-
X-ray photon correlation spectroscopy (XPCS) is important for probing mesoscale material dynamics by using synchrotron radiation. However, the complex influences of parameters such as light source properties, beam propagation, and detector response on speckle dynamics are hard to directly observe. In this study, a Monte Carlo-based full optical path numerical model is developed to systematically analyze these effects, thereby aiding experimental optimization. A simulation framework integrating Brownian dynamics, beam coherence, and detector response is constructed to replicate the entire photon emission-to-detection process. A Fraunhofer diffraction-based speckle generation algorithm reproduces speckle fluctuations via atomic position evolution and phase modulation. Feasibility is validated via Siegert relation fitting ($\beta, \gamma$), $\varGamma-q^2$ linearity ($R^2=0.99904$), and consistency with the Einstein-Stokes law. Key parameter sensitivity analysis reveals some points below. 1) Optimal aperture matching ($r/\sigma=1$) balances coherence and photon flux; 2) Mechanical vibrations with $\Delta x/s=1500$ induce periodic oscillations in $g_2(q,\tau)$, masking intrinsic relaxation, which is validated by a 24.658-Hz pump experiment; 3) Poisson noise and intensity fluctuations degrade low-light signal-to-noise ratio, with Poisson noise causing discrete errors and classical noise inducing baseline shifts. This framework clarifies how source properties, optical parameters, and noise affect experimental results, providing guidance for XPCS optimization and a foundation for extending its applications to high-precision coherent scattering scenarios. -
Keywords:
- X-ray photon correlation spectroscopy /
- Monte Carlo simulation /
- speckle dynamics /
- full optical path simulation
-
表 1 不同距离处放置机械泵对样品台振动振幅的影响
Table 1. Effect of mechanical pump at different distances on sample stage vibration amplitude
Distance/m Horizontal/nm Frequency/Hz Steady 723 24.378 2 1538 24.326 1 2129 24.240 0.5 2785 24.220 Steady 755 24.166 -
[1] Martinelli A, Baldi G, Dallari F, Rufflé B, Zontone F, Monaco G 2020 Philos. Mag. 100 2636
Google Scholar
[2] Zhong W, Liu F, Wang C 2021 J. Phys. Condens. Matter 33 313001
Google Scholar
[3] Jo W, Stern S, Westermeier F, Rysov R, Riepp M, Schmehr J, Lange J, Becker J, Sprung M, Laurus T, Graafsma H, Lokteva I, Gruebel G, Roseker W 2023 Opt. Express 31 3315
Google Scholar
[4] Sandy A R, Zhang Q, Lurio L B 2018 Annu. Rev. Mater. Res. 48 167
Google Scholar
[5] Sutton M, Lhermitte J R, Ehrburger-Dolle F, Livet F 2021 Phys. Rev. Res. 3 013119
Google Scholar
[6] Mohanty S, Cooper C B, Wang H, Liang M, Cai W 2022 Modell. Simul. Mater. Sci. Eng. 30 075004
Google Scholar
[7] Rudd R E, Briggs G, Sutton A, Medeiros-Ribeiro G, Williams R S 2003 Phys. Rev. Lett. 90 146101
Google Scholar
[8] Miao J, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342
Google Scholar
[9] Tessarini S 2022 Monte Carlo simulation of phase sensitive X-ray imaging. Ph. D. Dissertation, ETH Zurich
[10] Sheyfer D, Zhang Q, Lal J, Loeffler T, Dufresne E M, Sandy A R, Narayanan S, Sankaranarayanan S K R S, Szczygiel R, Maj P, Soderholm L, Antonio M R, Stephenson G B 2020 Phys. Rev. Lett. 125 125504
Google Scholar
[11] Sheyfer D, Zheng H, Krogstad M, Thompson C, You H, Eastman J A, Liu Y, Wang B X, Ye Z G, Rosenkranz S, Phelan D, Dufresne E M, Stephenson G B, Cao Y 2024 J. Synchrotron Radiat. 31 55
Google Scholar
[12] Chen Y, Han W, Bin G, Wu S, Morgan S P, Sun S 2024 Sci. Rep. 14 27665
Google Scholar
[13] Hu Z, Donatelli J J 2024 Phys. Rev. B 110 214305
Google Scholar
[14] Semeraro E F, Möller J, Narayanan T 2018 J. Appl. Crystallogr. 51 706
Google Scholar
[15] Narayanan T, Sztucki M, Van Vaerenbergh P, Léonardon J, Gorini J, Claustre L, Sever F, Morse J, Boesecke P 2018 J. Appl. Crystallogr. 51 1511
Google Scholar
[16] Andrews R N, Narayanan S, Zhang F, Kuzmenko I, Ilavsky J 2018 J. Appl. Crystallogr. 51 35
Google Scholar
[17] Lehmkühler F, Dallari F, Jain A, Sikorski M, Moller J, Frenzel L, Lokteva I, Mills G, Walther M, Sinn H, Schulz F, Dartsch M, Markmann V, Bean R, Kim Y, Vagovic P, Madsen A, Mancuso A P, Grubel G 2020 Proc. Natl. Acad. Sci. U.S.A. 117 24110
Google Scholar
[18] Berne B J, Pecora R 2000 Dynamic light scattering: with applications to chemistry, biology, and physics (Courier Corporation
[19] Patterson G D, Lindsey C P 1981 Macromolecules 14 83
Google Scholar
[20] Khan F, Narayanan S, Sersted R, Schwarz N, Sandy A 2018 J. Synchrotron Radiat. 25 1135
Google Scholar
[21] Arango M T, Zhang Y, Zhao C, Li R, Doerk G, Nykypanchuk D, Chen-Wiegart Y C K, Fluerasu A, Wiegart L 2020 Mater. Today Phys. 14 100220
Google Scholar
[22] Ruta B, Evenson Z, Hechler S, Stolpe M, Pineda E, Gallino I, Busch R 2015 Phys. Rev. Lett. 115 175701
Google Scholar
[23] Katzav E, Schwartz M 2004 Phys. Rev. E 69 052603
Google Scholar
[24] Einstein A 1905 Ann. Phys. 322 549
Google Scholar
[25] Duhr S, Braun D 2006 Phys. Rev. Lett. 96 168301
Google Scholar
[26] Zhou Z, Zhang M, Cui C, Wei L, Li S, Guo Z, Xu Y, Tian F, Li X, Jiang H, Tai R 2025 Phys. Scr. 100 075115
Google Scholar
Metrics
- Abstract views: 302
- PDF Downloads: 0
- Cited By: 0