Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tripartite all-optical quantum steering swapping based on four-wave mixing process

LI Xiaoling ZHAI Shuqin LIU Kui

Citation:

Tripartite all-optical quantum steering swapping based on four-wave mixing process

LI Xiaoling, ZHAI Shuqin, LIU Kui
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Quantum resource swapping is crucial for establishing quantum networks and achieving efficient quantum communication and it allows quantum resources to be shared and allocated between nodes in a quantum network, thereby enhancing network flexibility and quantum information processing capabilities. Quantum steering is a special type of quantum correlation that exhibits unique asymmetry compared with quantum entanglement and Bell nonlocality. This asymmetry enables quantum steering swapping to establish one-way or two-way asymmetry quantum steering between two independent optical modes, which is crucial for constructing asymmetric quantum networks. In this work, an all-optical quantum steering swapping scheme is proposed based on tripartite entangled state and bipartite entangled state. The all-optical scheme does not involve optic-electro conversion nor electro-optic conversion, but utilizes a low-noise, high-bandwidth four-wave mixing process to achieve the function of Bell state measurement in traditional schemes without measurement. After the steering swapping operation, the two originally independent entangled states without direct interaction generate quantum steering. In this work, two swapping schemes in the four-wave mixing processes, combined with linear beam splitter and nonlinear beam splitter, are investigated. By analyzing the steering characteristics of the output modes, both schemes exhibit varieties of multipartite steering types. By adjusting the transmissivity of the linear beam splitter and the gain of the four-wave mixing process, the steering relationship can be flexibly manipulated to achieve one-way and two-way asymmetry steering. This provides new possibilities for one-way quantum communication and quantum information processing, making the utilization of quantum resources more efficient and controllable. Through in-depth analysis of the steering characteristics after swapping, it is found that compared with the linear beam splitter scheme, the nonlinear beam splitter scheme not only significantly improves the capability of quantum steering, but also allows for more flexible manipulation of monogamy relations of quantum steering. By optimizing the gain parameters of the nonlinear beam splitter, the precise manipulation of the monogamy relations can be achieved over a wider range. This not only expands broader application prospects for information processing and quantum communication in quantum networks, but also lays an important foundation for building efficient and secure quantum information processing systems.Optomicrowave entanglement and optomagnonic entanglement havesignificant applications in constructing hybrid quantum network andoptical controlling magnons. In this paper, a theoretical scheme ofenhancing optomicrowave and optomagnonic entanglements is proposed, based on a coherent-feedback-assisted optomagnomechanical (OMM)system. By inserting a thin membrane between the input-output mirrorand the high-reflective-mirror-attached the YIG bridge, the systemconsists of four kinds of modes: optical mode, microwave mode, mechanical mode, and magnon mode. In this system, optical andmicrowave modes interact with each other through the mechanical mode, while the magnon mode couples with the microwave mode throughmagnetic-dipole interaction. The variations of the optomicrowave andoptomagnonic entanglements with different detunings, coupling strengths, and decay rates are thoroughly investigated. Furthermore, the optimalcoherent feedback parameters and the physical mechanisms of generatingand transferring entanglement are analyzed, and the entanglementenhancements by adding the feedback loop are discussed. The resultsshow that both optomicrowave and optomagnonic entanglements can besignificantly and stably enhanced over a wide range of parameters, withcoherent feedback. Our findings provide a theoretical basis for connectingdifferent nodes (different physical systems) to construct hybrid quantumnetworks, flexibly controlling the quantum properties of magnons, andpreparing macroscopic quantum states.
  • 图 1  三组份全光量子导引交换方案示意图 (a) 利用线性分束器方案; (b) 利用非线性分束器方案

    Figure 1.  Schematic of all-optical quantum steering swapping schemes: (a) Using a linear BS; (b) using a nonlinear BS.

    图 2  在不同透射率${T_1}$和增益${G_1}$下, 两模间的量子导引参数随${G_2}$的变化 (a) ${T_1} = 0.2$时, 模${\hat A_1}$和${\hat C_1}$之间的导引; (b) ${T_1} = 0.5$时, 模${\hat A_1}$和${\hat C_1}$之间的导引; (c) ${T_1} = 0.2$时, 模${\hat B_1}$和${\hat C_1}$之间的导引; (d) ${T_1} = 0.5$时, 模${\hat B_1}$和${\hat C_1}$之间的导引

    Figure 2.  Steering parameter between any two modes versus ${G_2}$ under different transmissivity ${T_1}$and gain ${G_1}$: (a) The steering between ${\hat A_1}$ and ${\hat C_1}$ $\left( {{T_1} = 0.2} \right)$; (b) the steering between ${\hat A_1}$ and ${\hat C_1}$$\left( {{T_1} = 0.5} \right)$; (c) the steering between ${\hat B_1}$ and ${\hat C_1}$$\left( {{T_1} = 0.2} \right)$; (d) the steering between ${\hat B_1}$and ${\hat C_1}$$\left( {{T_1} = 0.5} \right)$.

    图 3  任意两模间量子导引参数随透射率${T_1}$的变化$ ({G}_{1}={G}_{2}=2) $

    Figure 3.  Quantum steering parameter between any two modes versus ${T_1}$$ ({G}_{1}={G}_{2}=2) $.

    图 4  一个模式与另外两个模式之间的量子导引参数随透射率${T_1}$的变化$ ({G}_{1}={G}_{2}=2) $ (a) 模式$ {\hat A_1} $和${\hat B_1}$分别作为导引方和被导引方; (b) 模式$ {\hat C_1} $作为导引方和被导引方

    Figure 4.  Quantum steering parameter between one and the other two modes versus ${T_1}$$ ({G}_{1}={G}_{2}=2) $: (a) Modes $ {\hat A_1} $ and ${\hat B_1}$ serve as steering party and steered party, respectively; (b) mode $ {\hat C_1} $ serves as steering party and steered party.

    图 5  在不同增益${G_1}$下, 两模间的量子导引参数随增益${G_2}$的变化$\left( {{G_4} = 2.5} \right)$ (a) 模${\hat A_2}$和${\hat C_2}$之间的导引; (b) 模${\hat B_2}$和${\hat C_2}$之间的导引

    Figure 5.  Steering parameter between any two modes versus ${G_2}$ under different gain ${G_1}$$\left( {{G_4} = 2.5} \right)$: (a) The steering between ${\hat A_2}$ and ${\hat C_2}$; (b) the steering between ${\hat B_2}$ and ${\hat C_2}$.

    图 6  任意两模间量子导引参数随增益$ {G_4} $的变化$ ({G}_{1}= $$ {G}_{2}=2) $

    Figure 6.  Quantum steering parameter between any two modes versus $ {G_4} $$ ({G}_{1}={G}_{2}=2) $.

    图 7  一个模式与另外两个模式之间的量子导引参数随增益${G_4}$的变化$ ({G}_{1}={G}_{2}=2) $: (a) 模式$ {\hat A_2} $和${\hat B_2}$分别作为导引方和被导引方; (b) 模式$ {\hat C_2} $作为导引方和被导引方

    Figure 7.  Quantum steering parameter between one and the other two modes versus ${G_4}$$ ({G}_{1}={G}_{2}=2) $: (a) Modes $ {\hat A_2} $ and ${\hat B_2}$ serve as steering party and steered party, respectively; (b) mode $ {\hat C_2} $ serves as steering party and steered party.

    图 8  单配性关系的操控$ ({G}_{2}=2) $ (a) 线性分束器方案; (b) 非线性分束器方案

    Figure 8.  Manipulation of monogamy relationships $ ({G}_{2}=2) $: (a) Using a linear BS; (b) using a nonlinear BS.

  • [1]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar

    [2]

    Schrödinger E 1935 Math. Proc. Camb. Phil. Soc. 31 555

    [3]

    Wiseman H M, Jones S J, Doherty A C 2007 Phys. Rev. Lett. 98 140402Google Scholar

    [4]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [5]

    Schrödinger E 1935 Naturwissenschaften 23 807Google Scholar

    [6]

    Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014 Rev. Mod. Phys. 86 419Google Scholar

    [7]

    Bowles J, Vértesi T, Quintino M T, Brunner N 2014 Phys. Rev. Lett. 112 200402Google Scholar

    [8]

    Sun K, Ye X J, Xu J S, Xu X Y, Tang J S, Wu Y C, Chen J L, Li C F, Guo G C 2016 Phys. Rev. Lett. 116 160404Google Scholar

    [9]

    He Q Y, Gong Q H, Reid M D 2015 Phys. Rev. Lett. 114 060402Google Scholar

    [10]

    Branciard C, Cavalcanti E G, Walborn S P, Scarani V, Wiseman H M 2012 Phys. Rev. A 85 010301

    [11]

    Walk N, Hosseini S, Geng J, Thearle O, Haw J Y, Armstrong S, Assad S M, Janousek J, Ralph T C, Symul T, Wiseman H M, Lam P K 2016 Optica 3 634

    [12]

    Reid M D 2013 Phys. Rev. A 88 062338Google Scholar

    [13]

    He Q Y, Rosales-Zárate L, Adesso G, Reid M D 2015 Phys. Rev. Lett. 115 180502Google Scholar

    [14]

    Cleve R, Gottesman D, Lo H K 1999 Phys. Rev. Lett. 83 648Google Scholar

    [15]

    Xiang Y, Kogias I, Adesso G, He Q Y 2017 Phys. Rev. A 95 010101Google Scholar

    [16]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [17]

    Lau H K, Weedbrook C 2013 Phys. Rev. A 88 042313Google Scholar

    [18]

    Xiang Y, Liu Y, Cai Y, Li F, Zhang Y P, He Q Y 2020 Phys. Rev. A 101 053834Google Scholar

    [19]

    Liu Y, Cai Y, Xiang Y, Li F, Zhang Y P, He Q Y 2019 Opt. Express 27 33070Google Scholar

    [20]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [21]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [22]

    Liu S S, Lou Y B, Chen Y X, Jing J T 2022 Phys. Rev. Lett. 128 060503Google Scholar

    [23]

    Polkinghorne R E S, Ralph T C 1999 Phys. Rev. Lett. 83 2095Google Scholar

    [24]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [25]

    Jennewein T, Weihs G, Pan J W, Zeilinger A 2001 Phys. Rev. Lett. 88 017903Google Scholar

    [26]

    Ma L X, Lei X, Cheng J L, Yan Z H, Jia X J 2023 Opt. Express 31 8257Google Scholar

    [27]

    Wang M H, Qin Z Z, Su X L 2017 Phys. Rev. A 95 052311Google Scholar

    [28]

    Wang M H, Qin Z Z, Wang Y, Su X L 2017 Phys. Rev. A 96 022307Google Scholar

    [29]

    Wang N, Wang M H, Tian C X, Deng X W, Su X L 2023 Laser Photonics Rev. 18 2300653

    [30]

    Hu Q W, Wang J B, Liu S S, Jing J T 2024 Opt. Lett. 49 2585Google Scholar

    [31]

    Liu S S, Lou Y B, Jing J T 2020 Nat. Commun. 11 3875Google Scholar

    [32]

    Liu S S, Lou Y B, Jing J T 2019 Phys. Rev. Lett. 123 113602Google Scholar

    [33]

    Kogias I, Lee A R, Ragy S, Adesso G 2015 Phys. Rev. Lett. 114 060403Google Scholar

    [34]

    Ralph T C 1999 Opt. Lett. 24 348Google Scholar

  • [1] XU Jiaxin, XU Lechen, LIU Jingyang, DING Huajian, WANG Qin. Research Progress on Artificial Intelligence Empowered Quantum Communication and Quantum Sensing Systems. Acta Physica Sinica, doi: 10.7498/aps.74.20250322
    [2] Yang Rui-Ke, Li Fu-Jun, Wu Fu-Ping, Lu Fang, Wei Bing, Zhou Ye. Influence of sand and dust turbulent atmosphere on performance of free space quantum communication. Acta Physica Sinica, doi: 10.7498/aps.71.20221125
    [3] Liu Rui-Xi, Ma Lei. Effects of ocean turbulence on photon orbital angular momentum quantum communication. Acta Physica Sinica, doi: 10.7498/aps.71.20211146
    [4] Wei Yu-Yan, Gao Zi-Kai, Wang Si-Ying, Zhu Ya-Jing, Li Tao. Deterministic secure quantum communication with double-encoded single photons. Acta Physica Sinica, doi: 10.7498/aps.71.20210907
    [5] Chen Yi-Peng, Liu Jing-Yang, Zhu Jia-Li, Fang Wei, Wang Qin. Application of machine learning in optimal allocation of quantum communication resources. Acta Physica Sinica, doi: 10.7498/aps.71.20220871
    [6] Deterministic secure quantum communication with double-encoded single photons. Acta Physica Sinica, doi: 10.7498/aps.70.20210907
    [7] Zhai Shu-Qin, Kang Xiao-Lan, Liu Kui. Quantum steering based on cascaded four-wave mixing processes. Acta Physica Sinica, doi: 10.7498/aps.70.20201981
    [8] Nie Min, Wang Lin-Fei, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Transmission protocol and its performance analysis of quantum communication network based on packet switching. Acta Physica Sinica, doi: 10.7498/aps.64.210303
    [9] Li Xi-Han. Quantum secure direct communication. Acta Physica Sinica, doi: 10.7498/aps.64.160307
    [10] Nie Min, Shang Peng-Gang, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Influences of mesoscale sandstorm on the quantum satellite communication channel and performance simulation. Acta Physica Sinica, doi: 10.7498/aps.63.240303
    [11] Zhang Pei, Zhou Xiao-Qing, Li Zhi-Wei. Identification scheme based on quantum teleportation for wireless communication networks. Acta Physica Sinica, doi: 10.7498/aps.63.130301
    [12] Xue Le, Nie Min, Liu Xiao-Hui. A model of quantum signaling repeater and its parameters simulation. Acta Physica Sinica, doi: 10.7498/aps.62.170305
    [13] Zhu Wei, Nie Min. The model design and performance analysis of quantum signaling switch. Acta Physica Sinica, doi: 10.7498/aps.62.130304
    [14] Li Shen, Ma Hai-Qiang, Wu Ling-An, Zhai Guang-Jie. High-speed polarization controller for all-fiber quantum communication systems. Acta Physica Sinica, doi: 10.7498/aps.62.084214
    [15] He Rui. Quantum communication based on the circuit coupled by SQUID and mesoscopic LC resonator. Acta Physica Sinica, doi: 10.7498/aps.61.030303
    [16] Song Han-Chong, Gong Li-Hua, Zhou Nan-Run. Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Physica Sinica, doi: 10.7498/aps.61.154206
    [17] Zhou Xiao-Qing, Wu Yun-Wen, Zhao Han. Quantum teleportation internetworking and routing strategy. Acta Physica Sinica, doi: 10.7498/aps.60.040304.2
    [18] Yin Juan, Qian Yong, Li Xiao-Qiang, Bao Xiao-Hui, Peng Cheng-Zhi, Yang Tao, Pan Ge-Sheng. High-dimensional entanglement for long distance quantum communication. Acta Physica Sinica, doi: 10.7498/aps.60.060308
    [19] Zhou Nan-Run, Zeng Bin-Yang, Wang Li-Jun, Gong Li-Hua. Selective automatic repeat quantum synchronous communication protocol based on quantum entanglement. Acta Physica Sinica, doi: 10.7498/aps.59.2193
    [20] Zhou Nan-Run, Zeng Gui-Hua, Gong Li-Hua, Liu San-Qiu. Quantum communication protocol for data link layer based on entanglement. Acta Physica Sinica, doi: 10.7498/aps.56.5066
Metrics
  • Abstract views:  391
  • PDF Downloads:  21
  • Cited By: 0
Publishing process
  • Received Date:  17 January 2025
  • Accepted Date:  14 February 2025
  • Available Online:  24 February 2025

/

返回文章
返回