Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement of barium tungsten cathode and investigation of thermionic emission performance

Shang Ji-Hua Yang Xin-Yu Sun Da-Peng Zhang Jiu-Xing

Citation:

Improvement of barium tungsten cathode and investigation of thermionic emission performance

Shang Ji-Hua, Yang Xin-Yu, Sun Da-Peng, Zhang Jiu-Xing
PDF
HTML
Get Citation
  • The Ba-W cathode consists of the porous W matrix and the aluminate. During cathode operation, the Ba atoms are generated in the pores through the thermal reaction between the W and aluminate, and then diffuse along the pore channels to the W surface, lowering the work function. Therefore, the Ba yield and the Ba diffusion are significantly influenced by the micro pore structure of the matrix and the phase composition of the aluminate.Firstly, the matrix is fabricated with the narrow particle size distribution powder by the spark plasma sintering (SPS) technique, which shows the narrow pore size distribution (FWHM = 0.43 μm). Then the spherical powder with good fluidity and high tap density is prepared using the RF induction thermal plasma. The matrix prepared with spherical powder exhibits narrower pore size distribution (FWHM = 0.4 μm), smooth pore channels and good inter-pore connectivity. The two matrixes prepared with narrow particle powder and spherical powder are named N-matrix and S-matrix, respectively.The aluminates are prepared using the solid phase method and the liquid phase method, separately. The particles of solid phase aluminate precursor present all shapes and all sizes, while the particles of the liquid phase aluminate precursor are uniform in size and identical in shape. The phase of solid phase aluminate and the phase of liquid phase aluminate are analyzed by XRD, the results show that the former consists of the effective Ba3CaAl2O7 phase and other impurity phases, while the latter is composed of two effective phases of Ba3CaAl2O7 and Ba5CaAl4O12.The N+S and S+S cathodes are obtained by using the solid phase aluminate to impregnate the N-matrix and the S-matrix, and the U-j characteristics of the two cathodes are investigated. The double logarithmic curves of U and j show that the slope of 1.37 in the space charges limited (SCL) region for the S + S cathode is higher than that of 1.25 for the N+S cathode, so the S+S cathode exhibits better emission uniformity. The current density at the deviation point (jDEV) of the N+S cathode and that of the S+S cathode are 6.6 A·cm–2 and 6.96 A·cm–2, respectively. So the improvement on the matrix obviously raises the emission uniformity of cathode, but the current density is increased less.Based on the excellent matrix of the S+S cathode, the S+L cathode is obtained by improving the aluminate of the S+S cathode with liquid phase aluminate. The U-j characteristics show the slope of the S+L cathode reaches to 1.44, and the jDEV is 21.2 A·cm–2. So the improvement on the aluminate not only increases the uniformity, but also raises the current density.The present study shows that the U-j curve calculated from the classical thermionic emission (TE) theory accords well with that of the S + L cathode at 1000 ℃, which indicates that the Ba-W cathode follows the classical TE theory rather than other emission theories, and the Ba-O dipole layer just changes the work function of the cathode.
      Corresponding author: Yang Xin-Yu, xyyinuang@hfut.edu.cn ; Zhang Jiu-Xing, zjiuxing@hfut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51501051) and the Open Fund of the State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, China (Grant No. SKLSP202119).
    [1]

    Kirkwood D M, Gross S J, Balk T J, Beck M J, Booske J, Busbanher D, Jacobs R, Kordesch M E, Mitsdarffer B, Morgan D 2018 IEEE Trans. Electron Devices 65 2061Google Scholar

    [2]

    Zhao J, Li N, Li J, Gamzina D, Baig A, Barchfeld R 2011 Int. J. Terahertz Sci. Technol. 4 240Google Scholar

    [3]

    Hong Y, Lee S, Shin J W, Sung Ho Lee, So J H 2016 Curr. Appl. Phys. 16 1431Google Scholar

    [4]

    Choi J, Sung H M, Roh K B, Hong S H, Kim G H, Han H N 2017 Int. J. Refract. Met. Hard Mater. 69 164Google Scholar

    [5]

    Lee G, McKittrick J, Ivanov E, Olevsky E A 2016 Int. J. Refract. Met. Hard Mater. 61 22Google Scholar

    [6]

    Ghahremani D, Ebadzadeh T, Maghsodipour A 2015 Ceram. Int. 41 6409Google Scholar

    [7]

    Ghafuri F, Ahmadian M, Emadi R, Zakeri M 2019 Ceram. Int. 45 10550Google Scholar

    [8]

    Li R, Wang Z Y, Sun W, Hu H L, Khor K A, Wang Y, Dong Z L 2019 Mater. Charact. 157 109917Google Scholar

    [9]

    王子玉, 尚吉花, 杨新宇, 张久兴 2021 强激光与粒子束 33 053001Google Scholar

    Wang Z Y, Shang J H, Yang X Y, Zhang J X 2021 High Pow. Las. Part. Beam. 33 053001Google Scholar

    [10]

    Li R, Qin M, Chen Z, Zhao S, Liu C, Wang X, Zhang L, Ma J, Qu X 2018 Powder Technol. 339 192Google Scholar

    [11]

    Li B, Sun Z, Jin H, Hu P, Yuan F 2016 Int. J. Refract. Met. Hard Mater. 59 105Google Scholar

    [12]

    Li J, Wei J, Feng Y, Li X 2018 Materials 11 1380Google Scholar

    [13]

    Jiang X L, Boulos M 2006 Trans. Nonferrous Met. Soc. China 16 13Google Scholar

    [14]

    Ravi M, Sreedhar S, Janpandit M 2018 IEEE Trans. Electron Devices 65 2083Google Scholar

    [15]

    Darr A M, Loveless A M, Garner A L 2019 Appl. Phys. Lett. 114 014103Google Scholar

    [16]

    Lin T P, Eng G 1989 J. Appl. Phys. 65 3205Google Scholar

    [17]

    Longo R T 2003 J. Appl. Phys. 94 6966Google Scholar

    [18]

    漆世锴, 王小霞, 王兴起, 胡明玮, 刘理, 曾伟 2020 物理学报 69 037901Google Scholar

    Qi S K, Wang X X, Wang X Q, Hu M W, Liu L, Zeng W 2020 Acta Phys. Sin. 69 037901Google Scholar

    [19]

    Raju R S, Maloney C E 1994 IEEE Trans. Electron Devices 41 2460Google Scholar

    [20]

    张恩虬, 刘学悫 1984电子科学学刊 6 89

    Zhang E Q, Liu X Q 1984 J. Electronics (China) 6 89 (in Chinese)

    [21]

    Shang J, Yang X, Wang Z, Hu M, Han C, Zhang J 2020 IEEE Trans. Electron Devices 67 2580Google Scholar

    [22]

    林祖伦, 王小菊 2013阴极电子学 (北京: 国防工业出版社) 第12页

    Lin Z L, Wang X J 2013 Cathode Electronics (Bejing: National Defense Industry Press) p12 (in Chinese)

  • 图 1  5.6 μm窄粒度钨粉微观形貌

    Figure 1.  Micromorphology of the tungsten powder with diameter of 5.6 μm.

    图 2  9个正交实验方案球化后的粉末形貌

    Figure 2.  Micro morphology of the power prepared using different spheroidization processes.

    图 3  采用最优方案A1B2C2后获得的不同放大倍数的颗粒形貌

    Figure 3.  Micro morphologies at different magnifications of the spherical powder obtained using the A1B2C2 scheme.

    图 4  断面形貌和相应的孔径分布 (a), (b) 传统烧结基体; (c), (d) SPS烧结窄粒度钨粉基体; (e), (f) SPS烧结球形钨粉基体

    Figure 4.  Fracture surface morphology and the corresponding pore diameter distribution: (a), (b) Conventional sintering; (c), (d) SPS using the narrow tungsten powder; (e), (f) SPS using the spherical tungsten powder.

    图 5  铝酸盐前驱体不同放大倍数的微观形貌 (a), (b) 固相法铝酸盐; (c), (d) 液相法铝酸盐

    Figure 5.  Micro morphologies at different magnifications: (a), (b) Aluminate precursor prepared by solid phase method; (c), (d) aluminate precursor prepared by liquid phase method.

    图 6  (a) 固相法制备的铝酸盐物相; (b) 液相法制备的铝酸盐物相

    Figure 6.  X-ray diffraction patterns of the aluminate by (a) solid phase method and (b) liquid phase method.

    图 7  (a) 1050 ℃时理想阴极、N+S阴极、S+S阴极的U-j双对数曲线; (b) 1050 ℃下N+S阴极、S+S阴极的lgjU 0.5曲线

    Figure 7.  (a) The log J-log U plots of the ideal, N+S and S+S cathodes, (b) the lgj-U 0.5 plots of the N+S and S+S cathodes.

    图 8  S+L阴极的(a) U-j曲线和 (b) lgj-U 0.5曲线

    Figure 8.  (a) U-j characteristic curves, and (b) lgj-U 0.5 curves of the S+L cathode.

    图 9  (a) 阴极表面偶电层和偶极子层示意图; (b) 电子所受力随距离的变化曲线; (c)力对电子所做的功随距离的变化曲线

    Figure 9.  (a) Diagram of the electric double layer and the Ba-O dipole layer on the cathode surface; (b) curves of F(x)–x; (c) curves of W(x)–x.

    图 10  S+L阴极在1000 ℃的U-j曲线及其拟合结果

    Figure 10.  U-j characteristic plot of the S+L cathode at 1000 ℃ and the fitting plot.

    表 1  参数因素水平

    Table 1.  Parametric factor level.

    水平(A) 探针位置(B) 送粉率/
    (g·min–1)
    (C) 载气流/
    (L·min–1)
    1顶端2.52.5
    2中间54
    3尾端86
    DownLoad: CSV

    表 2  正交实验方案及结果

    Table 2.  Results of orthogonal experiments.

    实验号ABC实验方案球化率
    1顶端2.52.5A1B1C1100%
    2顶端54A1B2C295%
    3顶端86A1B3C350%
    4中间52.5A2B2C175%
    5中间84A2B3C230%
    6中间2.56A2B1C390%
    7尾端82.5A3B3C11%
    8尾端2.54A3B1C23%
    9尾端56A3B2C31%
    K12.451.931.76
    K21.951.711.28
    K30.050.811.41
    R2.391.120.35
    DownLoad: CSV
  • [1]

    Kirkwood D M, Gross S J, Balk T J, Beck M J, Booske J, Busbanher D, Jacobs R, Kordesch M E, Mitsdarffer B, Morgan D 2018 IEEE Trans. Electron Devices 65 2061Google Scholar

    [2]

    Zhao J, Li N, Li J, Gamzina D, Baig A, Barchfeld R 2011 Int. J. Terahertz Sci. Technol. 4 240Google Scholar

    [3]

    Hong Y, Lee S, Shin J W, Sung Ho Lee, So J H 2016 Curr. Appl. Phys. 16 1431Google Scholar

    [4]

    Choi J, Sung H M, Roh K B, Hong S H, Kim G H, Han H N 2017 Int. J. Refract. Met. Hard Mater. 69 164Google Scholar

    [5]

    Lee G, McKittrick J, Ivanov E, Olevsky E A 2016 Int. J. Refract. Met. Hard Mater. 61 22Google Scholar

    [6]

    Ghahremani D, Ebadzadeh T, Maghsodipour A 2015 Ceram. Int. 41 6409Google Scholar

    [7]

    Ghafuri F, Ahmadian M, Emadi R, Zakeri M 2019 Ceram. Int. 45 10550Google Scholar

    [8]

    Li R, Wang Z Y, Sun W, Hu H L, Khor K A, Wang Y, Dong Z L 2019 Mater. Charact. 157 109917Google Scholar

    [9]

    王子玉, 尚吉花, 杨新宇, 张久兴 2021 强激光与粒子束 33 053001Google Scholar

    Wang Z Y, Shang J H, Yang X Y, Zhang J X 2021 High Pow. Las. Part. Beam. 33 053001Google Scholar

    [10]

    Li R, Qin M, Chen Z, Zhao S, Liu C, Wang X, Zhang L, Ma J, Qu X 2018 Powder Technol. 339 192Google Scholar

    [11]

    Li B, Sun Z, Jin H, Hu P, Yuan F 2016 Int. J. Refract. Met. Hard Mater. 59 105Google Scholar

    [12]

    Li J, Wei J, Feng Y, Li X 2018 Materials 11 1380Google Scholar

    [13]

    Jiang X L, Boulos M 2006 Trans. Nonferrous Met. Soc. China 16 13Google Scholar

    [14]

    Ravi M, Sreedhar S, Janpandit M 2018 IEEE Trans. Electron Devices 65 2083Google Scholar

    [15]

    Darr A M, Loveless A M, Garner A L 2019 Appl. Phys. Lett. 114 014103Google Scholar

    [16]

    Lin T P, Eng G 1989 J. Appl. Phys. 65 3205Google Scholar

    [17]

    Longo R T 2003 J. Appl. Phys. 94 6966Google Scholar

    [18]

    漆世锴, 王小霞, 王兴起, 胡明玮, 刘理, 曾伟 2020 物理学报 69 037901Google Scholar

    Qi S K, Wang X X, Wang X Q, Hu M W, Liu L, Zeng W 2020 Acta Phys. Sin. 69 037901Google Scholar

    [19]

    Raju R S, Maloney C E 1994 IEEE Trans. Electron Devices 41 2460Google Scholar

    [20]

    张恩虬, 刘学悫 1984电子科学学刊 6 89

    Zhang E Q, Liu X Q 1984 J. Electronics (China) 6 89 (in Chinese)

    [21]

    Shang J, Yang X, Wang Z, Hu M, Han C, Zhang J 2020 IEEE Trans. Electron Devices 67 2580Google Scholar

    [22]

    林祖伦, 王小菊 2013阴极电子学 (北京: 国防工业出版社) 第12页

    Lin Z L, Wang X J 2013 Cathode Electronics (Bejing: National Defense Industry Press) p12 (in Chinese)

  • [1] Qi Liang-Wen, Du Man-Qiang, Wen Xiao-Dong, Song Jian, Yan Hui-Jie. Dynamics and impurity spectral characteristics of coaxial gun discharge plasma. Acta Physica Sinica, 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] Zhang Yu-Han, Zhao Xin-Qian, Liang Ying-Shuang, Guo Yuan-Yuan. Numerical simulation of inductively coupled Ar/O2 plasma. Acta Physica Sinica, 2024, 73(13): 135201. doi: 10.7498/aps.73.20240436
    [3] Qi Chao, Ma Yu-Tian, Qi Yan-Fei, Xiao Shan-Qu, Wang Bo. Influence of microstructure on thermal fatigue effect of laminated tungsten based plasma-facing material. Acta Physica Sinica, 2024, 73(11): 112801. doi: 10.7498/aps.73.20240007
    [4] Zhang Xue-Xue, Jia Peng-Ying, Ran Jun-Xia, Li Jin-Mao, Sun Huan-Xia, Li Xue-Chen. Discharge characteristics and parameter diagnosis of brush-shaped air plasma plumes under auxiliary discharge. Acta Physica Sinica, 2024, 73(8): 085201. doi: 10.7498/aps.73.20231946
    [5] Song Jian, Li Jia-Wen, Bai Xiao-Dong, Zhang Jin-Shuo, Yan Hui-Jie, Xiao Qing-Mei, Wang De-Zhen. Effect of length of outer electrode on plasma characteristics in coaxial gun. Acta Physica Sinica, 2021, 70(10): 105201. doi: 10.7498/aps.70.20201724
    [6] Improvement of barium tungsten cathode and investigation of thermionic emission performance. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211684
    [7] Yu Xin, Qi Liang-Wen, Zhao Chong-Xiao, Ren Chun-Sheng. Comparative study of positive and negative pulsed discharge plasma characteristics of coaxial gun. Acta Physica Sinica, 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [8] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Chen Lei, Li Ti-Jun, Liu Liang-Liang, Ricky K Y Fu, Tian Xiu-Bo, Paul K Chu, Tan Wen-Chang. Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field. Acta Physica Sinica, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [9] Chen Jian, Liu Zhi-Qiang, Guo Heng, Li He-Ping, Jiang Dong-Jun, Zhou Ming-Sheng. Physical characteristics of ion extraction simulation system based on gas discharge plasma jet. Acta Physica Sinica, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [10] Zou Dan-Dan, Cai Zhi-Chao, Wu Peng, Li Chun-Hua, Zeng Han, Zhang Hong-Li, Cui Chun-Mei. Plasma characteristics of helical streamers induced by pulsed discharges. Acta Physica Sinica, 2017, 66(15): 155202. doi: 10.7498/aps.66.155202
    [11] Wang Jian-Long, Ding Fang, Zhu Xiao-Dong. Optical properties of direct current glow discharge plasmas at high pressures. Acta Physica Sinica, 2015, 64(4): 045206. doi: 10.7498/aps.64.045206
    [12] Feng Jing-Hua, Meng Shi-Jian, Fu Yue-Cheng, Zhou Lin, Xu Rong-Kun, Zhang Jian-Hua, Li Lin-Bo, Zhang Fa-Qiang. Spatiotemporal distribution of hydrogenous electrode vacuum arc discharge plasma. Acta Physica Sinica, 2014, 63(14): 145205. doi: 10.7498/aps.63.145205
    [13] Hu Ming, Wan Shu-De, Zhong Lei, Liu Hao, Wang Hai. Magnetic control of the constant-current glow discharge plasma characteristics. Acta Physica Sinica, 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [14] Wang Yu, Li Xiao-Dong, Yu Liang, Yan Jian-Hua. Numerical simulation study on characteristics of gliding arc discharge. Acta Physica Sinica, 2011, 60(3): 035203. doi: 10.7498/aps.60.035203
    [15] Li Xue-Chen, Yuan Ning, Jia Peng-Ying, Chang Yuan-Yuan, Ji Ya-Fei. Characteristics of atmospheric pressure air uniform discharge generated by a plasma needle. Acta Physica Sinica, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [16] Hu Jia, Xu Yi-Jun, Ye Chao. CHF3 dual-frequency capacitively coupled plasma. Acta Physica Sinica, 2010, 59(4): 2661-2665. doi: 10.7498/aps.59.2661
    [17] Ding Zhen-Feng, Yuan Guo-Yu, Gao Wei, Sun Jing-Chao. Experimental studies on the properties of the discharge modes in a cylindrical radio frequency inductively coupled plasma. Acta Physica Sinica, 2008, 57(7): 4304-4315. doi: 10.7498/aps.57.4304
    [18] Li Han-Ming, Li Gang, Li Ying-Jun, Li Yu-Tong, Zhang Yi, Cheng Tao, Nie Chao-Qun, Zhang Jie. The characteristics of the spectrum emitted from dielectric barrier-discharge plasmas. Acta Physica Sinica, 2008, 57(2): 969-974. doi: 10.7498/aps.57.969
    [19] Zhang Xin, Li Jia, Lu Qing-Mei, Zhang Jiu-Xing, Liu Yan-Qin. Mechanical alloying synthesis of (Bi1-xAgx)2(Te1-ySey)3 powder and thermoelectric properties of its bulk materials prepared by spark plasma sintering. Acta Physica Sinica, 2008, 57(7): 4466-4470. doi: 10.7498/aps.57.4466
    [20] Lu Xin-Pei, Pan Yuan, Zhang Han-Hong. . Acta Physica Sinica, 2002, 51(8): 1768-1772. doi: 10.7498/aps.51.1768
Metrics
  • Abstract views:  5618
  • PDF Downloads:  125
  • Cited By: 0
Publishing process
  • Received Date:  09 September 2021
  • Accepted Date:  27 September 2021
  • Available Online:  15 February 2022
  • Published Online:  20 February 2022

/

返回文章
返回