Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photo-emission electron gun and electron optical simulation for ultrafast scanning electron microscope

Yang Dong Li Zhong-Wen Tian Yuan Sun Shuai-Shuai Tian Huan-Fang Yang Huai-Xin Li Jian-Qi

Citation:

Photo-emission electron gun and electron optical simulation for ultrafast scanning electron microscope

Yang Dong, Li Zhong-Wen, Tian Yuan, Sun Shuai-Shuai, Tian Huan-Fang, Yang Huai-Xin, Li Jian-Qi
PDF
HTML
Get Citation
  • Ultrafast scanning electron microscope (USEM) integrates pump-probe technique with microscopic imaging, enabling the visualizing of photon-induced surface charge dynamics with high spatial and temporal resolution. This capability is crucial for high-resolution detection of semiconductor surface states and optoelectronic devices. This work discusses the parametric design of a thermionic emission electron gun that has been modified into a photoemission electron gun, based on a home-built ultrafast scanning electron microscope. Given that the dose of the photoemitting electron beam is usually much lower than that of thermionic emission, the transition to photoemission requires the removal of the self-bias voltage function of the original electron microscope power supply to ensure the normal operation of the Wehnelt electrode. We quantitatively analyze the dependence of bias voltage, cathode, Wehnelt electrode, and anode on the position, size and divergence angle of crossover, which helps to improve the parameter adjustment of the modified electron gun. The analysis results indicate that if the distance between the Wehnelt electrode and the anode is adjusted from 8 to 23 mm, the distance between the filament and wehnelt can be changes from 0.65 to 0.45 mm to cooperate with the bias adjustment, so that the normal use of high-resolution thermionic emission mode, low voltage mode and photoemission mode can be realized. Subsequently, the effect of the mirror’s position on the electron optical path is analyzed. It is found that when the anode is raised 1.4 mm above the mirror, the influence on the electron optical path can be ignored. Additionally, the zero-of-time and temporal broadening of the photo-electron pulse are further simulated. The results indicate that with the increase of bias voltage, the time zero of photoemission will be delayed and the temporal broadening will become larger. This study lays a foundation for the future development of ultrafast electron microscope and the design of photoemission electron sources.
  • 图 1  (a) 超快扫描电子显微镜原理图; (b) 三种激励模式的电子枪原图; (c) 热助光发射电子枪结构图(左)与原理图(右)

    Figure 1.  (a) Schematic of ultrafast scanning electron microscope; (b) electron gun with three excitation modes; (c) structural diagram (left) and schematic (right) of thermally assisted photo-emitting electron gun.

    图 2  偏压对电子光学的影响 (a) 灯丝尖端的电场分布; (b) 电子束轨迹; (c) 电子束的几何光学, 其中z = 0 mm处为韦氏极, z = –0.5 mm处为灯丝尖端, z = 23 mm处为阳极; (d) 交叉点位置、直径、发散角

    Figure 2.  Effect of bias voltage on the electron optics: (a) Electric field distribution at the filament tip; (b) electron beam trajectories; (c) optics geometry of electron beam, where the wehnelt at z = 0 mm, the filament tip at z = –0.5 mm, and the anode at z = 23 mm; (d) position, diameter, divergence angle as a function of bias voltage.

    图 3  (a)截止偏压与韦氏极-阳极间距的关系, 工作电压为30 kV; (b)截止偏压与工作电压的关系, 韦氏极与阳极间距为23 mm

    Figure 3.  (a) Relationship between cutoff bias voltage and the distance between the wehnelt electrode and the anode at 30 kV; (b) relationship between cutoff bias voltage and working voltage with a distance of 23 mm between the wehnelt electrode and the anode.

    图 4  不同灯丝深度的发射状态 (a)—(c) 不同灯丝深度的交叉点位置、交叉点大小、发散角等随偏压的变化; (d) 不同灯丝深度条件下的截止偏压, 当偏压大于截止偏压时处于禁止发射状态

    Figure 4.  Emission states at different distances between filament and wehnelt: (a)–(c) Variation of positions, diameters and divergence angles of crossover with bias voltage; (d) the cut-off bias voltage at the different distance between filament and wehnelt; when the bias voltage is greater than the cut-off bias voltage, the emission is prohibited.

    图 5  反射镜对电子枪内部电场的影响 (a) 不对称放置反射镜的纵向截面电场分布(上图)、电势分布(下图). (b) 阳极平面处的横向截面电场分布 (i)无反射镜; (ii), (iii)阳极与反射镜高度差为H = 0, 1.4 mm

    Figure 5.  Effect of mirrors on the electric field inside the electron gun: (a) Longitudinal cross-sectional electric field distribution (top) and potential distribution (bottom) for asymmetrically placed mirrors. (b) Transverse cross-sectional electric field distribution at the anode plane: (i) Without mirrors; (ii), (iii) height difference between the anode and mirror H = 0, 1.4 mm.

    图 6  偏压对电子漂移时间的影响 (a) 电子漂移示意图; (b) 阴极附近光轴上的电场分布随偏压的变化, 插图为整个加速区间电场分布; (c) 偏压Vbias = 0, 300 V时的电子束时间展宽; (d) 偏压为300 V时, 不同发射分布下的电子束时间展宽

    Figure 6.  Effect of bias voltages on electron drift time: (a) Schematic diagram of electron drift; (b) electric field distribution along the optical axis near the cathode as a function of bias voltage, with the illustration showing the electric field distribution across the entire acceleration region; (c) temporal broadening of the electron beam at Vbias = 0, 300 V; (d) temporal broadening of the electron beam under different emission distributions at Vbias = 300 V.

  • [1]

    Mohammed O F, Yang D S, Pal S K, Zewail A H 2011 J. Am. Chem. Soc. 133 7708Google Scholar

    [2]

    Yang D S, Mohammed O F, Zewail A H 2010 Proc. Natl. Acad. Sci. U. S. A. 107 14993Google Scholar

    [3]

    Zhang Y, Chen X, Yu Y, Huang Y, Qiu M, Liu F, Feng M, Gao C, Deng S, Fu X 2024 Adv. Sci. n/a 2400633

    [4]

    Perez C, Ellis S R, Alcorn F M, Smoll E J, Fuller E J, Leonard F, Chandler D, Talin A A, Bisht R S, Ramanathan S, Goodson K E, Kumar S 2024 Sci. Adv. 10 eadn8980Google Scholar

    [5]

    Tian Y, Yang D, Ma Y, Li Z, Li J, Deng Z, Tian H, Yang H, Sun S, Li J 2024 Nanomaterials 14 310Google Scholar

    [6]

    Najafi E, Ivanov V, Zewail A, Bernardi M 2017 Nat. Commun. 8 15177Google Scholar

    [7]

    Najafi E, Scarborough T D, Tang J, Zewail A 2015 Science 347 164Google Scholar

    [8]

    Ellis S R, Bartelt N C, Leonard F, Celio K C, Fuller E J, Hughart D R, Garland D, Marinella M J, Michael J R, Chandler D W, Liao B, Talin A A 2021 Phys. Rev. B 104 L161303Google Scholar

    [9]

    Pan J H, Liu S, Tang J 2021 Phys. Rev. B 104 045309

    [10]

    Liao B, Najafi E, Li H, Minnich A J, Zewail A H 2017 Nat. Nanotechnol. 12 871Google Scholar

    [11]

    Liao B, Zhao H, Najafi E, Yan X, Tian H, Tice J, Minnich A J, Wang H, Zewail A H 2017 Nano Lett. 17 3675Google Scholar

    [12]

    Bose R, Adhikari A, Burlakov V M, Liu G Y, Haque M A, Priante D, Hedhili M N, Wehbe N, Zhao C, Yang H Z, Ng T K, Goriely A, Bakr O M, Wu T, Ooi B S, Mohammed O F 2018 ACS Energy Lett. 3 476Google Scholar

    [13]

    Shaheen B S, El-Zohry A M, Yin J, De Bastiani M, De Wolf S, Bakr O M, Mohammed O F 2019 J. Phys. Chem. Lett. 10 1960Google Scholar

    [14]

    Shaheen B S, El-Zohry A M, Zhao J, Yin J, Hedhili M N, Bakr O M, Mohammed O F 2020 ACS Appl. Mater. Interfaces 12 7760Google Scholar

    [15]

    Sun J, Adhikari A, Shaheen B S, Yang H, Mohammed O F 2016 J. Phys. Chem. Lett. 7 985Google Scholar

    [16]

    Najafi E, Liao B, Scarborough T, Zewail A 2018 Ultramicroscopy 184 46Google Scholar

    [17]

    Kozak M, McNeur J, Schonenberger N, Illmer J, Li A, Tafel A, Yousefi P, Eckstein T, Hommelhoff P 2018 J. Appl. Phys. 124 023104Google Scholar

    [18]

    Shiloh R, Chlouba T, Hommelhoff P 2022 Phys. Rev. Lett. 128 235301Google Scholar

    [19]

    Arashida Y, Jeong S, Kawasaki K, Emoto Y, Noyama G, Hada M, Kishibe Y, Shigekawa H, Akada K, Yoshida S, Fujita J ichi 2024 ACS Photonics 11 2171Google Scholar

    [20]

    Haine M E, Cosslett V E, Marton L 1961 Phys. Today 14 52

    [21]

    Bigelow W C 2010 Microsc. Today 18 26

  • [1] Chen Cai-Yun, Liu Jin-Xing, Zhang Xiao-Min, Li Jin-Long, Ren Ling-Ling, Dong Guo-Cai. Coverage measurement of graphene film on metallic substrate using scanning electron microscopy. Acta Physica Sinica, doi: 10.7498/aps.67.20172654
    [2] Yang Quan, Ma Li, Yang Bin, Ding Hui-Yang, Chen Tao, Yang Zhan, Sun Li-Ning, Toshio Fukuda. Method of picking up carbon nanotubes inside scanning electron microscope. Acta Physica Sinica, doi: 10.7498/aps.67.20180347
    [3] CAI QUN, M.S.ALTMAN. LEEM STUDIES OF TWO-DIMENSIONAL OXIDATION ON W(110) SURFACE. Acta Physica Sinica, doi: 10.7498/aps.46.1048
    [4] Qui Wen-Xiu, Yao Xi. . Acta Physica Sinica, doi: 10.7498/aps.44.614
    [5] FANG YAN, WANG WEI-NING, NI DONG-HAI, FU SHI-YOU, ZHANG PENG-XIANG. TEM INVESTIGATION ON SILVER SOLS AFTER ADDITION OF KCl. Acta Physica Sinica, doi: 10.7498/aps.39.46
    [6] XU HUI-FANG, LUO GU-FENG, HU MEI-SHENG, CHEN JUN. HRTEM STUDY OF THE SUPERLATTICE ORTHOCLASE. Acta Physica Sinica, doi: 10.7498/aps.38.1527
    [7] YANG CUI-YING, ZHANG DAO-FAN, WU XING, ZHOU YU-QING, FENG GUO-GUANG. ANALYTICAL ELECTRON MICROSCOPY OF DEFECTS IN PHOTOREFRACTIVE BaTiO3 CRYSTAL. Acta Physica Sinica, doi: 10.7498/aps.38.2003
    [8] ZHANG JING, LIU AN-SHENG, WU ZI-QIN, GUO KE-XIN. A TEM STUDY OF Pd-Si THIN FILM SOLID-PHASE REACTION. Acta Physica Sinica, doi: 10.7498/aps.35.965
    [9] WEN SHU-LIN, FENG JING-WEI. LATTICE DEFECTS IN α-Si3N4 STUDIED BY HREM. Acta Physica Sinica, doi: 10.7498/aps.34.951
    [10] Cheng Wan-rong, Wu Zi-qin. THE TEM AND SEM OBSERVATIONS OF THE HIGH TEMPERATURE BEHAVIOURS OF COPPER ALLOY FILMS. Acta Physica Sinica, doi: 10.7498/aps.31.1387
    [11] LI FANG-HUA, FAN HAN-JIE, YANG DA-YU, FU PING-QIU, KONG YOU-HUA. ELECTRON MICROSCOPY OF HUANGHOITE. Acta Physica Sinica, doi: 10.7498/aps.31.571
    [12] YANG CUI-YING, ZHOU YU-QING, ZHAO JIAN-GAO. AN ELECTRON MICROSCOPIC STUDY ON AMORPHOUS Tb-Fe THIN FILMS. Acta Physica Sinica, doi: 10.7498/aps.31.180
    [13] CHENG PENG-ZHU, MA XIAO-HUA, LUO QI-GUANG, YANG DA-YU. THE PREPARATION OF TRANSMISSION ELECTRON MICROSCOPE SPECIMEN BY ELECTROLYTIC POLISHING METHOD. Acta Physica Sinica, doi: 10.7498/aps.30.286
    [14] LIAO QIAN-CHU, WANG YUN, WANG HONG-JUN, LAN FEN-LAN. ANOMOLOUS PATTERNS OF TUNGSTEN SAMPLES OBSERVED WITH SCANNING ELECTRON MICROSCOPE. Acta Physica Sinica, doi: 10.7498/aps.29.131
    [15] GUO KE-XIN, LIN BAO-JUN. A TEM STUDY OF PARTIAL DISLOCATIONS IN A NICKEL-CHROMIUM ALLOY. Acta Physica Sinica, doi: 10.7498/aps.29.494
    [16] ZHANG JING-GUO. MEASUREMENT OF THE BAND WIDTH OF ELECTRON CHANNELLING PATTERNS IN SCANNING ELECTRON MICROSCOPY. Acta Physica Sinica, doi: 10.7498/aps.27.470
    [17] Li Fang-hua. DETERMINATION OF CRYSTAL STRUCTURES BY HIGH RESOLUTION ELECTRON MICROSCOPY. Acta Physica Sinica, doi: 10.7498/aps.26.193
    [18] . Acta Physica Sinica, doi: 10.7498/aps.24.83
    [19] Qian Lin-zhao;He Shou-an;Yang Da-yu. THE GLIDE OF ALUMINIUM SINGLE CRYSTALS OBSERVED BY ELECTRON MICROSCOPE (III). Acta Physica Sinica, doi: 10.7498/aps.12.643
    [20] TSIEN LING-CHAO, HO SHOW-AN. THE GLIDE OF ALUMINIUM SINGLE CRYSTALS OBSERVED BY ELECTRON MICROSCOPE [Ⅱ]. Acta Physica Sinica, doi: 10.7498/aps.11.290
Metrics
  • Abstract views:  244
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  05 September 2024
  • Accepted Date:  07 October 2024
  • Available Online:  16 October 2024

/

返回文章
返回