-
In recent years, transition metal dichalcogenides materials represented by monolayer molybdenum disulfide (MoS2) have aroused great interest due to their excellent optical and electrical properties. The synthesis method of high-quality monolayer MoS2 film is a key problem for scientific research and industrial application. Recently, researchers have proposed a salt-assisted chemical vapor deposition method for growing the monolayer films, which greatly promotes the growth rate and quality of monolayer film. By using this method, we design a growth source of semi-enclosed quartz boat, and successfully obtain high-quality monolayer MoS2 films by using the double auxiliary action of sodium chloride (NaCl). Scanning electron microscopy shows the excellent film formation, and the photoluminescence spectra show that the luminescence intensity is significantly higher than that of the sample grown without NaCl. The NaCl double-assisted growth method proposed in this study can reduce the growth temperature of MoS2, shorten the growth time, and improve the optical properties of the films. Besides, the operation is simple and the cost is low, which provides an idea for growing the large-scale two-dimensional materials.
-
Keywords:
- MoS2 /
- chemical vapor deposition /
- NaCl dual-assist strategy /
- monolayer film growth
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, DUbonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Xie Y, Wang Z, Zhan Y, Zhang P, Wu R, Jiang T, Wu S, Wang H, Zhao Y, Nan T, Ma X 2017 Nanotechnology 28 084001Google Scholar
[3] Chen J, Zhao X, Tan S J, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Tang W, Li L, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar
[4] Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43Google Scholar
[5] 徐依全, 王聪 2020 物理学报 69 184216Google Scholar
Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar
[6] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar
[7] Yu Z, Ong Z Y, Li S, Xu J B, Zhang G, Zhang Y W, Shi Y, Wang X 2017 Adv. Funct. Mater. 27 1604093Google Scholar
[8] Han T, Liu H, Wang S, Chen S, Li W, Yang X, Cai M, Yang K 2019 Nanomaterials 9 740Google Scholar
[9] Lembke D, Kis A 2012 ACS Nano 6 10070Google Scholar
[10] Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J, Li L J 2013 Adv. Mater. 25 3456Google Scholar
[11] Yin X B, Ye Z L, Chenet D A, Ye Y, Brien K O, Hone J C, Zhang X 2014 Science 344 488Google Scholar
[12] 樊子冉, 孔洋洋, 李宇豪, 李志, 贾婷婷 2019 人工晶体学报 48 1190Google Scholar
Fan Z R, Kong Y Y, Li Y H, Li Z, Jia T T 2019 J. Synth. Cryst. 48 1190Google Scholar
[13] Fu D, Zhao X, Zhang Y Y, Li L, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T, Ding Z, Fu W, Shin T J, Shin H S, Pantelides S T, Zhou W, Loh K P 2017 J. Am. Chem. Soc. 139 9392Google Scholar
[14] Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H 2011 Angew. Chem. Int. Ed. 50 11093Google Scholar
[15] Wang S, Rong Y, Fan Y, Pacios M, Bhaskaran H, He K, Warner J H 2014 Chem. Mater. 26 6371Google Scholar
[16] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 物理学报 63 217802Google Scholar
Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Shi Y 2014 Acta Phys. Sin. 63 217802Google Scholar
[17] Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453Google Scholar
[18] Liu X, Fechler N, Antonietti M 2013 Chem. Soc. Rev. 42 8237Google Scholar
[19] Huang L, Hu Z, Jin H, Wu J, Liu K, Xu Z, Wan J, Zhou H, Duan J, Hu B, Zhou J 2020 Adv. Funct. Mater. 30 1908486Google Scholar
[20] Chen K, Chen Z, Wan X, Zheng Z, Xie F, Chen W, Gui X, Chen H, Xie W, Xu J 2017 Adv. Mater. 29 1700704Google Scholar
[21] Xie Y, Ma X, Wang Z, Nan T, Wu R, Zhang P, Wang H, Wang Y, Zhan Y, Hao Y 2018 MRS Adv. 3 365Google Scholar
[22] Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X, Huan Y, Xie C, Gao P, Chen Q, Zhang Q, Liu Z, Zhang Y 2018 Nat. Commun. 9 979Google Scholar
[23] Lin Y C, Yeh C H, Lin H C, Siao M D, Liu Z, Nakajima H, Okazaki T, Chou M Y, Suenaga K, Chiu P W 2018 ACS Nano 12 12080Google Scholar
[24] Pandey S K, Alsalman H, Azadani J G, Izquierdo N, Low T, Campbell S A 2018 Nanoscale 10 21374Google Scholar
[25] Huan Y, Shi J, Zou X, Gong Y, Xie C, Yang Z, Zhang Z, Gao Y, Shi Y, Li M, Yang P, Jiang S, Hong M, Gu L, Zhang Q, Yan X, Zhang Y 2019 J. Am. Chem. Soc. 141 18694Google Scholar
[26] Li P, Cui J, Zhou J, Guo D, Zhao Z, Yi J, Fan J, Ji Z, Jing X, Qu F, Yang C, Lu L, Lin J, Liu Z, Liu G 2019 Adv. Mater. 31 e1904641Google Scholar
[27] Lan F, Yang R, Xu Y, Qian S, Zhang S, Cheng H, Zhang Y 2018 Nanomaterials 8 100Google Scholar
[28] Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu C H, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G, Liu Z 2018 Nature 556 355Google Scholar
[29] Chen L, Zang L, Chen L, Wu J, Jiang C, Song J 2021 CrystEngComm 23 5337Google Scholar
[30] Li S, Wang S, Tang D M, Zhao W, Xu H, Chu L, Bando Y, Golberg D, Eda G 2015 Appl. Mater. Today 1 60Google Scholar
[31] Wang P, Lei J, Qu J, Cao S, Jiang H, He M, Shi H, Sun X, Gao B, Liu W 2019 Chem. Mater. 31 873Google Scholar
[32] Xie C, Yang P, Huan Y, Cui F, Zhang Y 2020 Dalton Trans. 49 10319Google Scholar
[33] Wang W, Shu H, Wang J, Cheng Y, Liang P, Chen X 2020 ACS Appl. Mater. Interfaces 12 9563Google Scholar
[34] Song J G, Ryu G H, Lee S J, Sim S, Lee C W, Choi T, Jung H, Kim Y, Lee Z, Myoung J M, Dussarrat C, Lansalot-Matras C, Park J, Choi H, Kim H 2015 Nat. Commun. 6 7817Google Scholar
[35] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar
[36] Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F, Shan J 2013 Nat. Mater. 12 207Google Scholar
-
图 5 (a)—(c) 不同浓度的NaCl搭配下的光学显微镜图像 (a) 10 mg + 0.1 mmol/L; (b) 10 mg + 0.3 mmol/L, 内插图为MoS2边界的AFM图; (c) 10 mg + 0.5 mmol/L. (d) 10 mg + 0.3 mmol/L条件下生长的MoS2在Si衬底的照片以及左中右三块区域的大范围SEM图像
Figure 5. (a)–(c) Optical microscope images with different concentrations of NaCl: (a) 10 mg + 0.1 mmol/L; (b) 10 mg + 0.3 mmol/L, the inside image is an AFM diagram of MoS2 boundary; (c) 10 mg + 0.5 mmol/L. (d) Photographs of MoS2 grown under the condition of 10 mg + 0.3 mmol/L and large range SEM images corresponding to the three regions of left, middle and right
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, DUbonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Xie Y, Wang Z, Zhan Y, Zhang P, Wu R, Jiang T, Wu S, Wang H, Zhao Y, Nan T, Ma X 2017 Nanotechnology 28 084001Google Scholar
[3] Chen J, Zhao X, Tan S J, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Tang W, Li L, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar
[4] Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43Google Scholar
[5] 徐依全, 王聪 2020 物理学报 69 184216Google Scholar
Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar
[6] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar
[7] Yu Z, Ong Z Y, Li S, Xu J B, Zhang G, Zhang Y W, Shi Y, Wang X 2017 Adv. Funct. Mater. 27 1604093Google Scholar
[8] Han T, Liu H, Wang S, Chen S, Li W, Yang X, Cai M, Yang K 2019 Nanomaterials 9 740Google Scholar
[9] Lembke D, Kis A 2012 ACS Nano 6 10070Google Scholar
[10] Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J, Li L J 2013 Adv. Mater. 25 3456Google Scholar
[11] Yin X B, Ye Z L, Chenet D A, Ye Y, Brien K O, Hone J C, Zhang X 2014 Science 344 488Google Scholar
[12] 樊子冉, 孔洋洋, 李宇豪, 李志, 贾婷婷 2019 人工晶体学报 48 1190Google Scholar
Fan Z R, Kong Y Y, Li Y H, Li Z, Jia T T 2019 J. Synth. Cryst. 48 1190Google Scholar
[13] Fu D, Zhao X, Zhang Y Y, Li L, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T, Ding Z, Fu W, Shin T J, Shin H S, Pantelides S T, Zhou W, Loh K P 2017 J. Am. Chem. Soc. 139 9392Google Scholar
[14] Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H 2011 Angew. Chem. Int. Ed. 50 11093Google Scholar
[15] Wang S, Rong Y, Fan Y, Pacios M, Bhaskaran H, He K, Warner J H 2014 Chem. Mater. 26 6371Google Scholar
[16] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 物理学报 63 217802Google Scholar
Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Shi Y 2014 Acta Phys. Sin. 63 217802Google Scholar
[17] Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453Google Scholar
[18] Liu X, Fechler N, Antonietti M 2013 Chem. Soc. Rev. 42 8237Google Scholar
[19] Huang L, Hu Z, Jin H, Wu J, Liu K, Xu Z, Wan J, Zhou H, Duan J, Hu B, Zhou J 2020 Adv. Funct. Mater. 30 1908486Google Scholar
[20] Chen K, Chen Z, Wan X, Zheng Z, Xie F, Chen W, Gui X, Chen H, Xie W, Xu J 2017 Adv. Mater. 29 1700704Google Scholar
[21] Xie Y, Ma X, Wang Z, Nan T, Wu R, Zhang P, Wang H, Wang Y, Zhan Y, Hao Y 2018 MRS Adv. 3 365Google Scholar
[22] Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X, Huan Y, Xie C, Gao P, Chen Q, Zhang Q, Liu Z, Zhang Y 2018 Nat. Commun. 9 979Google Scholar
[23] Lin Y C, Yeh C H, Lin H C, Siao M D, Liu Z, Nakajima H, Okazaki T, Chou M Y, Suenaga K, Chiu P W 2018 ACS Nano 12 12080Google Scholar
[24] Pandey S K, Alsalman H, Azadani J G, Izquierdo N, Low T, Campbell S A 2018 Nanoscale 10 21374Google Scholar
[25] Huan Y, Shi J, Zou X, Gong Y, Xie C, Yang Z, Zhang Z, Gao Y, Shi Y, Li M, Yang P, Jiang S, Hong M, Gu L, Zhang Q, Yan X, Zhang Y 2019 J. Am. Chem. Soc. 141 18694Google Scholar
[26] Li P, Cui J, Zhou J, Guo D, Zhao Z, Yi J, Fan J, Ji Z, Jing X, Qu F, Yang C, Lu L, Lin J, Liu Z, Liu G 2019 Adv. Mater. 31 e1904641Google Scholar
[27] Lan F, Yang R, Xu Y, Qian S, Zhang S, Cheng H, Zhang Y 2018 Nanomaterials 8 100Google Scholar
[28] Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu C H, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G, Liu Z 2018 Nature 556 355Google Scholar
[29] Chen L, Zang L, Chen L, Wu J, Jiang C, Song J 2021 CrystEngComm 23 5337Google Scholar
[30] Li S, Wang S, Tang D M, Zhao W, Xu H, Chu L, Bando Y, Golberg D, Eda G 2015 Appl. Mater. Today 1 60Google Scholar
[31] Wang P, Lei J, Qu J, Cao S, Jiang H, He M, Shi H, Sun X, Gao B, Liu W 2019 Chem. Mater. 31 873Google Scholar
[32] Xie C, Yang P, Huan Y, Cui F, Zhang Y 2020 Dalton Trans. 49 10319Google Scholar
[33] Wang W, Shu H, Wang J, Cheng Y, Liang P, Chen X 2020 ACS Appl. Mater. Interfaces 12 9563Google Scholar
[34] Song J G, Ryu G H, Lee S J, Sim S, Lee C W, Choi T, Jung H, Kim Y, Lee Z, Myoung J M, Dussarrat C, Lansalot-Matras C, Park J, Choi H, Kim H 2015 Nat. Commun. 6 7817Google Scholar
[35] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar
[36] Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F, Shan J 2013 Nat. Mater. 12 207Google Scholar
Catalog
Metrics
- Abstract views: 6276
- PDF Downloads: 262
- Cited By: 0