Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Discharge characteristics of dual-frequency magnetized capacitively coupled Ar/CH4 plasma

YIN Guiqin ZHANG Leilei TUO Sheng

Citation:

Discharge characteristics of dual-frequency magnetized capacitively coupled Ar/CH4 plasma

YIN Guiqin, ZHANG Leilei, TUO Sheng
cstr: 32037.14.aps.74.20250244
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In recent years, dual-frequency capacitively coupled plasma discharge technology has demonstrated remarkable advantages in the fields of material processing. In this paper, a one-dimensional PIC/MCC (particle-in-cell/Monte Carlocollision) simulation method is used to discuss the influence of low frequency on the discharge characteristics of capacitively coupled argon/methane plasma driven by dual-frequency (20/100 MHz) dipole, with an external magnetic field added. The simulation results show that when the high frequency is an integer multiple of the low frequency, the superposition of high and low frequencies is significant, and the sheath oscillation is more obvious. As low frequency increases, the electron density, charge density, high-energy electron density and electron heating rate all increase. Specifically, as low frequency increase, the electron density increases to 14%, the electron temperature near the sheath decreases by about 12%, the electron energy probability distribution (EEPF) shows a double Maxwellian distribution, the populations of both low-energy electrons and high-energy electrons increase, and at the same time, the densities of various ions and the angle and energy distributions of ${\text{CH}}_{4}^{+} $ and ${\text{CH}}_{3}^{+} $ particles reaching the electrode plates are influenced.In the Ar/CH4 plasma driven by dual-frequency, with external magnetic field added, the controlling of ion energy can effectively optimize the structure and performance of carbon-containing films. By regulating discharge parameters to control the incident angle of the ions on the substrate, carbon-containing atoms can be deposited in a specific direction, thereby achieving the directional growth of carbon-containing films. This is significant for the preparation of graphene films, carbon nanotube arrays, etc. Meanwhile, the regulation of the incident angle of ions is helpful to improve the binding force between the carbon film and the substrate. It is found in this study that when the incident angle of the ions is around 0.32, the average energy of the ions reaches its peak. This peak is most significant at a low frequency of 15 MHz. The results in this paper provide a theoretical reference for preparing carbon films.
      Corresponding author: ZHANG Leilei, zhangleil7668@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12165019).
    [1]

    Li Y M, Mann D, Rolandi M, Kim W 2004 Nano Lett. 4 317Google Scholar

    [2]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. A. 31 050825Google Scholar

    [3]

    Jung C O, Chi K K, Hwang B G, Moon J T, Lee M Y, Lee J G 1999 Thin Solid Films 341 112Google Scholar

    [4]

    Schulze J, Gans T, O'Connell D, Czarnetzki U, Ellingboe A R, Turner M M 2007 J. Phys. D: Appl. Phys. 40 7008Google Scholar

    [5]

    Boyle P C, Ellingboe A R, Turner M M 2004 J. Phys. D: Appl. Phys. 37 697Google Scholar

    [6]

    Robiche J , Boyle P C , Turner M M, Ellingboe A R 2003 J. Phys. D: Appl. Phys. 36 1810

    [7]

    Goto H H, Löwe H D, Ohmi T 1992 J. Vac. Sci. Technol. A. 10 3048Google Scholar

    [8]

    Goto H H, Löwe H D, Ohmi T 1993 IEEE Trans. Semicond. Manuf. 6 58Google Scholar

    [9]

    Tsai W, Mueller G, Lindquist R, Frazier B, Vahedi V 1996 J. Vac. Sci. Technol. B 14 3276Google Scholar

    [10]

    Sharma S, Turner M M 2014 J. Phys. D: Appl. Phys. 47 285201Google Scholar

    [11]

    Kim H C, Lee J K, Shon J W 2003 Phys. Plasmas 10 4545Google Scholar

    [12]

    Yang S, Zhang W, Shen J F, Liu H, Tang C J, Xu Y H, Cheng J, Shao J R, Xiong J, Wang X Q, Liu H F, Huang J, Zhang X, Lan H, Li Y C 2024 AIP Adv. 14 065104Google Scholar

    [13]

    Sharma S, Sirse N, Turner M M, Ellingboe A R 2018 Phys. Plasmas 25 063501Google Scholar

    [14]

    Yin G Q, Gao S S, Liu Z H, Yuan Q H 2022 Phys. Lett. A 426 127910Google Scholar

    [15]

    高闪闪2022 硕士学位论文(兰州: 西北师范大学)

    Gao S S 2022 M. S. Thesis (Lanzhou: Northwest Normal University

    [16]

    Yang S L, Zhang Y, Wang H Y, Cui J W, Jiang W 2017 Plasma Processes Polym. 14 1700087Google Scholar

    [17]

    Yang S L, Chang L, Zhang Y, Jiang W 2018 Plasma Sources Sci. Technol. 27 035008Google Scholar

    [18]

    Yan M H, Wu H H, Wu H, Peng Y L, Yang S L 2024 J. Vac. Sci. Technol. A 42 053007Google Scholar

    [19]

    Sharma S, Patil S, Sengupta S, Sen A, Khrabrov A, Kaganovich I 2022 Phys. Plasmas 29 063501Google Scholar

    [20]

    Sun J Y, Wen H, Zhang Q Z, Schulze J, Liu Y X, Wang Y N 2022 Plasma Sources Sci. Technol. 31 085012Google Scholar

    [21]

    Zheng B C, Wang K L, Grotjohn T, Schuelke T, Fan Q H 2019 Plasma Sources Sci. Technol. 28 09LT03Google Scholar

    [22]

    Yang S L, Zhang Y, Wang H Y, Wang S, Jiang W 2017 Phys. Plasmas 24 033504Google Scholar

    [23]

    Liu Y X, Liang Y S, Wen D Q, Bi Z H, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025013Google Scholar

    [24]

    Yin G Q, Jiang Y B, Yuan Q H 2024 Mod. Phys. Lett. B 38 2450269

    [25]

    Wang J-C, Tian P, Kenney J, Rauf S, Korolov I, Schulze J 2021 Plasma Sources Sci. Technol. 30 075031Google Scholar

    [26]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [27]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar

    [28]

    Verboncoeur J P 2001 J. Comput. Phys. 174 421Google Scholar

    [29]

    沈向前, 谢泉, 肖清泉, 陈茜, 丰云 2012 物理学报 61 165101Google Scholar

    Shen X Q, Xie Q, Xiao Q Q, Chen Q, Feng Y 2012 Acta Phys. Sin. 61 165101Google Scholar

    [30]

    金晓林, 杨中海 2006 物理学报 55 5930Google Scholar

    Jin X L, Yang Z H 2006 Acta Phys. Sin. 55 5930Google Scholar

    [31]

    Song M Y, Yoon J S, Cho H, Itikawa Y, Karwasz G P, Kokoouline V, Nakamura Y, Tennyson J 2015 J. Phys. Chem. Ref. Data. 44 023101Google Scholar

    [32]

    Sun J Y, Zhang Q Z, Liu J R, Song Y H, Wang Y N 2020 Plasma Sources Sci. Technol. 29 114002Google Scholar

  • 图 1  模拟装置图

    Figure 1.  Simulation setup diagram.

    图 2  固定磁场强度为20 G, Ar∶CH4 = 0.85∶0.15时, (a)电子密度; (b)电荷密度; (c)高能电子密度随低频频率变化的时空分布图

    Figure 2.  Spatiotemporal distribution diagram of the (a) electron density, (b) charge density, (c) high-energy electron density with low frequency at a fixed magnetic field strength of 20 G and Ar∶CH4 = 0.85∶0.15.

    图 3  固定磁场强度为20 G, Ar∶CH4 = 0.85∶0.15, (a)电子温度 (eV), (b)电子加热率, (c)电场(V/m)随低频频率变化的时空分布图

    Figure 3.  Spatiotemporal distribution diagram of the (a) electron temperature (eV); (b) electron heating rate; (c) electric field (V/m) with low frequency at a fixed magnetic field strength of 20 G and Ar∶CH4 = 0.85∶0.15.

    图 4  固定磁场强度为20 G, Ar∶CH4 = 0.85∶0.15, 电子能量概率分布函数随低频频率变化的分布图

    Figure 4.  Distribution of the electric energy probability function with low frequency at a fixed magnetic field strength of 20 G and Ar∶CH4 = 0.85∶0.15.

    图 5  固定磁场强度为20 G, Ar∶CH4 = 0.85∶0.15, 电子、CH4+、CH3+、Ar+的离子密度随低频频率变化的分布图

    Figure 5.  The ion density distributions of electron、CH4+, CH3+, Ar+ with low frequency at a fixed magnetic field strength of 20 G and Ar∶CH4 = 0.85∶0.15.

    图 6  固定磁场强度为20 G, Ar∶CH4 = 0.85∶0.15, 到达极板处的$ {\text{CH}}_{4}^{+} $, $ {\text{CH}}_{3}^{+} $粒子在每个速度方向与轴向的夹角处能量的平均值随低频频率变化的分布图

    Figure 6.  Distribution of the average value of the energy of $ {\text{CH}}_{4}^{+} $ and $ {\text{CH}}_{3}^{+} $ particles arriving at the pole plate at the angle between each velocity direction and the axial direction with low frequency at a fixed magnetic field strength of 20 G and Ar∶CH4 = 0.85∶0.15.

    表 1  碰撞反应类型

    Table 1.  Collision reaction type in the simulation.

    序号 反应式 碰撞类型 阈值/eV
    1 $ {{\text{e}}^{{ - }}}{\text{ + Ar}} \to {{\text{e}}^{{ - }}}{\text{ + Ar}} $ 弹性碰撞 0
    2 $ {{\text{e}}^{{ - }}}{\text{ + Ar}} \to {{\text{e}}^{{ - }}}{\text{ + Ar}} $ 激发碰撞 11.5
    3 $ {{\text{e}}^{{ - }}}{\text{ + Ar}} \to 2{{\text{e}}^{{ - }}}{\text{ + A}}{{\text{r}}^{+}} $ 电离碰撞 15.80
    4 $ {\text{A}}{{\text{r}}^{+}}{\text{ + Ar}} \to {\text{A}}{{\text{r}}^{+}}{\text{ + Ar}} $ 弹性碰撞 0.00
    5 $ {\text{A}}{{\text{r}}^{+}}{\text{ + Ar}} \to {\text{Ar + A}}{{\text{r}}^ + } $ 电荷交换 0.00
    6 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} $ 弹性碰撞 0
    7 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_{4}}\left( {{{\text{V}}_{2}}} \right) $ 激发碰撞 0.162
    8 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_{4}}\left( {{{\text{V}}_{1}}} \right) $ 激发碰撞 0.362
    9 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_{3}}{\text{ + H}} $ 激发碰撞 7.5
    10 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_{2}}{+}{{\text{H}}_2} $ 激发碰撞 9.1
    11 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {{\text{e}}^{{ - }}}{\text{ + C + 2}}{{\text{H}}_2} $ 激发碰撞 15.5
    12 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {{\text{e}}^{{ - }}}{\text{ + CH + }}{{\text{H}}_{2}}{\text{ + H}} $ 激发碰撞 15.5
    13 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {2}{{\text{e}}^{{ - }}}{\text{ + CH}}_4^ + $ 电离碰撞 12.63
    14 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {2}{{\text{e}}^{{ - }}}{\text{ + H + CH}}_3^ + $ 电离碰撞 12.63
    15 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to {2}{{\text{e}}^{{ - }}}{+}{{\text{H}}_{2}}{\text{ + CH}}_2^ + $ 电离碰撞 16.2
    16 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to 2{{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_{3}}{+}{{\text{H}}^ + } $ 电离碰撞 21.1
    17 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to 2{{\text{e}}^{{ - }}}{\text{ + 2}}{{\text{H}}_{2}}{+}{{\text{C}}^ + } $ 电离碰撞 22
    18 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to 2{{\text{e}}^{{ - }}}{\text{ + H + }}{{\text{H}}_{2}}{\text{ + C}}{{\text{H}}^ + } $ 电离碰撞 22.2
    19 $ {{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_4} \to 2{{\text{e}}^{{ - }}}{\text{ + C}}{{\text{H}}_{2}}{+}{{\text{H}}_2^ +} $ 电离碰撞 22.3
    DownLoad: CSV
  • [1]

    Li Y M, Mann D, Rolandi M, Kim W 2004 Nano Lett. 4 317Google Scholar

    [2]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. A. 31 050825Google Scholar

    [3]

    Jung C O, Chi K K, Hwang B G, Moon J T, Lee M Y, Lee J G 1999 Thin Solid Films 341 112Google Scholar

    [4]

    Schulze J, Gans T, O'Connell D, Czarnetzki U, Ellingboe A R, Turner M M 2007 J. Phys. D: Appl. Phys. 40 7008Google Scholar

    [5]

    Boyle P C, Ellingboe A R, Turner M M 2004 J. Phys. D: Appl. Phys. 37 697Google Scholar

    [6]

    Robiche J , Boyle P C , Turner M M, Ellingboe A R 2003 J. Phys. D: Appl. Phys. 36 1810

    [7]

    Goto H H, Löwe H D, Ohmi T 1992 J. Vac. Sci. Technol. A. 10 3048Google Scholar

    [8]

    Goto H H, Löwe H D, Ohmi T 1993 IEEE Trans. Semicond. Manuf. 6 58Google Scholar

    [9]

    Tsai W, Mueller G, Lindquist R, Frazier B, Vahedi V 1996 J. Vac. Sci. Technol. B 14 3276Google Scholar

    [10]

    Sharma S, Turner M M 2014 J. Phys. D: Appl. Phys. 47 285201Google Scholar

    [11]

    Kim H C, Lee J K, Shon J W 2003 Phys. Plasmas 10 4545Google Scholar

    [12]

    Yang S, Zhang W, Shen J F, Liu H, Tang C J, Xu Y H, Cheng J, Shao J R, Xiong J, Wang X Q, Liu H F, Huang J, Zhang X, Lan H, Li Y C 2024 AIP Adv. 14 065104Google Scholar

    [13]

    Sharma S, Sirse N, Turner M M, Ellingboe A R 2018 Phys. Plasmas 25 063501Google Scholar

    [14]

    Yin G Q, Gao S S, Liu Z H, Yuan Q H 2022 Phys. Lett. A 426 127910Google Scholar

    [15]

    高闪闪2022 硕士学位论文(兰州: 西北师范大学)

    Gao S S 2022 M. S. Thesis (Lanzhou: Northwest Normal University

    [16]

    Yang S L, Zhang Y, Wang H Y, Cui J W, Jiang W 2017 Plasma Processes Polym. 14 1700087Google Scholar

    [17]

    Yang S L, Chang L, Zhang Y, Jiang W 2018 Plasma Sources Sci. Technol. 27 035008Google Scholar

    [18]

    Yan M H, Wu H H, Wu H, Peng Y L, Yang S L 2024 J. Vac. Sci. Technol. A 42 053007Google Scholar

    [19]

    Sharma S, Patil S, Sengupta S, Sen A, Khrabrov A, Kaganovich I 2022 Phys. Plasmas 29 063501Google Scholar

    [20]

    Sun J Y, Wen H, Zhang Q Z, Schulze J, Liu Y X, Wang Y N 2022 Plasma Sources Sci. Technol. 31 085012Google Scholar

    [21]

    Zheng B C, Wang K L, Grotjohn T, Schuelke T, Fan Q H 2019 Plasma Sources Sci. Technol. 28 09LT03Google Scholar

    [22]

    Yang S L, Zhang Y, Wang H Y, Wang S, Jiang W 2017 Phys. Plasmas 24 033504Google Scholar

    [23]

    Liu Y X, Liang Y S, Wen D Q, Bi Z H, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025013Google Scholar

    [24]

    Yin G Q, Jiang Y B, Yuan Q H 2024 Mod. Phys. Lett. B 38 2450269

    [25]

    Wang J-C, Tian P, Kenney J, Rauf S, Korolov I, Schulze J 2021 Plasma Sources Sci. Technol. 30 075031Google Scholar

    [26]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [27]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar

    [28]

    Verboncoeur J P 2001 J. Comput. Phys. 174 421Google Scholar

    [29]

    沈向前, 谢泉, 肖清泉, 陈茜, 丰云 2012 物理学报 61 165101Google Scholar

    Shen X Q, Xie Q, Xiao Q Q, Chen Q, Feng Y 2012 Acta Phys. Sin. 61 165101Google Scholar

    [30]

    金晓林, 杨中海 2006 物理学报 55 5930Google Scholar

    Jin X L, Yang Z H 2006 Acta Phys. Sin. 55 5930Google Scholar

    [31]

    Song M Y, Yoon J S, Cho H, Itikawa Y, Karwasz G P, Kokoouline V, Nakamura Y, Tennyson J 2015 J. Phys. Chem. Ref. Data. 44 023101Google Scholar

    [32]

    Sun J Y, Zhang Q Z, Liu J R, Song Y H, Wang Y N 2020 Plasma Sources Sci. Technol. 29 114002Google Scholar

  • [1] Tong Lei, Zhao Ming-Liang, Zhang Yu-Ru, Song Yuan-Hong, Wang You-Nian. Hybrid simulation of radio frequency biased inductively coupled Ar/O2/Cl2 plasmas. Acta Physica Sinica, 2024, 73(4): 045201. doi: 10.7498/aps.73.20231369
    [2] Zhang Yu-Han, Zhao Xin-Qian, Liang Ying-Shuang, Guo Yuan-Yuan. Numerical simulation of inductively coupled Ar/O2 plasma. Acta Physica Sinica, 2024, 73(13): 135201. doi: 10.7498/aps.73.20240436
    [3] Duan Meng-Yue, Jia Wen-Zhu, Zhang Ying-Ying, Zhang Yi-Fan, Song Yuan-Hong. Two-dimensional fluid simulation of spatial distribution of dust particles in a capacitively coupled silane plasma. Acta Physica Sinica, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [4] Song Liu-Qin, Jia Wen-Zhu, Dong Wan, Zhang Yi-Fan, Dai Zhong-Ling, Song Yuan-Hong. Numerical investigation of SiO2 film deposition enhanced by capacitively coupled discharge plasma. Acta Physica Sinica, 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [5] Wang Li, Wen De-Qi, Tian Chong-Biao, Song Yuan-Hong, Wang You-Nian. Electron heating dynamics and plasma parameters control in capacitively coupled plasma. Acta Physica Sinica, 2021, 70(9): 095214. doi: 10.7498/aps.70.20210473
    [6] Cao Li-Yang, Ma Xiao-Ping, Deng Li-Li, Lu Man-Ting, Xin Yu. Axial diagnosis of radio-frequency capacitively coupled Ar/O2 plasma. Acta Physica Sinica, 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [7] Zhou Yu, Cao Li-Yang, Ma Xiao-Ping, Deng Li-Li, Xin Yu. Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, 69(8): 085201. doi: 10.7498/aps.69.20191864
    [8] Sun An-Bang, Li Han-Wei, Xu Peng, Zhang Guan-Jun. Monte Carlo simulations of electron transport coefficients in low temperature streamer discharge plasmas. Acta Physica Sinica, 2017, 66(19): 195101. doi: 10.7498/aps.66.195101
    [9] Yang Yu, Tang Cheng-Shuang, Zhao Yi-Fan, Yu Yi-Qing, Xin Yu. Electronegativity of capacitively coupled Ar+O2 plasma excited at very high frequency. Acta Physica Sinica, 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [10] Feng Zhi-Xing, Ning Cheng, Xue Chuang, Li Bai-Wen. Physical investigation of dynamic process of the gas-puff Z-pinch through particle-in-cell simulation. Acta Physica Sinica, 2014, 63(18): 185203. doi: 10.7498/aps.63.185203
    [11] Hao Ying-Ying, Meng Xiu-Lan, Yao Fu-Bao, Zhao Guo-Ming, Wang Jing, Zhang Lian-Zhu. Simulations of electrical asymmetry effect on N2-H2 capacitively coupled plasma by particle-in-cell/Monte Carlo model. Acta Physica Sinica, 2014, 63(18): 185205. doi: 10.7498/aps.63.185205
    [12] Du Yong-Quan, Liu Wen-Yao, Zhu Ai-Min, Li Xiao-Song, Zhao Tian-Liang, Liu Yong-Xin, Gao Fei, Xu Yong, Wang You-Nian. Phase resolved optical emission spectroscopy of dual frequency capacitively coupled plasma. Acta Physica Sinica, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [13] Yang Chao, Long Ji-Dong, Wang Ping, Liao Fang-Yan, Xia Meng-Zhong, Liu La-Qun. The full three-dimensional electromagnetic PIC/MCC numerical algorithm research of Penning ion source discharge. Acta Physica Sinica, 2013, 62(20): 205207. doi: 10.7498/aps.62.205207
    [14] Zheng Shi-Jian, Ding Fang, Xie Xin-Hua, Tang Zhong-Liang, Zhang Yi-Chuan, Li Huan, Yang Kuan, Zhu Xiao-Dong. A diagnosis of gas-phase processes in a high pressure DC CH4/H2 plasma. Acta Physica Sinica, 2013, 62(16): 165204. doi: 10.7498/aps.62.165204
    [15] Hong Bu-Shuang, Yuan Tao, Zou Shuai, Tang Zhong-Hua, Xu Dong-Sheng, Yu Yi-Qing, Wang Xu-Sheng, Xin Yu. Influence of addifion of electronegative gases on the properties of capacitively coupled Ar plasmas. Acta Physica Sinica, 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [16] Jiang Xiang-Zhan, Liu Yong-Xin, Bi Zhen-Hua, Lu Wen-Qi, Wang You-Nian. Radial density uniformity of dual frequency capacitively coupled plasma. Acta Physica Sinica, 2012, 61(1): 015204. doi: 10.7498/aps.61.015204
    [17] Jin Xiao-Lin, Huang Tao, Liao Ping, Yang Zhong-Hai. The particle-in-cell simulation and Monte Carlo collision simulation of the interaction between electrons and microwave in electron cyclotron resonance discharge. Acta Physica Sinica, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [18] Huang Song, Xin Yu, NingZhao-Yuan. Studies on C22 radical by optical emission spectroscopy in an induc tively-coupled CF44/CH44 plasma. Acta Physica Sinica, 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
    [19] MA YAN-YUN, CHANG WEN-WEI, YIN YAN, YUE ZONG-WU, CAO LI-HUA, LIU DA-QING. A COLLISION MODEL IN PLASMA PARTICLE SIMULATIONS. Acta Physica Sinica, 2000, 49(8): 1513-1519. doi: 10.7498/aps.49.1513
    [20] Wang De-Zhen, Ma Teng-Cai, Gong Ye. . Acta Physica Sinica, 1995, 44(6): 877-884. doi: 10.7498/aps.44.877
Metrics
  • Abstract views:  379
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Received Date:  27 February 2025
  • Accepted Date:  29 April 2025
  • Available Online:  13 May 2025
  • Published Online:  20 July 2025
  • /

    返回文章
    返回