Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Underwater continuous variable quantum key distribution scheme based on imperfect measurement basis choice

Wu Xiao-Dong Huang Duan

Citation:

Underwater continuous variable quantum key distribution scheme based on imperfect measurement basis choice

Wu Xiao-Dong, Huang Duan
cstr: 32037.14.aps.73.20240804
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Measurement basis choice is an essential step in the underwater continuous variable quantum key distribution system based on homodyne detection. However, in practice, finite bandwidth of analog-to-digital converter on the receiver’s side is limited, which can result in defects in the measurement basis choice. That is, the receiver cannot accurately modulate the corresponding phase angle on the phase modulator for measurement basis choice to implement homodyne detection. The imperfect measurement basis choice will introduce extra excess noise, which affects the security of underwater continuous variable quantum key distribution scheme. To solve this problem, we propose an underwater continuous variable quantum key distribution scheme based on imperfect measurement basis choice, and analyze the influence of imperfect measurement basis choice on the performance of underwater continuous variable quantum key distribution system in detail. The research results indicate that the extra excess noise introduced by imperfect measurement basis choice can reduce the secret key rate and maximum transmission distance of the underwater Gaussian modulated quantum key distribution, thus reducing the security of the system. In order to achieve reliable underwater continuous variable quantum key distribution, we quantitatively analyze the extra excess noise introduced by choosing the imperfect measurement basis and obtain its security limit. Besides, we also consider the influence of different seawater depths on the security limit of the proposed scheme, effectively solving the security risks caused by the imperfect measurement basis choice. Furthermore, for the proposed scheme, we consider not only its asymptotic security case but also its composable security case, and the performance curves obtained in the latter are tighter than that achieved in the former. The proposed scheme aims to promote the practical process of underwater continuous variable quantum key distribution system and provide theoretical guidance for accurately evaluating the water channel parameters in underwater communication of global quantum communication networks.
      Corresponding author: Huang Duan, duanhuang@csu.edu.cn
    • Funds: Project supported by the Fujian Provincial Natural Science Foundation of China (Grant No. 2023J01940) and the Scientific Research Initiation Fund of Fujian University of Technology, China (Grant No. GY-Z22042).
    [1]

    Zeng Z, Fu S, Zhang H, Dong Y, Cheng J 2017 IEEE Commun. Surv. Tutorials 19 204Google Scholar

    [2]

    Hanson F, Radic S 2008 Appl. Opt. 47 277Google Scholar

    [3]

    Kong M, Wang J, Chen Y, Ali T, Sarwar R, Qiu Y, Wang S, Han J, Xu J 2017 Opt. Express 25 21509Google Scholar

    [4]

    Wang J, Lu C, Li S, Xu Z 2019 Opt. Express 27 12171Google Scholar

    [5]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [6]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [7]

    Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801Google Scholar

    [8]

    Li W, Zhang L, Tan H, Lu Y, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B, Li Q, Liu Y, Zhang Q, Peng C Z, You L, Xu F, Pan J W 2023 Nat. Photonics 17 416Google Scholar

    [9]

    Zahidy M, Mikkelsen M T, Müller R, Lio B D, Krehbiel M, Wang Y, Bart N, Wieck A D, Ludwig A, Galili M, Forchhammer S, Lodahl P, Oxenløwe L K, Bacco D, Midolo L 2024 npj Quantum Inf. 10 2Google Scholar

    [10]

    Zhu H T, Huang Y, Liu H, Zeng P, Zou M, Dai Y, Tang S, Li H, You L, Wang Z, Chen Y A, Ma X, Chen T Y, Pan J W 2023 Phys. Rev. Lett. 130 030801Google Scholar

    [11]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [12]

    Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar

    [13]

    Zhang Y, Bian Y, Li Z, Yu S, Guo H 2024 Appl. Phys. Rev. 11 011318Google Scholar

    [14]

    吴晓东, 黄端 2023 物理学报 72 050303Google Scholar

    Wu X D, Huang D 2023 Acta Phys. Sin. 72 050303Google Scholar

    [15]

    Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar

    [16]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [17]

    Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504Google Scholar

    [18]

    Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar

    [19]

    Leverrier A, García-Patrón R, Renner R, Cerf N J 2013 Phys. Rev. Lett. 110 030502Google Scholar

    [20]

    Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar

    [21]

    Leverrier A 2017 Phys. Rev. Lett. 118 200501Google Scholar

    [22]

    Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238Google Scholar

    [23]

    Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 378Google Scholar

    [24]

    Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511Google Scholar

    [25]

    Huang D, Huang P, Lin D , Zeng G 2016 Sci. Rep. 6 19201Google Scholar

    [26]

    Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13 839Google Scholar

    [27]

    Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [28]

    Williams B P, Qi B, Alshowkan M, Evans P G, Peters N A 2024 Phys. Rev. Appl. 21 014056Google Scholar

    [29]

    Hajomer A A E, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474Google Scholar

    [30]

    Grice W P, Qi B 2019 Phys. Rev. A 100 022339Google Scholar

    [31]

    吴晓东, 黄端 2024 物理学报 73 020304Google Scholar

    Wu X D, Huang D 2024 Acta Phys. Sin. 73 020304Google Scholar

    [32]

    Zhao W, Shi R, Wu X, Wang F, Ruan X 2023 Opt. Express 31 17003Google Scholar

    [33]

    Shi P, Zhao S C, Gu Y J, Li W D 2015 J. Opt. Soc. Am. A: 32 349Google Scholar

    [34]

    Zhao S C, Han X H, Xiao Y, Shen Y, Gu Y J, Li W D 2019 J. Opt. Soc. Am. A: 36 883Google Scholar

    [35]

    Ji L, Gao J, Yang A L, Feng Z, Lin X F, Li Z G, Jin X M 2017 Opt. Express 25 19795Google Scholar

    [36]

    Feng Z, Li S, Xu Z 2021 Opt. Express 29 8725Google Scholar

    [37]

    Zhao S, Li W, Shen Y, Yu Y H, Han X H, Zeng H, Cai M, Qian T, Wang S, Wang Z, Xiao Y, Gu Y 2019 Appl. Opt. 58 3902Google Scholar

    [38]

    Hu C Q, Yan Z Q, Gao J, Li Z M, Zhou H, Dou J P, Jin X M 2021 Phys. Rev. Appl. 15 024060Google Scholar

    [39]

    Li D D, Shen Q, Chen W, Li Y, Han X, Yang K X, Xu Y, Lin J, Wang C Z, Yong H L, Liu W Y, Cao Y, Yin J, Liao S K, Ren J G 2019 Opt. Commun. 452 220Google Scholar

    [40]

    Guo Y, Xie C L, Huang P, Li J W, Zhang L, Huang D, Zeng G H 2018 Phys. Rev. A 97 052326Google Scholar

    [41]

    Xie C L, Guo Y, Wang Y J, Huang D, Zhang L 2018 Chin. Phys. Lett. 35 090302Google Scholar

    [42]

    Ruan X, Zhang H, Zhao W, Wang X, Li X, Guo Y 2019 Appl. Sci. 9 4956Google Scholar

    [43]

    Mao Y, Wu X, Huang W, Liao Q, Deng H, Wang Y, Guo Y 2020 Appl. Sci. 10 5744Google Scholar

    [44]

    Xiang Y, Wang Y, Ruan X, Zuo Z, Guo Y 2021 Phys. Scr. 96 065103Google Scholar

    [45]

    Tang X, Chen Z, Zhao Z, Kumar R, Dong Y 2022 Opt. Express 30 32428Google Scholar

    [46]

    Liu W, Peng J, Qi J, Cao Z, He C 2020 Laser Phys. Lett. 17 055203Google Scholar

    [47]

    Gilerson A, Zhou J, Hlaing S, Ioannou I, Schalles J, Gross B, Moshary F, Ahmed S 2007 Opt. Express 15 15702Google Scholar

    [48]

    Gariano J, Djordjevic I B 2019 Opt. Express 27 3055Google Scholar

    [49]

    Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 114014Google Scholar

    [50]

    Prieur L, Sathyendranath S 1981 Limnol. Oceanogr. 26 671Google Scholar

    [51]

    Uitz J, Claustre H, Morel A, Hooker S B 2006 J. Geophys. Res. Oceans. 111 C08005Google Scholar

  • 图 1  基于非理想测量基选择的水下CV-QKD制备-测量方案图. RNG为随机数发生器, AM为振幅调制器, PM为相位调制器, MBC表示测量基选择, $ {T_{\text{s}}} $表示海水信道的透过率, $ {\xi _{\text{s}}} $表示海水信道过噪声

    Figure 1.  Prepare-and-measure version of underwater continuous variable quantum key distribution scheme based on imperfect measurement basis choice. RNG, random number generator; AM, amplitude modulator; PM, phase modulator; MBC, measurement basis choice; $ {T_{\text{s}}} $, the transmittance of seawater channel; $ {\xi _{\text{s}}} $, the excess noise of seawater channel.

    图 2  基于非理想测量基选择的水下CV-QKD纠缠模型原理图(QM为量子存储器)

    Figure 2.  Schematic diagram of the entanglement-based model of underwater continuous variable quantum key distribution scheme based on imperfect basis choice (QM, quantum memory).

    图 3  零差探测器的探测原理图(LO为本振光, PM为相位调制器, BS为分束器, PD1(2)为光电探测器)

    Figure 3.  Principle of balanced homodyne detector. LO, local oscillator; PM, phase modulator; BS, beam splitter; PD1(2), photodetector.

    图 4  所提出方案的渐近密钥率与传输距离在不同参数$ \mu $下的关系

    Figure 4.  Relationship between the asymptotic secret key rate of the proposed scheme and the transmission distance under different parameters $ \mu $.

    图 5  所提出方案的渐近密钥率与协商效率在不同参数$ \mu $下的关系

    Figure 5.  Relationship between the asymptotic secret key rate of the proposed scheme and the reconciliation efficiency under different parameters $ \mu $.

    图 6  所提出方案的密钥率与参数$ \mu $在不同海水深度$ h $下的关系

    Figure 6.  Relationship between the asymptotic secret key rate of the proposed scheme and the parameter $ \mu $ under different seawater depths $ h $.

    图 7  非理想测量基选择情况下所提出的方案与基于BL模型的水下CV-QKD方案性能比较

    Figure 7.  Performance comparison between the proposed scheme and the underwater CV-QKD scheme based on BL model under imperfect measurement basis choice.

    图 8  所提出方案的组合密钥率与用于交换的有效脉冲总数在不同参数$ \mu $下的关系

    Figure 8.  Relationship between the composable secret key rate of the proposed scheme and the number of exchanged signals under different parameters $ \mu $.

    图 9  非理想测量基选择情况下所提出的方案与基于BL模型的水下CV-QKD方案组合密钥率比较

    Figure 9.  Composable secret key rate comparison between the proposed scheme and the underwater CV-QKD scheme based on BL model under imperfect measurement basis choice.

  • [1]

    Zeng Z, Fu S, Zhang H, Dong Y, Cheng J 2017 IEEE Commun. Surv. Tutorials 19 204Google Scholar

    [2]

    Hanson F, Radic S 2008 Appl. Opt. 47 277Google Scholar

    [3]

    Kong M, Wang J, Chen Y, Ali T, Sarwar R, Qiu Y, Wang S, Han J, Xu J 2017 Opt. Express 25 21509Google Scholar

    [4]

    Wang J, Lu C, Li S, Xu Z 2019 Opt. Express 27 12171Google Scholar

    [5]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [6]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [7]

    Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801Google Scholar

    [8]

    Li W, Zhang L, Tan H, Lu Y, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B, Li Q, Liu Y, Zhang Q, Peng C Z, You L, Xu F, Pan J W 2023 Nat. Photonics 17 416Google Scholar

    [9]

    Zahidy M, Mikkelsen M T, Müller R, Lio B D, Krehbiel M, Wang Y, Bart N, Wieck A D, Ludwig A, Galili M, Forchhammer S, Lodahl P, Oxenløwe L K, Bacco D, Midolo L 2024 npj Quantum Inf. 10 2Google Scholar

    [10]

    Zhu H T, Huang Y, Liu H, Zeng P, Zou M, Dai Y, Tang S, Li H, You L, Wang Z, Chen Y A, Ma X, Chen T Y, Pan J W 2023 Phys. Rev. Lett. 130 030801Google Scholar

    [11]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [12]

    Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar

    [13]

    Zhang Y, Bian Y, Li Z, Yu S, Guo H 2024 Appl. Phys. Rev. 11 011318Google Scholar

    [14]

    吴晓东, 黄端 2023 物理学报 72 050303Google Scholar

    Wu X D, Huang D 2023 Acta Phys. Sin. 72 050303Google Scholar

    [15]

    Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar

    [16]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [17]

    Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504Google Scholar

    [18]

    Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar

    [19]

    Leverrier A, García-Patrón R, Renner R, Cerf N J 2013 Phys. Rev. Lett. 110 030502Google Scholar

    [20]

    Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar

    [21]

    Leverrier A 2017 Phys. Rev. Lett. 118 200501Google Scholar

    [22]

    Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238Google Scholar

    [23]

    Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 378Google Scholar

    [24]

    Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511Google Scholar

    [25]

    Huang D, Huang P, Lin D , Zeng G 2016 Sci. Rep. 6 19201Google Scholar

    [26]

    Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13 839Google Scholar

    [27]

    Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [28]

    Williams B P, Qi B, Alshowkan M, Evans P G, Peters N A 2024 Phys. Rev. Appl. 21 014056Google Scholar

    [29]

    Hajomer A A E, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474Google Scholar

    [30]

    Grice W P, Qi B 2019 Phys. Rev. A 100 022339Google Scholar

    [31]

    吴晓东, 黄端 2024 物理学报 73 020304Google Scholar

    Wu X D, Huang D 2024 Acta Phys. Sin. 73 020304Google Scholar

    [32]

    Zhao W, Shi R, Wu X, Wang F, Ruan X 2023 Opt. Express 31 17003Google Scholar

    [33]

    Shi P, Zhao S C, Gu Y J, Li W D 2015 J. Opt. Soc. Am. A: 32 349Google Scholar

    [34]

    Zhao S C, Han X H, Xiao Y, Shen Y, Gu Y J, Li W D 2019 J. Opt. Soc. Am. A: 36 883Google Scholar

    [35]

    Ji L, Gao J, Yang A L, Feng Z, Lin X F, Li Z G, Jin X M 2017 Opt. Express 25 19795Google Scholar

    [36]

    Feng Z, Li S, Xu Z 2021 Opt. Express 29 8725Google Scholar

    [37]

    Zhao S, Li W, Shen Y, Yu Y H, Han X H, Zeng H, Cai M, Qian T, Wang S, Wang Z, Xiao Y, Gu Y 2019 Appl. Opt. 58 3902Google Scholar

    [38]

    Hu C Q, Yan Z Q, Gao J, Li Z M, Zhou H, Dou J P, Jin X M 2021 Phys. Rev. Appl. 15 024060Google Scholar

    [39]

    Li D D, Shen Q, Chen W, Li Y, Han X, Yang K X, Xu Y, Lin J, Wang C Z, Yong H L, Liu W Y, Cao Y, Yin J, Liao S K, Ren J G 2019 Opt. Commun. 452 220Google Scholar

    [40]

    Guo Y, Xie C L, Huang P, Li J W, Zhang L, Huang D, Zeng G H 2018 Phys. Rev. A 97 052326Google Scholar

    [41]

    Xie C L, Guo Y, Wang Y J, Huang D, Zhang L 2018 Chin. Phys. Lett. 35 090302Google Scholar

    [42]

    Ruan X, Zhang H, Zhao W, Wang X, Li X, Guo Y 2019 Appl. Sci. 9 4956Google Scholar

    [43]

    Mao Y, Wu X, Huang W, Liao Q, Deng H, Wang Y, Guo Y 2020 Appl. Sci. 10 5744Google Scholar

    [44]

    Xiang Y, Wang Y, Ruan X, Zuo Z, Guo Y 2021 Phys. Scr. 96 065103Google Scholar

    [45]

    Tang X, Chen Z, Zhao Z, Kumar R, Dong Y 2022 Opt. Express 30 32428Google Scholar

    [46]

    Liu W, Peng J, Qi J, Cao Z, He C 2020 Laser Phys. Lett. 17 055203Google Scholar

    [47]

    Gilerson A, Zhou J, Hlaing S, Ioannou I, Schalles J, Gross B, Moshary F, Ahmed S 2007 Opt. Express 15 15702Google Scholar

    [48]

    Gariano J, Djordjevic I B 2019 Opt. Express 27 3055Google Scholar

    [49]

    Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 114014Google Scholar

    [50]

    Prieur L, Sathyendranath S 1981 Limnol. Oceanogr. 26 671Google Scholar

    [51]

    Uitz J, Claustre H, Morel A, Hooker S B 2006 J. Geophys. Res. Oceans. 111 C08005Google Scholar

  • [1] YIN Jingwei, YIN Jiarui, CAO Ran, HUANG Chunlong, LI Li. A target depth estimation method in shallow water based on matched normal mode intensity. Acta Physica Sinica, 2025, 74(14): . doi: 10.7498/aps.74.20250419
    [2] WANG Pu, BAI Zengliang, CHANG Liwei. Influence of source intensity errors in unidimensional Gaussian modulation continuous-variable quantum key distribution. Acta Physica Sinica, 2025, 74(9): 090302. doi: 10.7498/aps.74.20250025
    [3] SUN Xin, GUO Junjie, CHEN Yujie, CHENG Jin, LIU Ao, LIU Wenbo, YIN Peng, CHEN Lanjian, WU Tianyi, DONG Chen. Feasibility analysis study of discrete modulation continuous variable quantum key distribution for spatial channels. Acta Physica Sinica, 2025, 74(9): 090303. doi: 10.7498/aps.74.20241682
    [4] He Ying, Wang Tian-Yi, Li Ying-Ying. Composable security analysis of linear optics cloning machine improved discretized polar modulation continuous-variable quantum key distribution. Acta Physica Sinica, 2024, 73(23): 230303. doi: 10.7498/aps.73.20241094
    [5] Wu Xiao-Dong, Huang Duan. Practical continuous variable quantum secret sharing scheme based on non-ideal quantum state preparation. Acta Physica Sinica, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [6] Zhang Guang-Wei, Bai Jian-Dong, Jie Qi, Jin Jing-Jing, Zhang Yong-Mei, Liu Wen-Yuan. Research on dynamic polarization control in continuous variable quantum key distribution systems. Acta Physica Sinica, 2024, 73(6): 060301. doi: 10.7498/aps.73.20231890
    [7] Zhang Yun-Jie, Wang Xu-Yang, Zhang Yu, Wang Ning, Jia Yan-Xiang, Shi Yu-Qi, Lu Zhen-Guo, Zou Jun, Li Yong-Min. Four-state discrete modulation continuous variable quantum key distribution based on hardware synchronization. Acta Physica Sinica, 2024, 73(6): 060302. doi: 10.7498/aps.73.20231769
    [8] Liao Qin, Liu Hai-Jie, Wang Zheng, Zhu Ling-Jin. Gaussian-modulated continuous-variable quantum key distribution based on untrusted entanglement source. Acta Physica Sinica, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [9] Wu Xiao-Dong, Huang Duan. Plug-and-play discrete modulation continuous variable quantum key distribution based on non-Gaussian state-discrimination detection. Acta Physica Sinica, 2023, 72(5): 050303. doi: 10.7498/aps.72.20222253
    [10] Wu Xiao-Dong, Huang Duan, Huang Peng, Guo Ying. Discrete modulation continuous-variable measurement-device-independent quantum key distribution scheme based on realistic detector compensation. Acta Physica Sinica, 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [11] Mao Yi-Yu, Wang Yi-Jun, Guo Ying, Mao Yu-Hao, Huang Wen-Ti. Continuous-variable quantum key distribution based on peak-compensation. Acta Physica Sinica, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [12] Ye Wei, Guo Ying, Xia Ying, Zhong Hai, Zhang Huan, Ding Jian-Zhi, Hu Li-Yun. Discrete modulation continuous-variable quantum key distribution based on quantum catalysis. Acta Physica Sinica, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [13] Cao Zheng-Wen, Zhang Shuang-Hao, Feng Xiao-Yi, Zhao Guang, Chai Geng, Li Dong-Wei. The design and realization of continuous-variable quantum key distribution system based on real-time shot noise variance monitoring. Acta Physica Sinica, 2017, 66(2): 020301. doi: 10.7498/aps.66.020301
    [14] Liu Jian-Qiang, Wang Xu-Yang, Bai Zeng-Liang, Li Yong-Min. Highprecision auto-balance of the time-domain pulsed homodyne detector. Acta Physica Sinica, 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [15] Ren Xiu-Yun, Tian Zhao-Shuo, Yang Min, Sun Lan-Jun, Fu Shi-You. Theoretical study on measuring underwater temperature based on coherent Rayleigh scattering. Acta Physica Sinica, 2014, 63(8): 083302. doi: 10.7498/aps.63.083302
    [16] Li Lun, Wu Xiong-Bin. Multiple sites HFSWR ocean shallow water depth and current inversion. Acta Physica Sinica, 2014, 63(11): 118404. doi: 10.7498/aps.63.118404
    [17] Xu Bing-Jie, Tang Chun-Ming, Chen Hui, Zhang Wen-Zheng, Zhu Fu-Chen. Improving the maximum transmission distance of coutinuous variable no-switching QKD protocol. Acta Physica Sinica, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [18] Shen Yong, Zou Hong-Xin. Security bound of continuous-variable quantum key distribution with discrete modulation. Acta Physica Sinica, 2010, 59(3): 1473-1480. doi: 10.7498/aps.59.1473
    [19] Zhu Chang-Hua, Chen Nan, Pei Chang-Xing, Quan Dong-Xiao, Yi Yun-Hui. Adaptive continuous variable quantum key distribution based on channel estimation. Acta Physica Sinica, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [20] Chen Jin-Jian, Han Zheng-Fu, Zhao Yi-Bo, Gui You-Zhen, Guo Guang-Can. The effect of balanced homodyne detection on continuous variable quantum key distribution. Acta Physica Sinica, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
Metrics
  • Abstract views:  1545
  • PDF Downloads:  65
  • Cited By: 0
Publishing process
  • Received Date:  06 June 2024
  • Accepted Date:  27 August 2024
  • Available Online:  19 September 2024
  • Published Online:  05 November 2024

/

返回文章
返回