-
A novel target depth estimation method based on normal mode intensity match is proposed for shallow water environment using horizontal array to overcome the performance degradation observed in conventional approaches under seabed parameters mismatch condition. First, horizontal wavenumbers and normal mode intensities are estimated through wavenumber domain beamforming. Second, modal function of normal mode inversion is performed by solving the modal function characteristic equation through finite difference method. Third, the match degree between inverted and estimated normal mode intensities is evaluated to estimate target depth. Numerical simulation results demonstrate that the proposed method can achieve accurate target depth estimation in shallow water scenarios without knowledge of seabed parameters. Furthermore performance of the method is analyzed under varying conditions including different seabed parameters, array apertures and source frequencies. The results reveal three conclusions: (1) mismatch of seabed parameters has no impact on the method; (2) effective performance of all depth source estimation requires not less than 128 array elements, 50-150Hz frequency band range and the signal-to-noise radio in the element on a horizontal line array exceeds -10dB; (3) the method has robust performance against sound speed profile mismatch. Finally, the feasibility of the proposed method is validated through experimental data received by a horizontal towed 77-elements array during a shallow-water sea trial at the South China Sea.
-
Keywords:
- Seabed parameters /
- Shallow water /
- Horizontal array /
- Depth estimation
-
[1] Bucker H P 1988J. Acoust. Soc. Am. 87 571
[2] Baggeroer B, Kuperman W A, Mikhalevsky P N 1993IEEE J. Oceans Eng. 18 401
[3] Krolik J L 1992J. Acoust. Soc. Am. 92 1408
[4] Schmidt H, Kuperman W A, Scheer E K 1990J. Acoust. Soc. Am. 88 1851
[5] Li J L, Pan X 2008Acta. Acustica. 33 205(in Chinese) [李建龙,潘翔2008声学学报33 205]
[6] Yang K D, Ma Y L, Zou S X, Lei B 2006Acta. Acustica. 31 496(in Chinese) [杨坤德,马远良,邹士新,雷波2006声学学报31 496]
[7] Wang Q, Wang Y M, Wei Z Q 2020Acta. Acustica. 45 475(in Chinese) [王奇,王英民,魏志强2020声学学报45 475]
[8] Hursky P, Hodgkiss W S, Kuperman W A 2001J. Acoust. Soc. Am. 109 1355
[9] Dosso S E, Wilmut M J 2008J. Acoust. Soc. Am. 124 82
[10] Dosso S E, Wilmut M J 2013JASA Express Lett. 133 274
[11] Li X L, Xu Y J, Gao W, Wang H Z, Wang L 2024Remote Sens. 16 2227
[12] Akins F H, Kuperman W A 2020JASA Express Lett. 2 074802
[13] Yang T C 2014J. Acoust. Soc. Am. 135 1218
[14] Yang T C 2019J. Acoust. Soc. Am. 146 4740
[15] Zhou Y Y, Sun C, Xie L, Liu Z W 2023Acta Phys. Sin. 72 084302(in Chinese) [周玉媛,孙超,谢磊,刘宗伟2023物理学报72 084302]
[16] Meng R J, Zhou S H, Li F H, Qi Y B 2019Acta Phys. Sin. 68 184304(in Chinese) [孟瑞洁,周士弘,李风华,戚聿波2019物理学报68 184304]
[17] Wang X, Sun C, Li M Y, Zhang S D 2022Acta Phys. Sin. 71 084304(in Chinese) [王宣,孙超,李明杨,张少东2022物理学报71 084304]
[18] Bogart C W, Yang T C 1994J. Acoust. Soc. Am. 96 1677
[19] Nicolas B, Mars J, Lacoume J 2006Eurasip J. Adv. Signal Process. 65901 1
[20] Zhang Y K, Yang Q L, Yang K D 2023Ocean Eng. 286 1
[21] Liang G L, Zhang Y F, Zou N 2018Math. Probl. Eng. 7824671 1
[22] Premus V E, Helfrick M N 2013J. Acoust. Soc. Am. 133 4019
[23] Li T Y, Li Y, Huang H N, Yang X S 2021Acta. Acustica. 46 497(in Chinese) [李天宇,李宇,黄海宁,杨习山2021声学学报46 497]
[24] Li P, Zhang X H, Fu L F, Zeng X X 2017Acta Phys. Sin. 66 084301(in Chinese) [李鹏,章新华,付留芳,曾祥旭2017物理学报66 084301]
[25] Zhang H C, Zhou S H, Liu C P, Qi Y B 2024J. Acoust. Soc. Am. 156 1148
[26] Du Z Y, Hao Y, Qiu L H, Li C M, Liang G L 2024J. Acoust. Soc. Am. 156 2989
[27] Wang D Z, Shang E C 2013Hydroacoustics (2nd Ed.) (Beijing: Science Press) p74(in Chinese) [汪德昭,尚尔昌2013水声学(第二版)(北京:科学出版社)第74页]
[28] Jensen F B, Kuperman W A, Porter M B, Schimit H(translated by Zhou L S, Wang L J, Du S P)2017Computational Ocean Acoustics (Beijing: National Defense Industry Press) pp286—287(in Chinese)[芬恩B延森,威廉A库珀曼,亨利克施米特著(周利生,王鲁军,杜栓平译) 2017计算海洋声学(北京:国防工业出版社)第286—287页]
[29] Li X L, Wang P Y 2021JASA Express Lett. 1 126002
[30] Porter M B 1991The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1
[31] Standardization Administration of the People’s Republic of China 2024GB/T 44042-2024 (Beijing: Standardization Administration of the People’s Republic of China) Part3(in Chinese) [国家标准化管理委员会2024 GB/T 44042-2024(北京: 国家标准化管理委员会)第三部分]
Metrics
- Abstract views: 28
- PDF Downloads: 4
- Cited By: 0