Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The Influence of Source Intensity Errors in Unidimensional Gaussian Modulation Continuous-Variable Quantum Key Distribution

Wang Pu Bai Zeng-Liang Chang Li-Wei

Citation:

The Influence of Source Intensity Errors in Unidimensional Gaussian Modulation Continuous-Variable Quantum Key Distribution

Wang Pu, Bai Zeng-Liang, Chang Li-Wei
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Unidimensional Gaussian modulation continuous-variable quantum key distribution (UD CV-QKD) uses only one modulator to encode information, which has the advantages of low implementation cost and low random number consumption, and is attractive for the future construction of miniaturized and low-cost large-scale quantum communication networks. However, in the actual application of the protocol, the intensity fluctuation of the source pulsed light, device defects, and external environmental interference maybe lead to the generation of source intensity errors, which affect the realistic security and performance of the protocol. To address this problem, this paper deeply studies the security and performance of UD CV-QKD under source intensity errors. The influence mechanism of source intensity errors on the protocol parameter estimation process is analyzed. To enable the protocol to operate stably under various realistic conditions and ensure communication security, this paper makes three practical assumptions about the sender’s abilities, and proposes corresponding data optimization processing schemes for these assumptions to reduce the negative impact of source intensity errors. Additionally, both source errors and finite-size effect are comprehensively considered to ensure the realistic security of the system. The simulation results indicate that source intensity errors cannot be neglected and the maximum transmission distance of the system will be reduced by approximately 20 kilometers for significant intensity fluctuations. Therefore, in the practical implementation of the protocol, the impact of source intensity errors must be fully considered, and the corresponding countermeasures should be taken to reduce or eliminate these errors. This study provides theoretical guidance for the secure implementation of UD CV-QKD in real-world environments.
  • [1]

    Bennett C H, Brassard G IEEE international Conference on Computers, Systems and Signal Processing IEEE, 01/01 p175-179

    [2]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [3]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595

    [4]

    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptology 5 3

    [5]

    Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214

    [6]

    Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002

    [7]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shamsul Shaari J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012

    [8]

    Portmann C, Renner R 2022 Rev. Mod. Phys. 94 025008

    [9]

    Diamanti E, Leverrier A 2015 Entropy 17 6072

    [10]

    Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S, Peng K C 2017 Chin. Phys. B 26 040303

    [11]

    Guo H, Li Z Y, Yu S, Zhang Y C 2021 Fundam. Res. 1 96

    [12]

    Zhang Y C, Bian Y M, Li Z Y, Yu S, Guo H 2024 Appl. Phys. Rev. 11 011318

    [13]

    Lin J, Upadhyaya T, Lütkenhaus N 2019 Phys. Rev. X 9 041064

    [14]

    Du S N, Tian Y, Li Y M 2020 Phys. Rev. Appl. 14 024013

    [15]

    Li L, Huang P, Wang T, Zeng G H 2021 Phys. Rev. A 103 032611

    [16]

    Liao Q, Wang Z, Liu H J, Mao Y Y, Fu X Q 2022 Phys. Rev. A 106 022607

    [17]

    Liu J Q, Cao Y X, Wang P, Liu S S, Lu Z G, Wang X Y, Li Y M 2022 Opt. Express 30 27912

    [18]

    Wu X D, Huang D, Huang P, Guo Y 2022 Acta Phys. Sin. 71 240304 (in Chinese) [吴晓东, 黄端, 黄鹏, 郭迎 2022 物理学报71 240304]

    [19]

    Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301 (in Chinese) [廖骎, 柳海杰, 王铮, 朱凌瑾 2023 物理学报72 040301]

    [20]

    Huang L Y, Wang X Y, Chen Z Y, Sun Y H, Yu S, Guo H 2023 Phys. Rev. Appl. 19 014023

    [21]

    Zapatero V, van Leent T, Arnon-Friedman R, Liu W Z, Zhang Q, Weinfurter H, Curty M 2023 npj Quantum Inform. 9 10

    [22]

    Xu Y H, Wang T, Liao X J, Zhou Y M, Huang P, Zeng G H 2024 Photonics Res. 12 2549

    [23]

    Fletcher A I, Harney C, Ghalaii M, Papanastasiou P, Mountogiannakis A, Spedalieri G, Hajomer A A E, Gehring T, Pirandola S 2025 arXiv:2501.09818 [quant-ph]

    [24]

    Wang P, Wang X Y, Li Y M 2019 Phys. Rev. A 99 042309

    [25]

    Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502

    [26]

    Dequal D, Trigo Vidarte L, Roman Rodriguez V, Vallone G, Villoresi P, Leverrier A, Diamanti E 2021 npj Quantum Inform. 7 3

    [27]

    Jeong S, Jung H, Ha J 2022 npj Quantum Inform. 8 6

    [28]

    Ma L, Yang J, Zhang T, Shao Y, Liu J L, Luo Y J, Wang H, Huang W, Fan F, Zhou C, Zhang L L, Zhang S, Zhang Y C, Li Y, Xu B J 2023 Sci. China Inf. Sci. 66 180507

    [29]

    Pi Y D, Wang H, Pan Y, Shao Y, Li Y, Yang J, Zhang Y C, Huang W, Xu B J 2023 Opt. Lett. 48 1766

    [30]

    Wang P, Zhang Y, Lu Z G, Wang X Y, Li Y M 2023 New J. Phys. 25 023019

    [31]

    Yang S S, Yan Z L, Yang H Z, Lu Q, Lu Z G, Cheng L Y, Miao X Y, Li Y M 2023 EPJ Quantum Technol. 10 40

    [32]

    Chen Z Y, Wang X Y, Yu S, Li Z Y, Guo H 2023 npj Quantum Inform. 9 28

    [33]

    Hajomer A A E, Derkach I, Jain N, Chin H-M, Andersen U L, Gehring T 2024 Sci. Adv.10 eadi9474

    [34]

    Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13 839

    [35]

    Qi B, Gunther H, Evans P G, Williams B P, Camacho R M, Peters N A 2020 Phys. Rev. Appl.13 054065

    [36]

    Milovančev D, Vokić N, Laudenbach F, Pacher C, Hübel H, Schrenk B 2021 J. Lightw. Technol. 39 3445

    [37]

    Tian Y, Wang P, Liu J Q, Du S N, Liu W Y, Lu Z G, Wang X Y, Li Y M 2022 Optica 9 492

    [38]

    Du S N, Wang P, Liu J Q, Tian Y, Li Y M 2023 Photonics Res. 11 463

    [39]

    Wang X Y, Chen Z Y, Li Z H, Qi D K, Yu S, Guo H 2023 Opt. Lett. 48 3327

    [40]

    Zhang M Q, Huang P, Wang P, Wei S R, Zeng G H 2023 Opt. Lett. 48 1184

    [41]

    Hajomer A A E, Bruynsteen C, Derkach I, Jain N, Bomhals A, Bastiaens S, Andersen U L, Yin X, Gehring T 2024 Optica 11 1197

    [42]

    Hajomer A A E, Derkach I, Filip R, Andersen U L, C. Usenko V, Gehring T 2024 Light Sci. Appl. 13 291

    [43]

    Ji F Y, Huang P, Wang T, Jiang X Q, Zeng G H 2024 Photonics Res. 12 1485

    [44]

    Usenko V C, Grosshans F 2015 Phys. Rev. A 92 062337

    [45]

    Wang P, Wang X Y, Li J Q, Li Y M 2017 Opt. Express 25 27995

    [46]

    Wang X Y, Liu W Y, Wang P, Li Y M 2017 Phys. Rev. A 95 062330

    [47]

    Jacobsen C S, Madsen L S, Usenko V C, Filip R, Andersen U L 2018 npj Quantum Inform.4 32

    [48]

    Liao Q, Guo Y, Xie C L, Huang D, Huang P, Zeng G H 2018 Quantum Inf. Process. 17 113

    [49]

    Usenko V C 2018 Phys. Rev. A 98 032321

    [50]

    Wang P, Wang X Y, Li Y M 2018 Entropy 20 157

    [51]

    Wang X Y, Cao Y X, Wang P, Li Y M 2018 Quantum Inf. Process. 17 344

    [52]

    Bai D Y, Huang P, Zhu Y Q, Ma H X, Xiao T L, Wang T, Zeng G H 2019 Quantum Inf. Process. 19 53

    [53]

    Shen S Y, Dai M W, Zheng X T, Sun Q Y, Guo G C, Han Z F 2019 Phys. Rev. A 100 012325

    [54]

    Zhang H, Ruan X C, Wu X D, Zhang L, Guo Y, Huang D 2019 Quantum Inf. Process. 18 128

    [55]

    Zhao W, Shi R H, Feng Y Y, Huang D 2020 Phys. Lett. A 384 126061

    [56]

    Zhou K L, Chen Z Y, Guo Y, Liao Q 2020 Phys. Lett. A 384 126074

    [57]

    Bian Y M, Huang L Y, Zhang Y C 2021 Entropy 23 294

    [58]

    Hu J K, Liao Q, Mao Y, Guo Y 2021 Quantum Inf. Process. 20 31

    [59]

    Zhao W, Shi R H, Wu X M, Wang F Q, Ruan X C 2023 Opt. Express 31 17003

    [60]

    Li Y Y, Wang T Y 2024 J. Phys. B: At. Mol. Opt. Phys. 57 145502

    [61]

    Zhao R B, Zhou J, Shi R H, Shi J J 2024 Ann. Phys. 536 2300401

    [62]

    Zheng Y, Huang P, Huang A Q, Peng J Y, Zeng G H 2019 Opt. Express 27 27369

    [63]

    Zheng Y, Huang P, Huang A Q, Peng J Y, Zeng G H 2019 Phys. Rev. A 100 012313

    [64]

    Wang P, Wang X Y, Li Y M 2020 Phys. Rev. A 102 022609

    [65]

    Li C Y, Qian L, Lo H K 2021 npj Quantum Inform. 7 150

    [66]

    Serafini A, Paris M G A, Illuminati F, Siena S D 2005 J. Opt. B 7 R19

  • [1] SUN Xin, GUO Junjie, CHEN Yujie, CHENG Jin, LIU Ao, LIU Wenbo, YIN Peng, CHEN Lanjian, WU Tianyi, DONG Chen. Feasibility analysis study of discrete modulation continuous variable quantum key distribution for spatial channels. Acta Physica Sinica, doi: 10.7498/aps.74.20241682
    [2] He Ying, Wang TianYi, Li YingYing. Composable security analysis of linear optics cloning machine enhanced discretized polar modulation continuous-variable quantum key distribution. Acta Physica Sinica, doi: 10.7498/aps.20241094
    [3] He Ying, Wang Tian-Yi, Li Ying-Ying. Composable security analysis of linear optics cloning machine improved discretized polar modulation continuous-variable quantum key distribution. Acta Physica Sinica, doi: 10.7498/aps.73.20241094
    [4] Zhang Guang-Wei, Bai Jian-Dong, Jie Qi, Jin Jing-Jing, Zhang Yong-Mei, Liu Wen-Yuan. Research on dynamic polarization control in continuous variable quantum key distribution systems. Acta Physica Sinica, doi: 10.7498/aps.73.20231890
    [5] Wu Xiao-Dong, Huang Duan. Underwater continuous variable quantum key distribution scheme based on imperfect measurement basis choice. Acta Physica Sinica, doi: 10.7498/aps.73.20240804
    [6] Zhang Yun-Jie, Wang Xu-Yang, Zhang Yu, Wang Ning, Jia Yan-Xiang, Shi Yu-Qi, Lu Zhen-Guo, Zou Jun, Li Yong-Min. Four-state discrete modulation continuous variable quantum key distribution based on hardware synchronization. Acta Physica Sinica, doi: 10.7498/aps.73.20231769
    [7] Wu Xiao-Dong, Huang Duan. Plug-and-play discrete modulation continuous variable quantum key distribution based on non-Gaussian state-discrimination detection. Acta Physica Sinica, doi: 10.7498/aps.72.20222253
    [8] Liao Qin, Liu Hai-Jie, Wang Zheng, Zhu Ling-Jin. Gaussian-modulated continuous-variable quantum key distribution based on untrusted entanglement source. Acta Physica Sinica, doi: 10.7498/aps.72.20221902
    [9] Wu Xiao-Dong, Huang Duan, Huang Peng, Guo Ying. Discrete modulation continuous-variable measurement-device-independent quantum key distribution scheme based on realistic detector compensation. Acta Physica Sinica, doi: 10.7498/aps.71.20221072
    [10] Ma Xiao, Sun Ming-Shuo, Liu Jing-Yang, Ding Hua-Jian, Wang Qin. State preparation error tolerant quantum key distribution protocol based on heralded single photon source. Acta Physica Sinica, doi: 10.7498/aps.71.20211456
    [11] Mao Yi-Yu, Wang Yi-Jun, Guo Ying, Mao Yu-Hao, Huang Wen-Ti. Continuous-variable quantum key distribution based on peak-compensation. Acta Physica Sinica, doi: 10.7498/aps.70.20202073
    [12] Ye Wei, Guo Ying, Xia Ying, Zhong Hai, Zhang Huan, Ding Jian-Zhi, Hu Li-Yun. Discrete modulation continuous-variable quantum key distribution based on quantum catalysis. Acta Physica Sinica, doi: 10.7498/aps.69.20191689
    [13] Cao Zheng-Wen, Zhang Shuang-Hao, Feng Xiao-Yi, Zhao Guang, Chai Geng, Li Dong-Wei. The design and realization of continuous-variable quantum key distribution system based on real-time shot noise variance monitoring. Acta Physica Sinica, doi: 10.7498/aps.66.020301
    [14] Liu Jian-Qiang, Wang Xu-Yang, Bai Zeng-Liang, Li Yong-Min. Highprecision auto-balance of the time-domain pulsed homodyne detector. Acta Physica Sinica, doi: 10.7498/aps.65.100303
    [15] Xu Bing-Jie, Tang Chun-Ming, Chen Hui, Zhang Wen-Zheng, Zhu Fu-Chen. Improving the maximum transmission distance of coutinuous variable no-switching QKD protocol. Acta Physica Sinica, doi: 10.7498/aps.62.070301
    [16] Shen Yong, Zou Hong-Xin. Security bound of continuous-variable quantum key distribution with discrete modulation. Acta Physica Sinica, doi: 10.7498/aps.59.1473
    [17] Zhu Chang-Hua, Chen Nan, Pei Chang-Xing, Quan Dong-Xiao, Yi Yun-Hui. Adaptive continuous variable quantum key distribution based on channel estimation. Acta Physica Sinica, doi: 10.7498/aps.58.2184
    [18] Wang Kai, Pei Wen-Jiang, Zou Liu-Hua, He Zhen-Ya. Cryptanalysis of multiple chaotic systems based public key encryption technique. Acta Physica Sinica, doi: 10.7498/aps.55.6243
    [19] Zhang Quan, Tang Chao-Jing, Zhang Shen-Qiang. . Acta Physica Sinica, doi: 10.7498/aps.51.1439
    [20] Yang Li, Wu Ling-An, Liu Song-Hao. . Acta Physica Sinica, doi: 10.7498/aps.51.2446
Metrics
  • Abstract views:  243
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Available Online:  25 February 2025

/

返回文章
返回