 2019 物理学报 68 035202Google Scholar

    Lu Z W, Wang X F 2019 Acta Phys. Sin. 68 035202Google Scholar

    [13]

    Lévy A, Dorchies F, Audebert P, Chalupský J, Hájková V, Juha L, Kaempfer T, Sinn H, Uschmann I, Vyšín L, Gaudin J 2010 Appl. Phys. Lett. 96 151114Google Scholar

    [14]

    Wang R R, An H H, Xie Z Y, Wang W 2018 Phys. Plasmas 25 053303Google Scholar

    [15]

    王瑞荣, 陈伟民, 董佳钦, 熊俊, 傅思祖 2008 光学学报 28 1220Google Scholar

    Wang R R, Chen W M, Dong J Q, Xiong J, Fu S Z 2008 Acta Opt. Sin. 28 1220Google Scholar

    [16]

    Zhao J C, Zheng J H, Cao L H, Zhao Z Q, Li S, Gu Y Q, Liu J 2016 Phys. Plasmas 23 093102Google Scholar

    [17]

    Yoshioka A, Yamaguchi Y, Tamura K, Shimizu R 2004 Surf. Interface Anal. 36 1417Google Scholar

    [18]

    徐妙华, 梁天骄, 张杰 2006 物理学报 55 2357Google Scholar

    Xu M H, Liang T J, Zhang J 2006 Acta Phys. Sin. 55 2357Google Scholar

    [19]

    Xiao Y Y, Wang X F 2024 Phys. Plasmas 31 073302Google Scholar

    [20]

    蔡达锋, 王利娟, 王剑, 郑志坚 2009 原子与分子物理学报 26 535

    Cai D F, Wang L J, Wang J, Zheng Z J 2009 J. At. Mol. Phys. 26 535

    [21]

    Bailly-Grandvaux M, Santos J J, Bellei C, Forestier-Colleoni P, Fujioka S, Giuffrida L, Honrubia J J, Batani D, Bouillaud R, Chevrot M, Cross J E, Crowston R, Dorard S, Dubois J L, Ehret M, Gregori G, Hulin S, Kojima S, Loyez E, Marquès J R, Morace A, Nicolaï P, Roth M, Sakata S, Schaumann G, Serres F, Servel J, Tikhonchuk V T, Woolsey N, Zhang Z 2018 Nat. Commun. 9 102Google Scholar

    [22]

    Malko S, Vaisseau X, Perez F, Batani D, Curcio A, Ehret M, Honrubia J, Jakubowska K, Morace A, Santos J J, Volpe L 2019 Sci. Rep. 9 14061Google Scholar

    [23]

    Xu H, Yang X H, Sheng Z M, McKenna P, Ma Y Y, Zhuo H B, Yin Y, Ren C, Zhang J 2019 Nucl. Fusion 59 126024Google Scholar

    [24]

    Reich Ch, Gibbon P, Uschmann I, Förster E 2000 Phys. Rev. Lett. 84 4846Google Scholar

    [25]

    Šmíd M, Renner O, Colaitis A, Tikhonchuk V T, Schlegel T, Rosmej F B 2019 Nat. Commun. 10 4212Google Scholar

    [26]

    Khattak F Y, Garcia Saiz E, Gibbon P, Karmakar A, Dzelzainis T W J, Lewis C L S, Robinson A P L, Zepf M, Riley D 2012 Eur. Phys. J. D 66 298Google Scholar

    [27]

    Salvat F, Fernández-Varea J, Sempau J 2008 PENELOPE-2008, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Issy-les-Moulineau: OECD/NEA Data Bank

    [28]

    Li B Y, Tian C, Zhang Z M, Zhang F, Shan L Q, Zhang B, Zhou W M, Zhang B H, Gu Y Q 2016 Phys. Plasmas 23 093121Google Scholar

    [29]

    Green J S, Ovchinnikov V M, Evans R G, Akli K U, Azechi H, Beg F N, Bellei C, Freeman R R, Habara H, Heathcote R, Key M H, King J A, Lancaster K L, Lopes N C, Ma T, MacKinnon A J, Markey K, McPhee A, Najmudin Z, Nilson P, Onofrei R, Stephens R, Takeda K, Tanaka K A, Theobald W, Tanimoto T, Waugh J, Van Woerkom L, Woolsey N C, Zepf M, Davies J R, Norreys P A 2008 Phys. Rev. Lett. 100 015003Google Scholar

    [30]

    Salzmann D, Reich C, Uschmann I, Förster E, Gibbon P 2002 Phys. Rev. E 65 036402Google Scholar

    [31]

    Toncian T, Wang C, McCary E, Meadows A, Arefiev A V, Blakeney J, Serratto K, Kuk D, Chester C, Roycroft R, Gao L, Fu H, Yan X Q, Schreiber J, Pomerantz I, Bernstein A, Quevedo H, Dyer G, Ditmire T, Hegelich B M 2016 Matter Radiat. Extremes 1 82Google Scholar

    [32]

    Roet D, Ceballos C, Van Espen P 2006 Nucl. Instrum. Methods Phys. Res. B 251 317Google Scholar

    [33]

    Braenzel J, Andreev A A, Abicht F, Ehrentraut L, Platonov K, Schnurer M 2017 Phys. Rev. Lett. 118 014801Google Scholar

  • [1] YAN Tong, LIU Aihua, JIAO Liguang. Electronic screening effects during bremsstrahlung of carbon atoms and ions. Acta Physica Sinica, doi: 10.7498/aps.74.20241638
    [2] Li Bo, Li Ling, Zhu Jing-Jun, Lin Wei-Ping, An Zhu. Measurements of K-shell ionization cross sections and L-shell X-ray production cross sections of Al, Ti, Cu, Ag, and Au thin films by low-energy electron impact. Acta Physica Sinica, doi: 10.7498/aps.71.20220162
    [3] Xun Zhi-Peng, Hao Da-Peng. Monte Carlo simulation of bond percolation on square lattice with complex neighborhoods. Acta Physica Sinica, doi: 10.7498/aps.71.20211757
    [4] Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo. Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method. Acta Physica Sinica, doi: 10.7498/aps.71.20212041
    [5] Tian Zi-Ning, Ouyang Xiao-Ping, Chen Wei, Wang Xue-Mei, Deng Ning, Liu Wen-Biao, Tian Yan-Jie. Source boundary parameter of Monte Carlo inversion technology based on virtual source principle. Acta Physica Sinica, doi: 10.7498/aps.68.20191095
    [6] Qian Yu-Rui, Wu Ying, Yang Xia-Tong, Chen Qiu-Xiang, You Jun-Dong, Wang Bao-Yi, Kuang Peng, Zhang Peng. Experimental study on Ti K shell ionization cross sections induced by 8-9.5 keV positrons. Acta Physica Sinica, doi: 10.7498/aps.67.20180666
    [7] Hua Yu-Chao, Dong Yuan, Cao Bing-Yang. Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm. Acta Physica Sinica, doi: 10.7498/aps.62.244401
    [8] Lan Mu, Xiang Gang, Gu Gang-Xu, Zhang Xi. A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface. Acta Physica Sinica, doi: 10.7498/aps.61.228101
    [9] Fan Xiao-Hui, Zhao Xing-Yu, Wang Li-Na, Zhang Li-Li, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng. Monte Carlo simulations of the relaxation dynamics of the spatial relaxation modes in the molecule-string model. Acta Physica Sinica, doi: 10.7498/aps.60.126401
    [10] Chen Jie, Lu Xi-Wen. A method for magnetic field prediction caused by naval vessels using magnetic charge distribution. Acta Physica Sinica, doi: 10.7498/aps.58.3839
    [11] Wang Jin, Hua Jie, Ding Gui-Ying, Chang Xi, Zhang Gang, Jiang Wen-Long. Effects of magnetic field on organic electroluminescence. Acta Physica Sinica, doi: 10.7498/aps.58.7272
    [12] Zhang Wen. Micro-gravity effect in a magnetic field. Acta Physica Sinica, doi: 10.7498/aps.58.2405
    [13] Chen Shan, Wu Qing-Yun, Chen Zhi-Gao, Xu Gui-Gui, Huang Zhi-Gao. Ferromagnetism of C doped ZnO: first-principles calculation and Monte Carlo simulation. Acta Physica Sinica, doi: 10.7498/aps.58.2011
    [14] Xiong Kai-Guo, Feng Guo-Lin, Hu Jing-Guo, Wan Shi-Quan, Yang Jie. Monte Carlo simulation of the record-breaking high temperature events of climate changes. Acta Physica Sinica, doi: 10.7498/aps.58.2843
    [15] Gao Fei, Ryoko Yamada, Mitsuo Watanabe, Liu Hua-Feng. Use of Monte Carlo simulations for the scatter events analysis of PET scanners. Acta Physica Sinica, doi: 10.7498/aps.58.3584
    [16] Xu Lan-Qing, Li Hui, Xiao Zheng-Ying. Discussion on backscattered photon numbers and their scattering events in a turbid media. Acta Physica Sinica, doi: 10.7498/aps.57.6030
    [17] Zhang Zhu-Hua, Guo Wan-Lin, Guo Yu-Feng. The effects of axial magnetic field on electronic properties of carbon nanotubes. Acta Physica Sinica, doi: 10.7498/aps.55.6526
    [18] He Qing-Fang, Xu Zheng, Liu De-Ang, Xu Xu-Rong. Monte Carlo simulation of the effect of impact ionization in thin-film electroluminescent devices. Acta Physica Sinica, doi: 10.7498/aps.55.1997
    [19] Wang Zhi-Jun, Dong Li-Fang, Shang Yong. Monte Carlo simulation of optical emission spectra in electron assisted chemical vapor deposition of diamond. Acta Physica Sinica, doi: 10.7498/aps.54.880
    [20] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, doi: 10.7498/aps.53.1116
Metrics
  • Abstract views:  371
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2025
  • Accepted Date:  17 April 2025
  • Available Online:  29 April 2025

/

返回文章
返回