Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Milimeter-level MoS2 monolayers and WS2-MoS2 heterojunctions grown on molten glass by pre-chemical vapor deposition

Fei Xiang Zhang Xiu-Mei Fu Quan-Gui Cai Zheng-Yang Nan Hai-Yan Gu Xiao-Feng Xiao Shao-Qing

Citation:

Milimeter-level MoS2 monolayers and WS2-MoS2 heterojunctions grown on molten glass by pre-chemical vapor deposition

Fei Xiang, Zhang Xiu-Mei, Fu Quan-Gui, Cai Zheng-Yang, Nan Hai-Yan, Gu Xiao-Feng, Xiao Shao-Qing
PDF
HTML
Get Citation
  • Molybdenum disulfide (MoS2), as a kind of two-dimensional(2D) material with novel physical properties and excellent electrical performances, has great potential applications in electronic devices. Efficient and controllable growth of large-size single crystal MoS2 is a major difficulty that must be overcome towards scalable production. Chemical vapor deposition (CVD) is considered as the most promising means for industrial production of 2D materials. Here in this work, the high-quality and millimeter-level single crystal MoS2monolayer grows on molten glass by the pre-chemical vapor deposition, in which MoO3 film deposited on the molten glass is used as Mo precursor instead of MoO3 powder. In addition, by introducing WO3 powder into such a CVD system, MoS2-WS2 lateral heterojunctions can also be obtained. Raman and PL measurements indicate that the as-grown MoS2 monolayer samples possess high quality. The Back-gate FETs are fabricated on SiO2/Si substrates by using transferring elelctrode methods to investigate the electrical properties of the as-grown MoS2 crystals. At room temperature and atmosphere pressure, the on-off ratio can reach 105 and the carrier mobility can arrive at 4.53 cm2/(V·s). The low-cost and high-quality large-size material growth method pave the way for the scalable production of such a 2D material based electronic devices.
      Corresponding author: Xiao Shao-Qing, xiaosq@jiangnan.edu.cn
    • Funds: Project supported by the National Nature Science Foundation (Grant Nos. 62074070, 62104084, 11704159), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170167), and the Fundamental Research Funds for the Central Universities of China (Grant No. JUSRP221015) .
    [1]

    Hynek D J, Singhania R M, Xu S, Davis B, Wang L, Yarali M, Pondick J V, Woods J M, Strandwitz N C, Cha J J 2021 ACS Nano 15 410Google Scholar

    [2]

    Susarla S, Kutana A, Hachtel J A, Kochat V, Apte A, Vajtai R, Idrobo J C, Yakobson B I, Tiwary C S, Ajayan P M 2017 Advan. Mater. 29 1702457Google Scholar

    [3]

    Huo N, Yang Y, Li J 2017 J. Semicond. 38 031002Google Scholar

    [4]

    Cheng P, Tang C, Ahmed S, Qiao J, Zeng L, Tsang Y 2020 Nanotechnology 32 055201

    [5]

    Wu Y, Lin Y M, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74Google Scholar

    [6]

    Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M, Banerjee K 2015 Nature 526 91Google Scholar

    [7]

    Jia S, Jin Z, Zhang J, Yuan J, Chen W, Feng W, Hu P, Ajayan P M, Lou J 2020 Small 16 2002263Google Scholar

    [8]

    Akinwande D, Petrone N, Hone J 2014 Nat. Commun. 5 5678Google Scholar

    [9]

    Chang H Y, Yang S, Lee J, Tao L, Hwang W S, Jena D, Lu N, Akinwande D 2013 ACS Nano 7 5446Google Scholar

    [10]

    Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J, Watanabe K, Taniguchi T, Nuckolls C, Kim P, Hone J 2013 ACS Nano 7 7931Google Scholar

    [11]

    Das S, Gulotty R, Sumant A V, Roelofs A 2014 Nano Lett. 14 2861Google Scholar

    [12]

    Xiao X, Chen M, Zhang J, Zhang T, Zhang L, Jin Y, Wang J, Jiang K, Fan S, Li Q 2019 ACS Appl. Mater. Inter. 11 11612Google Scholar

    [13]

    董艳芳, 何大伟, 王永生, 许海腾, 巩哲 2016 物理学报 65 128101Google Scholar

    Dong Y F, He D W, Wang Y S, Xu H T, Gong Z 2016 Acta Phys. Sin. 65 128101Google Scholar

    [14]

    王铄, 王文辉, 吕俊鹏, 倪振华 2021 物理学报 70 026802

    Wang S, Wang W H, Lv J P, Ni Z H 2021 Acta Phys. Sin. 70 026802

    [15]

    Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X, Huan Y, Xie C, Gao P, Chen Q, Zhang Q, Liu Z, Zhang Y 2018 Nat. Commun. 9 979Google Scholar

    [16]

    Zhang Z, Xu X, Song J, Gao Q, Li S, Hu Q, Li X, Wu Y 2018 Appl. Phys. Lett. 113 202103Google Scholar

    [17]

    Chen J, Zhao X, Tan S J R, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Tang W, Li L, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar

    [18]

    Tang L, Tan J, Nong H, Liu B, Cheng H M 2021 Acc. Mater. Res. 2 36Google Scholar

    [19]

    Wan X, Miao X, Yao J, Wang S, Shao F, Xiao S, Zhan R, Chen K, Zeng X, Gu X, Xu J 2021 Advan. Mater. 33 2100260Google Scholar

    [20]

    Zhang X, Nan H, Xiao S, Wan X, Gu X, Du A, Ni Z, Ostrikov K 2019 Nat. Commun. 10 598Google Scholar

    [21]

    Wang Z, Xie Y, Wang H, Wu R, Nan T, Zhan Y, Sun J, Jiang T, Zhao Y, Lei Y, Yang M, Wang W, Zhu Q, Ma X, Hao Y 2017 Nanotechnology 28 325602Google Scholar

    [22]

    Park J H, Lu A Y, Shen P C, Shin B G, Wang H, Mao N, Xu R, Jung S J, Ham D, Kern K, Han Y, Kong J 2021 Small Methods 5 2000720Google Scholar

    [23]

    王璐, 高俊峰, 丁峰 2014 化学学报 72 345Google Scholar

    Wang L, Gao J F, Ding F 2014 Acta Chim. Sin. 72 345Google Scholar

    [24]

    Wang J, Cai X, Shi R, Wu Z, Wang W, Long G, Tang Y, Cai N, Ouyang W, Geng P, Chandrashekar B N, Amini A, Wang N, Cheng C 2018 ACS Nano 12 635Google Scholar

    [25]

    Yang P, Zhang S, Pan S, Tang B, Liang Y, Zhao X, Zhang Z, Shi J, Huan Y, Shi Y, Pennycook S J, Ren Z, Zhang G, Chen Q, Zou X, Liu Z, Zhang Y 2020 ACS Nano 14 5036Google Scholar

    [26]

    Withanage S S, Khondaker S I 2019 MRS Advan. 4 587Google Scholar

  • 图 1  (a)生长MoS2的实验装置示意图; (b)生长WS2-MoS2的实验装置示意图

    Figure 1.  Schematic illustrations of the experimental set-up for (a) MoS2 and (b) MoS2-WS2 heterostructure.

    图 2  (a)熔融玻璃衬底上CVD过程的示意图; (b)尺寸500 μm的MoS2的光镜图; (c)毫米级的MoS2的光镜图

    Figure 2.  (a) Schematic illustration of CVD reaction process of the as-grown MoS2 films on the soda-lime glass; (b) optical images of MoS2 with size of 500 μm, (c) optical images of MoS2 with size of 1 mm.

    图 3  转移至硅衬底上的MoS2及相应的拉曼荧光表征 (a)(b)转移后的MoS2光镜图; (c)(d)为(b)中样品的拉曼与荧光表征; (e)所生长MoS2的AFM图像; (f)生长MoS2的HRTEM, 内插图为相应的SAED

    Figure 3.  MoS2 films transfered onto the Si/SiO2 substrates and its Raman spectrum: (a) (b) Optical images of transfered MoS2; (c) (d)single-point Raman and PL spectrum of the as-grown MoS2films in (b); (e) AFM image of as-grown MoS2; (f) HRTEM of as-grown MoS2, the inset image is the SAED pattern of as-grown MoS2.

    图 4  所生长MoS2薄膜的拉曼与荧光 mapping测试(a) MoS2薄膜光镜图; (b)图(a)中蓝框区域拉曼峰$ \rm E^1_{\rm 2g} $的mapping图像; (c)拉曼峰A1g的mapping图像; (d)荧光峰1.85 eV处的mapping图像

    Figure 4.  Raman mapping test of as-grown MoS2 film: (a) Optical image of a selected MoS2 films; (b) Raman intensity mapping of $ \rm E^1_{\rm 2g} $ peak (blue area in Fig. (a)); (c) Raman intensity mapping of A1g (blue area in Fig. (a)) ; (d) PL intensity mapping of PL peak at 1.85 eV (blue area in Fig. (a)).

    图 5  (a) MoS2场效应管的3D模型以及真实器件的光镜图; (b) MoS2场效应管的输出曲线; (c) MoS2场效应管的线性转移曲线; (d) MoS2场效应管的指数转移曲线

    Figure 5.  (a) Schematic of MoS2 FET and a typical optical image of the devices; (b) output curves (Ids-Vds) of a typical MoS2 FET device; (c) liner transfer curves of a typical MoS2 FET device; (d) semilog transfer curves of a typical MoS2 FET device.

    图 6  (a)熔融玻璃上生长的WS2-MoS2异质结的光镜图; (b) WS2-MoS2相应区域的拉曼表征; (c)异质结对应于350 cm–1处的拉曼强度mapping; (d)异质结对应于403 cm–1处的拉曼强度mapping

    Figure 6.  (a) Optical image of the as-grown WS2-MoS2 heterostructures on soda-lime glass; (b) single-point Raman spectra of the as-grown WS2-MoS2 heterostructures, (c) Raman intensity mapping of the heterostructure region at 350 cm–1; (d) Raman intensity mapping of the heterostructure region at 403 cm–1.

    表 1  不同CVD法生长的MoS2的各项性能对比

    Table 1.  MoS2 FET performance of different kinds of CVD.

    生长方法温度生长衬底单晶尺寸迁移率开关比
    μm(cm2·V–1·s–1)
    预沉积CVD本文1100钠钙玻璃10004.5105
    普通CVD[16]800钠钙玻璃5024108
    预沉积CVD[26]750蓝宝石25
    MOCVD[22]320氧化硅12068>105
    DownLoad: CSV
  • [1]

    Hynek D J, Singhania R M, Xu S, Davis B, Wang L, Yarali M, Pondick J V, Woods J M, Strandwitz N C, Cha J J 2021 ACS Nano 15 410Google Scholar

    [2]

    Susarla S, Kutana A, Hachtel J A, Kochat V, Apte A, Vajtai R, Idrobo J C, Yakobson B I, Tiwary C S, Ajayan P M 2017 Advan. Mater. 29 1702457Google Scholar

    [3]

    Huo N, Yang Y, Li J 2017 J. Semicond. 38 031002Google Scholar

    [4]

    Cheng P, Tang C, Ahmed S, Qiao J, Zeng L, Tsang Y 2020 Nanotechnology 32 055201

    [5]

    Wu Y, Lin Y M, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74Google Scholar

    [6]

    Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M, Banerjee K 2015 Nature 526 91Google Scholar

    [7]

    Jia S, Jin Z, Zhang J, Yuan J, Chen W, Feng W, Hu P, Ajayan P M, Lou J 2020 Small 16 2002263Google Scholar

    [8]

    Akinwande D, Petrone N, Hone J 2014 Nat. Commun. 5 5678Google Scholar

    [9]

    Chang H Y, Yang S, Lee J, Tao L, Hwang W S, Jena D, Lu N, Akinwande D 2013 ACS Nano 7 5446Google Scholar

    [10]

    Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J, Watanabe K, Taniguchi T, Nuckolls C, Kim P, Hone J 2013 ACS Nano 7 7931Google Scholar

    [11]

    Das S, Gulotty R, Sumant A V, Roelofs A 2014 Nano Lett. 14 2861Google Scholar

    [12]

    Xiao X, Chen M, Zhang J, Zhang T, Zhang L, Jin Y, Wang J, Jiang K, Fan S, Li Q 2019 ACS Appl. Mater. Inter. 11 11612Google Scholar

    [13]

    董艳芳, 何大伟, 王永生, 许海腾, 巩哲 2016 物理学报 65 128101Google Scholar

    Dong Y F, He D W, Wang Y S, Xu H T, Gong Z 2016 Acta Phys. Sin. 65 128101Google Scholar

    [14]

    王铄, 王文辉, 吕俊鹏, 倪振华 2021 物理学报 70 026802

    Wang S, Wang W H, Lv J P, Ni Z H 2021 Acta Phys. Sin. 70 026802

    [15]

    Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X, Huan Y, Xie C, Gao P, Chen Q, Zhang Q, Liu Z, Zhang Y 2018 Nat. Commun. 9 979Google Scholar

    [16]

    Zhang Z, Xu X, Song J, Gao Q, Li S, Hu Q, Li X, Wu Y 2018 Appl. Phys. Lett. 113 202103Google Scholar

    [17]

    Chen J, Zhao X, Tan S J R, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Tang W, Li L, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar

    [18]

    Tang L, Tan J, Nong H, Liu B, Cheng H M 2021 Acc. Mater. Res. 2 36Google Scholar

    [19]

    Wan X, Miao X, Yao J, Wang S, Shao F, Xiao S, Zhan R, Chen K, Zeng X, Gu X, Xu J 2021 Advan. Mater. 33 2100260Google Scholar

    [20]

    Zhang X, Nan H, Xiao S, Wan X, Gu X, Du A, Ni Z, Ostrikov K 2019 Nat. Commun. 10 598Google Scholar

    [21]

    Wang Z, Xie Y, Wang H, Wu R, Nan T, Zhan Y, Sun J, Jiang T, Zhao Y, Lei Y, Yang M, Wang W, Zhu Q, Ma X, Hao Y 2017 Nanotechnology 28 325602Google Scholar

    [22]

    Park J H, Lu A Y, Shen P C, Shin B G, Wang H, Mao N, Xu R, Jung S J, Ham D, Kern K, Han Y, Kong J 2021 Small Methods 5 2000720Google Scholar

    [23]

    王璐, 高俊峰, 丁峰 2014 化学学报 72 345Google Scholar

    Wang L, Gao J F, Ding F 2014 Acta Chim. Sin. 72 345Google Scholar

    [24]

    Wang J, Cai X, Shi R, Wu Z, Wang W, Long G, Tang Y, Cai N, Ouyang W, Geng P, Chandrashekar B N, Amini A, Wang N, Cheng C 2018 ACS Nano 12 635Google Scholar

    [25]

    Yang P, Zhang S, Pan S, Tang B, Liang Y, Zhao X, Zhang Z, Shi J, Huan Y, Shi Y, Pennycook S J, Ren Z, Zhang G, Chen Q, Zou X, Liu Z, Zhang Y 2020 ACS Nano 14 5036Google Scholar

    [26]

    Withanage S S, Khondaker S I 2019 MRS Advan. 4 587Google Scholar

  • [1] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [2] Jiang Zhou, Jiang Xue, Zhao Ji-Jun. Electronic properties of two-dimensional kagome lattice based on transition metal phthalocyanine heterojunctions. Acta Physica Sinica, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [3] Deng Lin-Mei, Si Jun-Shan, Wu Xu-Cai, Zhang Wei-Bing. Study of transition metal dichalcogenides/chromium trihalides van der Waals heterostructure by band unfolding method. Acta Physica Sinica, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [4] Hao Guo-Qiang, Zhang Rui, Zhang Wen-Jing, Chen Na, Ye Xiao-Jun, Li Hong-Bo. Regulation and control of Schottky barrier in graphene/MoSe2 heteojuinction by asymmetric oxygen doping. Acta Physica Sinica, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [5] Wang Fen-Tao, Fan Teng, Zhang Shi-Xiong, Sun Zhen-Hao, Fu Lei, Jia Wei, Shen Bo, Tang Ning. Growth of monolayer MoS2 films dual-assisted by NaCl. Acta Physica Sinica, 2022, 71(12): 128104. doi: 10.7498/aps.71.20220273
    [6] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [7] Yao Wen-Qian, Sun Jian-Zhe, Chen Jian-Yi, Guo Yun-Long, Wu Bin, Liu Yun-Qi. Controllable preparation and photoelectric applications of two-dimensional in-plane and van der Waals heterostructures. Acta Physica Sinica, 2021, 70(2): 027901. doi: 10.7498/aps.70.20201419
    [8] Wang Shuo, Wang Wen-Hui, Lü Jun-Peng, Ni Zhen-Hua. Chemical vapor deposition growth of large-areas two dimensional materials: Approaches and mechanisms. Acta Physica Sinica, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [9] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [10] Guo Li-Juan, Hu Ji-Song, Ma Xin-Guo, Xiang Ju. Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure. Acta Physica Sinica, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [11] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [12] Wei Zheng, Wang Qin-Qin, Guo Yu-Tuo, Li Jia-Wei, Shi Dong-Xia, Zhang Guang-Yu. Research progress of high-quality monolayer MoS2 films. Acta Physica Sinica, 2018, 67(12): 128103. doi: 10.7498/aps.67.20180732
    [13] Wei Yang, Ma Xin-Guo, Zhu Lin, He Hua, Huang Chu-Yun. Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure. Acta Physica Sinica, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [14] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. First-principles study on multiphase property and phase transition of monolayer MoS2. Acta Physica Sinica, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [15] Dong Yan-Fang, He Da-Wei, Wang Yong-Sheng, Xu Hai-Teng, Gong Zhe. Synthesis of large size monolayer MoS2 with a simple chemical vapor deposition. Acta Physica Sinica, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [16] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [17] Wei Xiao-Xu, Cheng Ying, Huo Da, Zhang Yu-Han, Wang Jun-Zhuan, Hu Yong, Shi Yi. PL enhancement of MoS2 by Au nanoparticles. Acta Physica Sinica, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [18] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [19] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [20] Liu Lu, Fan Guang-Han, Liao Chang-Jun, Cao Ming-De, Chen Gui-Chu, Chen Lian-Hui. Graded heterojunction in AlGaInP compound semiconductors and its application to HB-LED. Acta Physica Sinica, 2003, 52(5): 1264-1271. doi: 10.7498/aps.52.1264
Metrics
  • Abstract views:  5743
  • PDF Downloads:  144
  • Cited By: 0
Publishing process
  • Received Date:  17 September 2021
  • Accepted Date:  07 October 2021
  • Available Online:  16 February 2022
  • Published Online:  20 February 2022

/

返回文章
返回