-
After the continuous research on the discovering new materials based on theoretical methods and material genome initiative, the high-throughput simulation platform is established. With this new research mode and platform, the screening, optimization and design of lithium battery materials are realized by using lithium migration properties as criteria. The attempt at introducing machine learning method into material design is also made. With the high-throughput bond-valence calculations, two coating materials for Li-rich cathode are found, the modified -Li3PS4 and a new layered oxysulfide as novel lithium superionic conductors are designed, and the relationship between the volume change of electrode during delithiation and the atomic structure is investigated. The application of the material genome method to the development of lithium battery materials provides the possibility to promote this new research and development model in other types of materials.
-
Keywords:
- materials genome initiative /
- solid state lithium battery /
- solid state electrolyte /
- low-strain electrode
[1] Tarascon J M, Armand M 2001 Nature 414 359
[2] Goodenough J B, Kim Y 2010 Chem. Mater. 22 587
[3] Li H, Wang Z X, Chen L Q, Huang X 2009 Adv. Mater. 21 4593
[4] Jain A, Hautier G, Moore C J, Ong S P, Fischer C C, Mueller T, Ceder G 2011 Comput. Mater. Sci. 50 2295
[5] Wu M S, Xu B, Ouyang C Y 2016 Chin. Phys. B 25 018206
[6] Knauth P 2009 Solid State Ionics 180 911
[7] Takada K 2013 Acta Mater. 61 759
[8] Yao X, Huang J, Yin J, Peng G, Huang Z, Gao C, Liu D, Xu X 2016 Chin. Phys. B 25 018802
[9] Tatsumisago M, Nagao M, Hayashi A 2013 J. Asian Ceram. Soc. 1 17
[10] Huggins R A 1999 J. Power Sources 81-82 13
[11] Chen Z H, Christensen L, Dahn J R 2003 Electrochem. Commun. 5 919
[12] Xiao R J, Li H, Chen L Q 2015 J. Materiomics 1 325
[13] Anurova N A, Blatov V A 2009 Acta Crystallogr. B 65 426
[14] Brown I D 2009 Chem. Rev. 109 6858
[15] Adams S, Prasada Rao R 2011 Phys. Status Solidi A 208 1746
[16] Meng Y S, Elena Arroyo-de Dompablo M 2009 Energy Environ. Sci. 2 589
[17] Xiao R J, Li H, Chen L Q 2015 Sci. Rep. 5 14227
[18] Wang D, Zhang X, Xiao R J, Lu X, Li Y, Xu T, Pan D, Hu Y S, Bai Y 2018 Electrochim. Acta 265 244
[19] Kamaya N 2011 Nat. Mater. 10 682
[20] Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M 2005 Adv. Mater. 17 918
[21] Mo Y, Ong S P, Ceder G 2012 Chem. Mater. 24 15
[22] Tachez M, Malugani J P, Robert G 1984 Solid State Ionics 14 181
[23] Wang X L, Xiao R J, Li H, Chen L Q 2016 Phys. Chem. Chem. Phys. 18 21269
[24] Chen Y, Xi X, Yim W L, Peng F, Wang Y, Wang H, Chen Z 2013 J. Phys. Chem. C 117 25677
[25] Zhang X, Wang Y, L J, Zhu C, Li Q, Zhang M, Li Q, Ma Y 2013 J. Chem. Phys. 138 114101
[26] Zhong X, Wang H, Zhang J, Liu H, Zhang S, Song H F, Yang G, Zhang L, Ma Y 2016 Phys. Rev. Lett. 116 057002
[27] Wang Y, L J, Zhu L, Ma Y 2012 Comput. Phys. Commun. 183 2063
[28] Wang X L, Xiao R J, Li H, Chen L Q 2017 Phys. Rev. Lett. 118 195901
[29] Ward L, Agrawal A, Choudhary A, Wolverton C 2016 npj Comput. Mater. 2 16028
[30] Mueller T, Kusne A G, Pamprasad R 2016 Rev. Comput. Chem. 29 186
[31] Ghiringhelli L M, Vybiral J, Levchenko S V, Draxl C, Scheffler M 2015 Phys. Rev. Lett. 114 105503
[32] Rupp M, Tkatchenko A, Muller K R, Anatole von Lilienfeld O 2012 Phys. Rev. Lett. 108 058301
[33] Artrith N, Urban A 2016 Comput. Mater. Sci. 114 135
[34] Wang Y S, Yu X Q, Su S Y, Bai J M, Xiao R J, Hu Y S 2013 Nat. Commun. 4 2365
[35] Wang X L, Xiao R J, Li H, Chen L Q 2017 J. Materiomics 3 178
-
[1] Tarascon J M, Armand M 2001 Nature 414 359
[2] Goodenough J B, Kim Y 2010 Chem. Mater. 22 587
[3] Li H, Wang Z X, Chen L Q, Huang X 2009 Adv. Mater. 21 4593
[4] Jain A, Hautier G, Moore C J, Ong S P, Fischer C C, Mueller T, Ceder G 2011 Comput. Mater. Sci. 50 2295
[5] Wu M S, Xu B, Ouyang C Y 2016 Chin. Phys. B 25 018206
[6] Knauth P 2009 Solid State Ionics 180 911
[7] Takada K 2013 Acta Mater. 61 759
[8] Yao X, Huang J, Yin J, Peng G, Huang Z, Gao C, Liu D, Xu X 2016 Chin. Phys. B 25 018802
[9] Tatsumisago M, Nagao M, Hayashi A 2013 J. Asian Ceram. Soc. 1 17
[10] Huggins R A 1999 J. Power Sources 81-82 13
[11] Chen Z H, Christensen L, Dahn J R 2003 Electrochem. Commun. 5 919
[12] Xiao R J, Li H, Chen L Q 2015 J. Materiomics 1 325
[13] Anurova N A, Blatov V A 2009 Acta Crystallogr. B 65 426
[14] Brown I D 2009 Chem. Rev. 109 6858
[15] Adams S, Prasada Rao R 2011 Phys. Status Solidi A 208 1746
[16] Meng Y S, Elena Arroyo-de Dompablo M 2009 Energy Environ. Sci. 2 589
[17] Xiao R J, Li H, Chen L Q 2015 Sci. Rep. 5 14227
[18] Wang D, Zhang X, Xiao R J, Lu X, Li Y, Xu T, Pan D, Hu Y S, Bai Y 2018 Electrochim. Acta 265 244
[19] Kamaya N 2011 Nat. Mater. 10 682
[20] Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M 2005 Adv. Mater. 17 918
[21] Mo Y, Ong S P, Ceder G 2012 Chem. Mater. 24 15
[22] Tachez M, Malugani J P, Robert G 1984 Solid State Ionics 14 181
[23] Wang X L, Xiao R J, Li H, Chen L Q 2016 Phys. Chem. Chem. Phys. 18 21269
[24] Chen Y, Xi X, Yim W L, Peng F, Wang Y, Wang H, Chen Z 2013 J. Phys. Chem. C 117 25677
[25] Zhang X, Wang Y, L J, Zhu C, Li Q, Zhang M, Li Q, Ma Y 2013 J. Chem. Phys. 138 114101
[26] Zhong X, Wang H, Zhang J, Liu H, Zhang S, Song H F, Yang G, Zhang L, Ma Y 2016 Phys. Rev. Lett. 116 057002
[27] Wang Y, L J, Zhu L, Ma Y 2012 Comput. Phys. Commun. 183 2063
[28] Wang X L, Xiao R J, Li H, Chen L Q 2017 Phys. Rev. Lett. 118 195901
[29] Ward L, Agrawal A, Choudhary A, Wolverton C 2016 npj Comput. Mater. 2 16028
[30] Mueller T, Kusne A G, Pamprasad R 2016 Rev. Comput. Chem. 29 186
[31] Ghiringhelli L M, Vybiral J, Levchenko S V, Draxl C, Scheffler M 2015 Phys. Rev. Lett. 114 105503
[32] Rupp M, Tkatchenko A, Muller K R, Anatole von Lilienfeld O 2012 Phys. Rev. Lett. 108 058301
[33] Artrith N, Urban A 2016 Comput. Mater. Sci. 114 135
[34] Wang Y S, Yu X Q, Su S Y, Bai J M, Xiao R J, Hu Y S 2013 Nat. Commun. 4 2365
[35] Wang X L, Xiao R J, Li H, Chen L Q 2017 J. Materiomics 3 178
Catalog
Metrics
- Abstract views: 10891
- PDF Downloads: 749
- Cited By: 0