Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of high-quality monolayer MoS2 films

Wei Zheng Wang Qin-Qin Guo Yu-Tuo Li Jia-Wei Shi Dong-Xia Zhang Guang-Yu

Citation:

Research progress of high-quality monolayer MoS2 films

Wei Zheng, Wang Qin-Qin, Guo Yu-Tuo, Li Jia-Wei, Shi Dong-Xia, Zhang Guang-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As an emerging two-dimensional (2D) material, monolayer molybdenum disulfide films show excellent electrical and optical properties and have aroused great interest due to their potential applications in electronics and optoelectronics. In this paper, we review our works about molybdenum disulfide films in the past few years. Chemical vapor deposition (CVD) is a convenient and low-cost method to synthesize 2D materials. By oxygen-assisted CVD, the wafer-scale highly-oriented monolayer molybdenum disulfide films and large single-crystal monolayer molybdenum disulfide on various substrates have been prepared epitaxially. Preparation of high-quality monolayer molybdenum disulfide films is the key to measure its intrinsic properties and realize its large-scale applications. Besides the preparation of high-quality materials, the optimizing of transfer technique and fabrication technique are of equal importance for improving the properties of electronic and optoelectronic devices. Water-assisted lossless transfer, patterned peeling, structural change and local phase transition of monolayer molybdenum disulfide films pave the way for preparing and optimizing the functionalized devices. For example, water-assisted transfer and patterned peeling provide methods of preparing molybdenum disulfide samples with clean surfaces and interfaces. Phase transition in the contact area of field-effect transistor reduces the contact resistance effectively, which improves the electrical performance. In addition, the heterojunctions of molybdenum disulfide and other 2D materials show novel electrical and optical properties. As for the functional devices, ultrashort-channel field-effect transistors, integrated flexible thin film transistors, and humidity sensor array have been realized with monolayer molybdenum disulfide films. A grain boundary widening technique is developed to fabricate graphene electrodes for ultrashort-channel monolayer molybdenum disulfide transistors. Field-effect transistors with channel lengths scaling down to 4 nm can be realized reliably and exhibit superior performances, such as the nearly Ohmic contacts and excellent immunity to short channel effects. Furthermore, monolayer molybdenum disulfide films show excellent electrical properties in the measurement of integrated flexible thin film transistors. Under a uniaxial stain of 1%, the performance of the device shows no obvious change, revealing not only the high quality of CVD-grown molybdenum disulfide films, but also the stabilities of these flexible thin film transistor devices. Molybdenum disulfide humidity sensor array for noncontact sensation also shows high sensitivity and stability. Mobility and on/off ratio of the devices in the array decrease linearly with the relative humidity increasing, leading to a high sensitivity of more than 104. The study of monolayer molybdenum disulfide films is universal and instructive for other 2D transition metal dichalcogenides.
      Corresponding author: Shi Dong-Xia, dxshi@iphy.ac.cn;gyzhang@iphy.ac.cn ; Zhang Guang-Yu, dxshi@iphy.ac.cn;gyzhang@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51572289, 61734001), the National Key RD Program of China (Grant No. 2016YFA0300904), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH004), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDPB06).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [3]

    Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, Hone J 2015 Nat. Nanotechnol. 10 534

    [4]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497

    [5]

    Pu J, Yomogida Y, Liu K K, Li L J, Iwasa Y, Takenobu T 2012 Nano Lett. 12 4013

    [6]

    Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674

    [7]

    Tan L K, Liu B, Teng J H, Guo S H, Low H Y, Loh K P 2014 Nanoscale 6 10584

    [8]

    Liu H J, Jiao L, Yang F, Cai Y, Wu X X, Ho W K, Gao C L, Jia J F, Wang N, Fan H, Yao W, Xie M H 2014 Phys. Rev. Lett. 113 066105

    [9]

    Serna M I, Yoo S H, Moreno S, Xi Y, Oviedo J P, Choi H, Alshareef H N, Kim M J, Minary-Jolandan M, Quevedo-Lopez M A 2016 ACS Nano 10 6054

    [10]

    Li H N, Li Y, Aljarb A, Shi Y M, Li L J 2017 Chem. Rev. 7b00212

    [11]

    Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656

    [12]

    Lin Y C, Zhang W J, Huang J K, Liu K K, Lee Y H, Liang C T, Chu C W, Li L J 2012 Nanoscale 4 6637

    [13]

    Kang K, Lee K H, Han Y, Gao H, Xie S, Muller D A, Park J 2017 Nature 550 229

    [14]

    Das S, Chen H Y, Penumatcha A V, Appenzeller J 2013 Nano Lett. 13 100

    [15]

    Zheng J Y, Yan X X, Lu Z X, Qiu H L, Xu G C, Zhou X, Wang P, Pan X Q, Liu K H, Jiao L Y 2017 Adv. Mater. 29 1604540

    [16]

    Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M 2014 Nat. Mater. 13 1128

    [17]

    Zhang J, Yu H, Chen W, Tian X Z, Liu D H, Cheng M, Xie G B, Yang W, Yang R, Bai X D, Shi D X, Zhang G Y 2014 ACS Nano 8 6024

    [18]

    Chen W, Zhao J, Zhang J, Gu L, Yang Z Z, Li X M, Yu H, Zhu X T, Yang R, Shi D X, Lin X C, Guo J D, Bai X D, Zhang G Y 2015 J. Am. Chem. Soc. 137 15632

    [19]

    Yu H, Yang Z Z, Du L J, Zhang J, Shi J N, Chen W, Chen P, Liao M Z, Zhao J, Meng J L, Wang G L, Zhu J Q, Yang R, Shi D X, Gu L, Zhang G Y 2017 Small 13 1603005

    [20]

    Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017 ACS Nano 11 12001

    [21]

    Zhao J, Yu H, Chen W, Yang R, Zhu J Q, Liao M Z, Shi D X, Zhang G Y 2016 ACS Appl. Mater. Interfaces 8 16546

    [22]

    Meng J L, Wang G L, Li X M, Lu X B, Zhang J, Yu H, Chen W, Du L J, Liao M Z, Zhao J, Chen P, Zhu J Q, Bai X D, Shi D X, Zhang G Y 2016 Small 12 3770

    [23]

    Zhu J Q, Wang Z C, Yu H, Li N, Zhang J, Meng J L, Liao M Z, Zhao J, Lu X B, Du L J, Yang R, Shi D X, Jiang Y, Zhang G Y 2017 J. Am. Chem. Soc. 139 10216

    [24]

    Xie L, Du L J, Lu X B, Yang R, Shi D X, Zhang G Y 2017 Chin. Phys. B 26 087306

    [25]

    Chen P, Xiang J Y, Yu H, Zhang J, Xie G B, Wu S, Lu X B, Wang G L, Zhao J, Wen F S, Liu Z Y, Yang R, Shi D X, Zhang G Y 2015 2D Materials 2 034009

    [26]

    Zhang J, Wang J H, Chen P, Sun Y, Wu S, Jia Z Y, Lu X B, Yu H, Chen W, Zhu J Q, Xie G B, Yang R, Shi D X, Xu X L, Xiang J Y, Liu K H, Zhang G Y 2016 Adv. Mater. 28 1950

    [27]

    Du L J, Yu H, Liao M Z, Wang S P, Xie L, Lu X B, Zhu J Q, Li N, Shen C, Chen P, Yang R, Shi D X, Zhang G Y 2017 Appl. Phys. Lett. 111 263106

    [28]

    Xie L, Liao M Z, Wang S P, Yu H, Du L J, Tang J, Zhao J, Zhang J, Chen P, Lu X B, Wang G L, Xie G B, Yang R, Shi D X, Zhang G Y 2017 Adv. Mater. 29 1702522

    [29]

    Zhao J, Chen W, Meng J L, Yu H, Liao M Z, Zhu J Q, Yang R, Shi D X, Zhang G Y 2016 Adv. Elec. Mater. 2 1500379

    [30]

    Zhao J, Li N, Yu H, Wei Z, Liao M Z, Chen P, Wang S P, Shi D X, Sun Q J, Zhang G Y 2017 Adv. Mater. 29 1702076

    [31]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q X, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C M, Wong H S P, Javey A 2016 Science 354 99

    [32]

    Feng J D, Graf M, Liu K, Ovchinnikov D, Dumcenco D, Heiranian M, Nandigana V, Aluru N R, Kis A, Radenovic A 2016 Nature 536 197

    [33]

    Sahoo P K, Memaran S, Xin Y, Balicas L, Gutirrez H R 2018 Nature 553 63

    [34]

    Baker M A, Gilmore R, Lenardi C, Gissler W 1999 Appl. Surf. Sci. 150 255

    [35]

    Yu Y F, Li C, Liu Y, Su L Q, Zhang Y, Cao L Y 2013 Sci. Rep. 3 1866

    [36]

    Islam N R, Kang N, Bhanu U, Paudel H P, Erementchouk M, Tetard L, Leuenberger M N, Khondaker S I 2014 Nanoscale 6 10033

    [37]

    Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G 2013 Nat. Mater. 12 792

    [38]

    Geim A K, Grigorieva I V 2013 Nature 499 419

    [39]

    Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J, Watanabe K, Taniguchi T, Nuckolls C, Kim P, Hone J 2013 ACS Nano 7 7931

    [40]

    Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626

    [41]

    Lee Y H, Yu L L, Wang H, Fang W J, Ling X, Shi Y M, Lin C T, Huang J K, Chang M T, Chang C S, Dresselhaus M, Palacios T, Li L J, Kong J 2013 Nano Lett. 13 1852

    [42]

    Gurarslan A, Yu Y F, Su L Q, Yu Y L, Suarez F, Yao S, Zhu Y, Ozturk M, Zhang Y, Cao L Y 2014 ACS Nano 8 11522

    [43]

    Schneider G F, Calado V E, Zandbergen H, Vandersypen L M K, Dekker C 2010 Nano Lett. 10 1912

    [44]

    Braga S F, Coluci V R, Legoas S B, Giro R, Galvo D S, Baughman R H 2004 Nano Lett. 4 881

    [45]

    Chen Y, Lu J, Gao Z X 2007 J. Phys. Chem. C 111 1625

    [46]

    Pan H, Feng Y, Lin J 2005 Phys. Rev. B 72 085415

    [47]

    Lauret J S, Arenal R, Ducastelle F, Loiseau A, Cau M, Attal-Tretout B, Rosencher E, Goux-Capes L 2005 Phys. Rev. Lett. 94 037405

    [48]

    Guo G Y, Lin J C 2005 Phys. Rev. B 71 165402

    [49]

    Xiao J, Long M Q, Li X M, Xu H, Huang H, Gao Y L 2014 Sci. Rep. 4 4327

    [50]

    Ghorbani-Asl M, Zibouche N, Wahiduzzaman M, Oliveira A F, Kuc A, Heine T 2013 Sci. Rep. 3 2961

    [51]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263

    [52]

    Duerloo K A N, Li Y, Reed E J 2014 Nat. Commun. 5 4214

    [53]

    Guo Y, Sun D, Ouyang B, Raja A, Song J, Heinz T F, Brus L E 2015 Nano Lett. 15 5081

    [54]

    Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M 2012 ACS Nano 6 7311

    [55]

    Nayak A P, Pandey T, Voiry D, Liu J, Moran S T, Sharma A, Tan C, Chen C, Li L J, Chhowalla M U, Lin J F, Singh A K, Akinwande D 2015 Nano Lett. 15 346

    [56]

    Liu Q, Li X, He Q, Khalil A, Liu D, Xiang T, Wu X, Song L 2015 Small 11 5556

    [57]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [58]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111

    [59]

    Cai L, He J, Liu Q, Yao T, Chen L, Yan W, Hu F, Jiang Y, Zhao Y, Hu T, Sun Z, Wei S 2015 J. Am. Chem. Soc. 137 2622

    [60]

    Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, Herre S J, van der Zant, Steele G A 2014 2D Materials 1 011002

    [61]

    Wang L, Meric I, Huang P, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L, Muller D 2013 Science 342 614

    [62]

    Kwak J Y, Hwang J, Calderon B, Alsalman H, Munoz N, Schutter B, Spencer M G 2014 Nano Lett. 14 4511

    [63]

    Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934

    [64]

    Xu K, Chen D X, Yang F Y, Wang Z X, Yin L, Wang F, Cheng R Q, Liu K H, Xiong J, Liu Q, He J 2017 Nano Lett. 17 1065

    [65]

    Lee S C, Pearson G L 1981 Solid State Electron. 24 563

    [66]

    Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S 2010 Acs Nano 4 2695

    [67]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D D 2014 ACS Nano 8 4033

    [68]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [69]

    Tran V, Soklaski R, Liang Y, Yang L 2014 Phys. Rev. B 89 235319

    [70]

    van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y M, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554

    [71]

    Jin W, Yeh P C, Zaki N, Chenet D, Arefe G, Hao Y, Sala A, Mentes T O, Dadap J I, Locatelli A, Home J, Osgood Jr R M 2015 Phys. Rev. B 92 201409

    [72]

    Zhu C R, Wang G, Liu B L, Marie X, Qiao X F, Zhang X, Wu X X, Fan H, Tan P H, Amand T, Urbaszek B 2013 Phys. Rev. B 88 121301

    [73]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372

    [74]

    Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S, Castellanos-Gomez A 2014 Nano Lett. 14 3347

    [75]

    Na J, Lee Y T, Lim J A, Hwang D K, Kim G T, Choi W K, Song Y W 2014 ACS Nano 8 11753

    [76]

    Campbell P M, Tarasov A, Joiner C A, Tsai M Y, Pavlidis G, Graham S, Ready W J, Vogel E M 2016 Nanoscale 8 2268

    [77]

    Chuang H J, Tan X, Ghimire N J, Perera M M, Chamlagain B, Cheng M M C, Yan J, Mandrus D, Tomnek D, Zhou Z 2014 Nano Lett. 14 3594

    [78]

    Cao Y, Wei Z, Liu S, Gan L, Guo X, Xu W, Steigerwald M L, Liu Z, Zhu D 2010 Angew. Chem. 122 6463

    [79]

    Cao Y, Liu S, Shen Q, Yan K, Li P, Xu J, Yu D, Steigerwald M L, Nuckolls C, Liu Z 2009 Adv. Funct. Mater. 19 2743

    [80]

    Liu Y, Guo J, Wu Y C, Zhu E, Weiss N O, He Q, Wu H, Cheng H C, Xu Y, Shakir I 2016 Nano Lett. 16 6337

    [81]

    Liu Y, Wu H, Cheng H C, Yang S, Zhu E, He Q, Ding M, Li D, Guo J, Weiss N O 2015 Nano Lett. 15 3030

    [82]

    Miao J, Zhang S, Cai L, Scherr M, Wang C 2015 ACS Nano 9 9236

    [83]

    Roy T, Tosun M, Kang J S, Sachid A B, Desai S B, Hettick M, Hu C M C, Javey A 2014 ACS Nano 8 6259

    [84]

    Salvatore G A, Munzenrieder N, Barraud C, Petti L, Zysset C, Buthe L, Ensslin K, Troster G 2013 ACS Nano 7 8809

    [85]

    Yoon J, Park W, Bae G Y, Kim Y, Jang H S, Hyun Y, Lim S K, Kahng Y H, Hong W K, Lee B H, Ko H C 2013 Small 9 3295

    [86]

    Zhao J, Wang G L, Yang R, Lu X B, Cheng M, He C L, Xie G B, Meng J L, Shi D X, Zhang G Y 2015 ACS Nano 9 1622

    [87]

    Powell M J 1989 IEEE Trans. Electron. Dev. 36 2753

    [88]

    Dimitrakopoulos C D, Malenfant P R L 2002 Adv. Mater. 14 99

    [89]

    Street R A 2009 Adv. Mater. 21 2007

    [90]

    Zhao J, He C L, Yang R, Shi Z W, Cheng M, Yang W, Xie G B, Wang D M, Shi D X, Zhang G Y 2012 Appl. Phys. Lett. 101 063112

    [91]

    Late D J, Liu B, Matte H S S R, Dravid V P, Rao C N R 2012 ACS Nano 6 5635

    [92]

    Zhang S L, Choi H H, Yue H Y, Yang W C 2014 Curr. Appl. Phys. 14 264

    [93]

    Late D J, HuangY K, Liu B, Acharya J, Shirodkar S N, Luo J J, Yan A M, Charles D, Waghmare U V, Dravid V P, Rao C N R 2013 ACS Nano 7 4879

    [94]

    Wang Y L, Cong C X, Qiu C Y, Yu T 2013 Small 9 2857

    [95]

    Horzum S, Sahin H, Cahangirov S, Cudazzo P, Rubio A, Serin T, Peeters F M 2013 Phys. Rev. B 87 125415

    [96]

    Tongay S, Zhou J, Ataca C, Liu J, Kang J S, Matthews T S, You L, Li J B, Grossman J C, Wu J Q 2013 Nano Lett. 13 2831

    [97]

    Varghese J O, Agbo P, Sutherland A M, Brar V W, Rossman G R, Gray H B, Heath J R 2015 Adv. Mater. 27 2734

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [3]

    Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, Hone J 2015 Nat. Nanotechnol. 10 534

    [4]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497

    [5]

    Pu J, Yomogida Y, Liu K K, Li L J, Iwasa Y, Takenobu T 2012 Nano Lett. 12 4013

    [6]

    Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674

    [7]

    Tan L K, Liu B, Teng J H, Guo S H, Low H Y, Loh K P 2014 Nanoscale 6 10584

    [8]

    Liu H J, Jiao L, Yang F, Cai Y, Wu X X, Ho W K, Gao C L, Jia J F, Wang N, Fan H, Yao W, Xie M H 2014 Phys. Rev. Lett. 113 066105

    [9]

    Serna M I, Yoo S H, Moreno S, Xi Y, Oviedo J P, Choi H, Alshareef H N, Kim M J, Minary-Jolandan M, Quevedo-Lopez M A 2016 ACS Nano 10 6054

    [10]

    Li H N, Li Y, Aljarb A, Shi Y M, Li L J 2017 Chem. Rev. 7b00212

    [11]

    Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656

    [12]

    Lin Y C, Zhang W J, Huang J K, Liu K K, Lee Y H, Liang C T, Chu C W, Li L J 2012 Nanoscale 4 6637

    [13]

    Kang K, Lee K H, Han Y, Gao H, Xie S, Muller D A, Park J 2017 Nature 550 229

    [14]

    Das S, Chen H Y, Penumatcha A V, Appenzeller J 2013 Nano Lett. 13 100

    [15]

    Zheng J Y, Yan X X, Lu Z X, Qiu H L, Xu G C, Zhou X, Wang P, Pan X Q, Liu K H, Jiao L Y 2017 Adv. Mater. 29 1604540

    [16]

    Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M 2014 Nat. Mater. 13 1128

    [17]

    Zhang J, Yu H, Chen W, Tian X Z, Liu D H, Cheng M, Xie G B, Yang W, Yang R, Bai X D, Shi D X, Zhang G Y 2014 ACS Nano 8 6024

    [18]

    Chen W, Zhao J, Zhang J, Gu L, Yang Z Z, Li X M, Yu H, Zhu X T, Yang R, Shi D X, Lin X C, Guo J D, Bai X D, Zhang G Y 2015 J. Am. Chem. Soc. 137 15632

    [19]

    Yu H, Yang Z Z, Du L J, Zhang J, Shi J N, Chen W, Chen P, Liao M Z, Zhao J, Meng J L, Wang G L, Zhu J Q, Yang R, Shi D X, Gu L, Zhang G Y 2017 Small 13 1603005

    [20]

    Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017 ACS Nano 11 12001

    [21]

    Zhao J, Yu H, Chen W, Yang R, Zhu J Q, Liao M Z, Shi D X, Zhang G Y 2016 ACS Appl. Mater. Interfaces 8 16546

    [22]

    Meng J L, Wang G L, Li X M, Lu X B, Zhang J, Yu H, Chen W, Du L J, Liao M Z, Zhao J, Chen P, Zhu J Q, Bai X D, Shi D X, Zhang G Y 2016 Small 12 3770

    [23]

    Zhu J Q, Wang Z C, Yu H, Li N, Zhang J, Meng J L, Liao M Z, Zhao J, Lu X B, Du L J, Yang R, Shi D X, Jiang Y, Zhang G Y 2017 J. Am. Chem. Soc. 139 10216

    [24]

    Xie L, Du L J, Lu X B, Yang R, Shi D X, Zhang G Y 2017 Chin. Phys. B 26 087306

    [25]

    Chen P, Xiang J Y, Yu H, Zhang J, Xie G B, Wu S, Lu X B, Wang G L, Zhao J, Wen F S, Liu Z Y, Yang R, Shi D X, Zhang G Y 2015 2D Materials 2 034009

    [26]

    Zhang J, Wang J H, Chen P, Sun Y, Wu S, Jia Z Y, Lu X B, Yu H, Chen W, Zhu J Q, Xie G B, Yang R, Shi D X, Xu X L, Xiang J Y, Liu K H, Zhang G Y 2016 Adv. Mater. 28 1950

    [27]

    Du L J, Yu H, Liao M Z, Wang S P, Xie L, Lu X B, Zhu J Q, Li N, Shen C, Chen P, Yang R, Shi D X, Zhang G Y 2017 Appl. Phys. Lett. 111 263106

    [28]

    Xie L, Liao M Z, Wang S P, Yu H, Du L J, Tang J, Zhao J, Zhang J, Chen P, Lu X B, Wang G L, Xie G B, Yang R, Shi D X, Zhang G Y 2017 Adv. Mater. 29 1702522

    [29]

    Zhao J, Chen W, Meng J L, Yu H, Liao M Z, Zhu J Q, Yang R, Shi D X, Zhang G Y 2016 Adv. Elec. Mater. 2 1500379

    [30]

    Zhao J, Li N, Yu H, Wei Z, Liao M Z, Chen P, Wang S P, Shi D X, Sun Q J, Zhang G Y 2017 Adv. Mater. 29 1702076

    [31]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q X, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C M, Wong H S P, Javey A 2016 Science 354 99

    [32]

    Feng J D, Graf M, Liu K, Ovchinnikov D, Dumcenco D, Heiranian M, Nandigana V, Aluru N R, Kis A, Radenovic A 2016 Nature 536 197

    [33]

    Sahoo P K, Memaran S, Xin Y, Balicas L, Gutirrez H R 2018 Nature 553 63

    [34]

    Baker M A, Gilmore R, Lenardi C, Gissler W 1999 Appl. Surf. Sci. 150 255

    [35]

    Yu Y F, Li C, Liu Y, Su L Q, Zhang Y, Cao L Y 2013 Sci. Rep. 3 1866

    [36]

    Islam N R, Kang N, Bhanu U, Paudel H P, Erementchouk M, Tetard L, Leuenberger M N, Khondaker S I 2014 Nanoscale 6 10033

    [37]

    Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G 2013 Nat. Mater. 12 792

    [38]

    Geim A K, Grigorieva I V 2013 Nature 499 419

    [39]

    Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J, Watanabe K, Taniguchi T, Nuckolls C, Kim P, Hone J 2013 ACS Nano 7 7931

    [40]

    Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626

    [41]

    Lee Y H, Yu L L, Wang H, Fang W J, Ling X, Shi Y M, Lin C T, Huang J K, Chang M T, Chang C S, Dresselhaus M, Palacios T, Li L J, Kong J 2013 Nano Lett. 13 1852

    [42]

    Gurarslan A, Yu Y F, Su L Q, Yu Y L, Suarez F, Yao S, Zhu Y, Ozturk M, Zhang Y, Cao L Y 2014 ACS Nano 8 11522

    [43]

    Schneider G F, Calado V E, Zandbergen H, Vandersypen L M K, Dekker C 2010 Nano Lett. 10 1912

    [44]

    Braga S F, Coluci V R, Legoas S B, Giro R, Galvo D S, Baughman R H 2004 Nano Lett. 4 881

    [45]

    Chen Y, Lu J, Gao Z X 2007 J. Phys. Chem. C 111 1625

    [46]

    Pan H, Feng Y, Lin J 2005 Phys. Rev. B 72 085415

    [47]

    Lauret J S, Arenal R, Ducastelle F, Loiseau A, Cau M, Attal-Tretout B, Rosencher E, Goux-Capes L 2005 Phys. Rev. Lett. 94 037405

    [48]

    Guo G Y, Lin J C 2005 Phys. Rev. B 71 165402

    [49]

    Xiao J, Long M Q, Li X M, Xu H, Huang H, Gao Y L 2014 Sci. Rep. 4 4327

    [50]

    Ghorbani-Asl M, Zibouche N, Wahiduzzaman M, Oliveira A F, Kuc A, Heine T 2013 Sci. Rep. 3 2961

    [51]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263

    [52]

    Duerloo K A N, Li Y, Reed E J 2014 Nat. Commun. 5 4214

    [53]

    Guo Y, Sun D, Ouyang B, Raja A, Song J, Heinz T F, Brus L E 2015 Nano Lett. 15 5081

    [54]

    Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M 2012 ACS Nano 6 7311

    [55]

    Nayak A P, Pandey T, Voiry D, Liu J, Moran S T, Sharma A, Tan C, Chen C, Li L J, Chhowalla M U, Lin J F, Singh A K, Akinwande D 2015 Nano Lett. 15 346

    [56]

    Liu Q, Li X, He Q, Khalil A, Liu D, Xiang T, Wu X, Song L 2015 Small 11 5556

    [57]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [58]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111

    [59]

    Cai L, He J, Liu Q, Yao T, Chen L, Yan W, Hu F, Jiang Y, Zhao Y, Hu T, Sun Z, Wei S 2015 J. Am. Chem. Soc. 137 2622

    [60]

    Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, Herre S J, van der Zant, Steele G A 2014 2D Materials 1 011002

    [61]

    Wang L, Meric I, Huang P, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L, Muller D 2013 Science 342 614

    [62]

    Kwak J Y, Hwang J, Calderon B, Alsalman H, Munoz N, Schutter B, Spencer M G 2014 Nano Lett. 14 4511

    [63]

    Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934

    [64]

    Xu K, Chen D X, Yang F Y, Wang Z X, Yin L, Wang F, Cheng R Q, Liu K H, Xiong J, Liu Q, He J 2017 Nano Lett. 17 1065

    [65]

    Lee S C, Pearson G L 1981 Solid State Electron. 24 563

    [66]

    Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S 2010 Acs Nano 4 2695

    [67]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D D 2014 ACS Nano 8 4033

    [68]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [69]

    Tran V, Soklaski R, Liang Y, Yang L 2014 Phys. Rev. B 89 235319

    [70]

    van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y M, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554

    [71]

    Jin W, Yeh P C, Zaki N, Chenet D, Arefe G, Hao Y, Sala A, Mentes T O, Dadap J I, Locatelli A, Home J, Osgood Jr R M 2015 Phys. Rev. B 92 201409

    [72]

    Zhu C R, Wang G, Liu B L, Marie X, Qiao X F, Zhang X, Wu X X, Fan H, Tan P H, Amand T, Urbaszek B 2013 Phys. Rev. B 88 121301

    [73]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372

    [74]

    Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S, Castellanos-Gomez A 2014 Nano Lett. 14 3347

    [75]

    Na J, Lee Y T, Lim J A, Hwang D K, Kim G T, Choi W K, Song Y W 2014 ACS Nano 8 11753

    [76]

    Campbell P M, Tarasov A, Joiner C A, Tsai M Y, Pavlidis G, Graham S, Ready W J, Vogel E M 2016 Nanoscale 8 2268

    [77]

    Chuang H J, Tan X, Ghimire N J, Perera M M, Chamlagain B, Cheng M M C, Yan J, Mandrus D, Tomnek D, Zhou Z 2014 Nano Lett. 14 3594

    [78]

    Cao Y, Wei Z, Liu S, Gan L, Guo X, Xu W, Steigerwald M L, Liu Z, Zhu D 2010 Angew. Chem. 122 6463

    [79]

    Cao Y, Liu S, Shen Q, Yan K, Li P, Xu J, Yu D, Steigerwald M L, Nuckolls C, Liu Z 2009 Adv. Funct. Mater. 19 2743

    [80]

    Liu Y, Guo J, Wu Y C, Zhu E, Weiss N O, He Q, Wu H, Cheng H C, Xu Y, Shakir I 2016 Nano Lett. 16 6337

    [81]

    Liu Y, Wu H, Cheng H C, Yang S, Zhu E, He Q, Ding M, Li D, Guo J, Weiss N O 2015 Nano Lett. 15 3030

    [82]

    Miao J, Zhang S, Cai L, Scherr M, Wang C 2015 ACS Nano 9 9236

    [83]

    Roy T, Tosun M, Kang J S, Sachid A B, Desai S B, Hettick M, Hu C M C, Javey A 2014 ACS Nano 8 6259

    [84]

    Salvatore G A, Munzenrieder N, Barraud C, Petti L, Zysset C, Buthe L, Ensslin K, Troster G 2013 ACS Nano 7 8809

    [85]

    Yoon J, Park W, Bae G Y, Kim Y, Jang H S, Hyun Y, Lim S K, Kahng Y H, Hong W K, Lee B H, Ko H C 2013 Small 9 3295

    [86]

    Zhao J, Wang G L, Yang R, Lu X B, Cheng M, He C L, Xie G B, Meng J L, Shi D X, Zhang G Y 2015 ACS Nano 9 1622

    [87]

    Powell M J 1989 IEEE Trans. Electron. Dev. 36 2753

    [88]

    Dimitrakopoulos C D, Malenfant P R L 2002 Adv. Mater. 14 99

    [89]

    Street R A 2009 Adv. Mater. 21 2007

    [90]

    Zhao J, He C L, Yang R, Shi Z W, Cheng M, Yang W, Xie G B, Wang D M, Shi D X, Zhang G Y 2012 Appl. Phys. Lett. 101 063112

    [91]

    Late D J, Liu B, Matte H S S R, Dravid V P, Rao C N R 2012 ACS Nano 6 5635

    [92]

    Zhang S L, Choi H H, Yue H Y, Yang W C 2014 Curr. Appl. Phys. 14 264

    [93]

    Late D J, HuangY K, Liu B, Acharya J, Shirodkar S N, Luo J J, Yan A M, Charles D, Waghmare U V, Dravid V P, Rao C N R 2013 ACS Nano 7 4879

    [94]

    Wang Y L, Cong C X, Qiu C Y, Yu T 2013 Small 9 2857

    [95]

    Horzum S, Sahin H, Cahangirov S, Cudazzo P, Rubio A, Serin T, Peeters F M 2013 Phys. Rev. B 87 125415

    [96]

    Tongay S, Zhou J, Ataca C, Liu J, Kang J S, Matthews T S, You L, Li J B, Grossman J C, Wu J Q 2013 Nano Lett. 13 2831

    [97]

    Varghese J O, Agbo P, Sutherland A M, Brar V W, Rossman G R, Gray H B, Heath J R 2015 Adv. Mater. 27 2734

  • [1] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [2] Fei Xiang, Zhang Xiu-Mei, Fu Quan-Gui, Cai Zheng-Yang, Nan Hai-Yan, Gu Xiao-Feng, Xiao Shao-Qing. Milimeter-level MoS2 monolayers and WS2-MoS2 heterojunctions grown on molten glass by pre-chemical vapor deposition. Acta Physica Sinica, 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [3] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [4] Li Lu, Zhang Yang-Kun, Shi Dong-Xia, Zhang Guang-Yu. Cotrollable growth of monolayer MoS2 films and their applications in devices. Acta Physica Sinica, 2022, 71(10): 108102. doi: 10.7498/aps.71.20212447
    [5] Wang Shuo, Wang Wen-Hui, Lü Jun-Peng, Ni Zhen-Hua. Chemical vapor deposition growth of large-areas two dimensional materials: Approaches and mechanisms. Acta Physica Sinica, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [6] Wang Xiao-Yu, Bi Wei-Hong, Cui Yong-Zhao, Fu Guang-Wei, Fu Xing-Hu, Jin Wa, Wang Ying. Synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition. Acta Physica Sinica, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [7] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [8] Shao Yu-Fei, Meng Fan-Shun, Li Jiu-Hui, Zhao Xing. Molecular dynamics simulations for tensile behaviors of mono-layer MoS2 with twin boundary. Acta Physica Sinica, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [9] Wang Wei-Dong, Li Long-Long, Yang Chen-Guang, Li Ming-Lin. Molecular dynamics study on relaxation properties of monolayer MoS2 nanoribbons. Acta Physica Sinica, 2016, 65(16): 160201. doi: 10.7498/aps.65.160201
    [10] Dong Yan-Fang, He Da-Wei, Wang Yong-Sheng, Xu Hai-Teng, Gong Zhe. Synthesis of large size monolayer MoS2 with a simple chemical vapor deposition. Acta Physica Sinica, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [11] Wen Jia-Le, Xu Zhi-Cheng, Gu Yu, Zheng Dong-Qin, Zhong Wei-Rong. Thermal rectification of heterojunction nanotubes. Acta Physica Sinica, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [12] Kang Hai-Yan, Hu Hui-Yong, Wang Bin, Xuan Rong-Xi, Song Jian-Jun, Zhao Chen-Dong, Xu Xiao-Cang. Analytic models for solid state plasma of Si/Ge/Si heterogeneous and lateral SPiN diode. Acta Physica Sinica, 2015, 64(23): 238501. doi: 10.7498/aps.64.238501
    [13] Cheng Li-Feng, Ren Cheng, Wang Ping, Feng Shuai. Study on unidirectional transmission of photonic crystal diodes based on heterostructure interface optimization. Acta Physica Sinica, 2014, 63(15): 154213. doi: 10.7498/aps.63.154213
    [14] Zhao Geng, Cheng Xiao-Man, Tian Hai-Jun, Du Bo-Qun, Liang Xiao-Yu, Wu Feng. The influence of modified electrodes by V2O5 film on the performance of ambipolar organic field-effect transistors based on C60/Pentacene. Acta Physica Sinica, 2012, 61(21): 218502. doi: 10.7498/aps.61.218502
    [15] Wu Kai-Shun, Long Xing-Teng, Dong Jian-Wen, Chen Di-Hu, Wang He-Zhou. Phase properties of photonic crystal heterostructure and its applications. Acta Physica Sinica, 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [16] Han Dao-Li, Zhao Yuan-Li, Zhao Hai-Bo, Song Tian-Fu, Liang Er-Jun. Growth of well-aligned carbon nanotubes arrays by chemical vapor deposition. Acta Physica Sinica, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [17] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [18] Liu Jiang-Tao, Zhou Yun-Song, Wang Fu-He, Gu Ben-Yuan. Guide modes at interface of photonic crystal heterostructures composed of different lattices. Acta Physica Sinica, 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [19] Liu Hong, Chen Jiang-Wei. The structure and electronic properties of carbon nanotube heterojunction. Acta Physica Sinica, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
    [20] Liu Lu, Fan Guang-Han, Liao Chang-Jun, Cao Ming-De, Chen Gui-Chu, Chen Lian-Hui. Graded heterojunction in AlGaInP compound semiconductors and its application to HB-LED. Acta Physica Sinica, 2003, 52(5): 1264-1271. doi: 10.7498/aps.52.1264
Metrics
  • Abstract views:  11711
  • PDF Downloads:  996
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2018
  • Accepted Date:  12 May 2018
  • Published Online:  20 June 2019

/

返回文章
返回