Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electron heating dynamics and plasma parameters control in capacitively coupled plasma

Wang Li Wen De-Qi Tian Chong-Biao Song Yuan-Hong Wang You-Nian

Citation:

Electron heating dynamics and plasma parameters control in capacitively coupled plasma

Wang Li, Wen De-Qi, Tian Chong-Biao, Song Yuan-Hong, Wang You-Nian
PDF
HTML
Get Citation
  • Capacitively coupled plasma (CCP) has gain wide attention due to its important applications in industry. The researches of CCP mainly focus on the discharge characteristics and plasma parameters under different discharge conditions to obtain a good understanding of the discharge, find good methods of controlling the charged particle properties, and improve the process performance and efficiency. The controlling of plasma parameters is based on the following three aspects: gas, chamber, and power source. Changing these discharge conditions can directly influence the sheath dynamics and the charged particle heating process, which can further influence the electron and ion distribution functions, the plasma uniformity, and the production of neutral particles, etc. Based on a review of the recent years’ researches of CCP, the electron heating dynamics and several common methods of controlling the plasma parameters, i.e. voltage waveform tailoring, realistic secondary electron emission, and magnetized capacitively coupled plasma are introduced and discussed in detail in this work.
      Corresponding author: Song Yuan-Hong, songyh@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12020101005, 11975067) and the China Scholarship Council (Grant No. 201906060024)
    [1]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharge for Materials Processing (New York: Wiley-Interscience) pp1−5

    [2]

    Chabert P, Braithwaite N 2011 Physics of Radio-Frequency Plasmas (New York: Cambridge University Press)

    [3]

    Hartmann P, Wang L, Nösges K, Berger B, Wilczek S, Brinkmann R P, Mussenbrock T, Juhasz Z, Donkó Z, Derzsi A, Lee E, Schulze J 2020 Plasma Sources Sci. Technol. 29 075014Google Scholar

    [4]

    Korolov I, Derzsi A, Donkó Z, Schulze J 2013 Appl. Phys. Lett. 103 064102Google Scholar

    [5]

    Schulze J, Schüngel E, Donkó Z, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 015017Google Scholar

    [6]

    Lafleur T, Booth J P 2012 J. Phys. D: Appl. Phys. 45 395203Google Scholar

    [7]

    Lafleur T, Delattre P A, Johnson E V, Booth J P 2012 Appl. Phys. Lett 101 124104Google Scholar

    [8]

    Bruneau B, Lafleur T, Booth J P, Johnson E 2016 Plasma Sources Sci. Technol. 25 025006Google Scholar

    [9]

    Donkó Z, Derzsi A, Vass M, Schulze J, Schuengel E, Hamaguchi S 2018 Plasma Sources Sci. Technol. 27 104008Google Scholar

    [10]

    Turner M M, Hutchinson D, Doyle R A, et al. 1996 Phys Rev Lett. 76 2069Google Scholar

    [11]

    Vasenkov A V 2004 J. Appl. Phys. 95 834Google Scholar

    [12]

    Zheng B, Y Fu, Wang K, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abe9f9Google Scholar

    [13]

    Stefan R, Nikita B, Marcel R, et al. 2018 Plasma Sources Sci. Technol. 27 094001Google Scholar

    [14]

    Oberberg M, Berger B, Buschheuer M, Engel D, Wölfel C, Eremin D, Lunze J, Brinkmann R P, Awakowicz P, Schulze J 2020 Plasma Sources Sci. Technol. 29 075013Google Scholar

    [15]

    Wang L, Wen D Q, Hartmann P, Donkó Z, Derzsi A, Wang X F, Song Y H, Wang Y N, Schulze J 2020 Plasma Sources Sci. Technol. 29 105004Google Scholar

    [16]

    Yang S, Innocenti M E, Zhang Y, Yi L, Jiang W 2017 J. Vac. Sci. Technol., A 35 061311Google Scholar

    [17]

    Zhang Q Z, Wang Y N, Bogaerts A 2014 J. Appl. Phys. 115 3048Google Scholar

    [18]

    Wen D Q, Kawamura E, Lieberman M A, et al. 2017 J. Phys. D: Appl. Phys. 50 495201Google Scholar

    [19]

    Wang L, Peter H, Donko Z, Song Y H, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abf206Google Scholar

    [20]

    Brandt S W, Berger B, Donko Z, et al. 2019 Plasma Sources Sci. Technol. 28 095021Google Scholar

    [21]

    Song S H, Kushner M J 2012 Plasma Sources Sci. Technol. 21 055028Google Scholar

    [22]

    Derzsi A, Lafleur T, Booth J P, et al. 2016 Plasma Sources Sci. Technol. 25 015004Google Scholar

    [23]

    Franek J, Brandt S, Berger B, Liese M, Barthel M, Schungel E, Schulze J 2015 Rev. Sci. Instrum. 86 053504Google Scholar

    [24]

    Schmidt F, Schulze J, Johnson E, Booth J P, Keil D, French D M, Trieschmann J, Mussenbrock T 2018 Plasma Sources Sci. Technol. 27 095012Google Scholar

    [25]

    Wang J K, Dine S, Booth J P, et al. 2019 J. Vac. Sci. Technol., A 37 021303Google Scholar

    [26]

    Cargill P J 2007 Plasma Phys. Controlled Fusion 49 197Google Scholar

    [27]

    Hammond E P, Mahesh K, Moin P J 2002 J. Comput. Phys. 176 402Google Scholar

    [28]

    Larson M G, Bengzon F 2013 The Finite Element Method: Theory, Implementation and Applications (Berlin, Heidelberg: Springer-Verlag)

    [29]

    陆金甫, 关治 2004 偏微分方程数值解法 (北京: 清华大学出版社) 第77−80页

    Lu J P, Guan Z 2004 Numerical Methods for Partial Differential Equations (Beijing: Tsinghua University Press) pp77–80 (in Chinese)

    [30]

    Rebiai S, Bahouh H, Sahli S 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1616Google Scholar

    [31]

    Liu Y X, Liang Y S, Wen D Q, Bi Z H, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025013Google Scholar

    [32]

    Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013Google Scholar

    [33]

    Czarnetzki U, Mussenbrock T, Brinkmann R P 2006 Phys. Plasmas 13 123503Google Scholar

    [34]

    Lieberman M A, Lichtenberg A J, Kawamura E, Mussenbrock T, Brinkmann R P 2008 Phys. Plasmas 15 063505Google Scholar

    [35]

    Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2016 Plasma Sources Sci. Technol. 26 015007Google Scholar

    [36]

    Mussenbrock T, Brinkmann R P, Lieberman M A, Lichtenberg A J, Kawamura E 2008 Phys. Rev. Lett. 101 085004Google Scholar

    [37]

    Fu Y, Zheng B, Wen D Q, Zhang P, Fan Q H, Verboncoeur J P 2020 Plasma Sources Sci. Technol. 29 09lt01Google Scholar

    [38]

    Derzsi A, Korolov I, Schüngel E, Donkó Z, Schulze J 2015 Plasma Sources Sci. Technol. 24 034002Google Scholar

    [39]

    Horváth B, Daksha M, Korolov I, Derzsi A, Schulze J 2017 Plasma Sources Sci. Technol. 26 124001Google Scholar

    [40]

    Birdsall C K, Langdon A B 1985 Plasma Physics Via Computer Simulation (New York: McGraw-Hill)

    [41]

    Verboncoeur J P 2005 Plasma Phys. Controlled Fusion 47 A231Google Scholar

    [42]

    Donkó Z, Derzsi A, Vass M, et al. 2021 arXiv:2103.09642 [physics.plasm-ph]

    [43]

    Donkó Z 2011 Plasma Sources Sci. Technol. 20 024001

    [44]

    Nanbu K 2000 IEEE Trans Dielectr. Electr. Insul. 28 971Google Scholar

    [45]

    Turner M M 1995 Phys. Rev. Lett. 75 1312Google Scholar

    [46]

    Schulze J, Derzsi A, Dittmann K, Hemke T, Meichsner J, Donko Z 2011 Phys. Rev. Lett. 107 275001Google Scholar

    [47]

    Kim H C, Lee J K 2004 Phys. Rev. Lett. 93 085003Google Scholar

    [48]

    Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001Google Scholar

    [49]

    Liu Y X, Schungel E, Korolov I, Donko Z, Wang Y N, Schulze J 2016 Phys. Rev. Lett. 116 255002Google Scholar

    [50]

    Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002Google Scholar

    [51]

    Wilczek S, Trieschmann J, Eremin D, Brinkmann R P, Schulze J, Schuengel E, Derzsi A, Korolov I, Hartmann P, Donkó Z, Mussenbrock T 2016 Phys. Plasmas 23 063514Google Scholar

    [52]

    Jiang W, Wang H Y, Bi Z H, Wang Y N 2011 Plasma Sources Sci. Technol. 20 035013Google Scholar

    [53]

    Zhang Q Z, Zhao S X, Jiang W, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 305203Google Scholar

    [54]

    Eremin D, Bienholz S, Szeremley D, Trieschmann J, Ries S, Awakowicz P, Mussenbrock T, Brinkmann R P 2016 Plasma Sources Sci. Technol. 25 025020Google Scholar

    [55]

    Eremin D 2017 IEEE Trans. Plasma Sci. 45 527Google Scholar

    [56]

    Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2017 Phys. Plasmas 24 083517Google Scholar

    [57]

    Eremin D, Brinkmann R P, Mussenbrock T 2017 Plasma Processes Polym. 14 1600164Google Scholar

    [58]

    Wen D Q, Zhang Q Z, Jiang W, et al. 2014 J. Appl. Phys. 115 233303Google Scholar

    [59]

    Wang L, Hartmann P, Donkó Z, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abf31dGoogle Scholar

    [60]

    Gudmundsson J T, Kawamura E, Lieberman M A 2013 Plasma Sources Sci. Technol. 22 035011Google Scholar

    [61]

    Verboncoeur J P, Langdon A B, Gladd N T 1995 Comput. Phys. Commun. 87 199Google Scholar

    [62]

    夏伯特P, 布雷斯韦特N 著(王友年, 徐军, 宋远红 译) 2015 射频离子体物理学 (北京: 科学出版社)

    Chabert P, Braithwaite N (translated by Wang Y N, Xu J, Song Y H) 2015 Physics of Radio-Frequency Plasmas (Beijing: Science Press) (in Chinese)

    [63]

    Liu J, Wen D Q, Liu Y X, Gao F, Lu W Q, Wang Y N 2013 J. Vac. Sci. Technol., A 31 061308Google Scholar

    [64]

    Zhu X M, Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001Google Scholar

    [65]

    Li J, Liu F X, Zhu X M, Pu Y K 2011 J. Phys. D: Appl. Phys. 44 292001Google Scholar

    [66]

    Xue C, Gao F, Wen D Q, Wang Y N 2019 J. Appl. Phys. 125 023303Google Scholar

    [67]

    Godyak V A, Piejak R B 1990 Phys. Rev. Lett. 65 996Google Scholar

    [68]

    Lieberman M A 1989 IEEE Trans. Plasma Sci. Soc. 17 338Google Scholar

    [69]

    Kaganovich I D, Polomarov O V, Theodosiou C E 2006 IEEE Trans. Plasma Sci. 34 696Google Scholar

    [70]

    Gozadinos G, Turner M M, Vender D 2001 Phys. Rev. Lett. 87 135004Google Scholar

    [71]

    Lafleur T, Chabert P, Turner M M, Booth J P 2014 Plasma Sources Sci. Technol. 23 015016Google Scholar

    [72]

    Schulze J, Donkó Z, Derzsi A, et al. 2015 Plasma Sources Sci. Technol. 24 015019Google Scholar

    [73]

    Schulze J, Donkó Z, Lafleur T, Wilczek S, Brinkmann R P 2018 Plasma Sources Sci. Technol. 27 055010Google Scholar

    [74]

    Wilczek S, Schulze J, Brinkmann R P, Donkó Z, Trieschmann J, Mussenbrock T 2020 J. Appl. Phys. 127 181101

    [75]

    Vass M, Wilczek S, Lafleur T, et al. 2020 Plasma Sources Sci. Technol. 29 085014Google Scholar

    [76]

    Vass M, Wilczek S, Lafleur T, et al. 2020 Plasma Sources Sci. Technol. 29 025019Google Scholar

    [77]

    Belenguer P, Boeuf J P 1990 Phys. Rev. A 41 4447Google Scholar

    [78]

    Booth J P, Curley G, Marić D, Chabert P 2010 Plasma Sources Sci. Technol. 19 015005Google Scholar

    [79]

    Liu G H, Liu Y X, Wen D Q, Wang Y N 2015 Plasma Sources Sci. Technol. 24 034006Google Scholar

    [80]

    Wang L, Wen D Q, Zhang Q Z, Song Y H, Zhang Y R, Wang Y N 2019 Plasma Sources Sci. Technol. 28 055007Google Scholar

    [81]

    Schulze J, Kampschulte T, Luggenholscher D, Czarnetzki U 2007 J. Phys. Conf. Ser. 86 012010Google Scholar

    [82]

    Berger B, You K, Lee H C, Mussenbrock T, Awakowicz P, Schulze J 2018 Plasma Sources Sci. Technol. 27 12LT02Google Scholar

    [83]

    Schüngel E, Brandt S, Donkó Z, et al. 2016 Plasma Sources Sci. Technol. 24 044009Google Scholar

    [84]

    Schulze J, Heil B G, Luggenhölscher D, Brinkmann R P, Czarnetzki U 2008 J. Phys. D: Appl. Phys. 41 195212Google Scholar

    [85]

    Schulze J, Heil B G, et al. 2008 J. Phys. D: Appl. Phys. 41 42003Google Scholar

    [86]

    Donkó Z, Schulze J, Czarnetzki U, Luggenhölscher D 2009 Appl. Phys. Lett. 94 131501Google Scholar

    [87]

    Schulze J, Donkó Z, Heil B G, Luggenhölscher D, Mussenbrock T, Brinkmann R P, Czarnetzki U 2008 J. Phys. D: Appl. Phys. 41 105214Google Scholar

    [88]

    Campanell M D, Khrabrov A V, Kaganovich I D 2012 Phys. Rev. Lett. 108 255001Google Scholar

    [89]

    Campanell M 2013 Phys. Rev. E 88 033103Google Scholar

    [90]

    Kushner M J 2003 J. Appl. Phys. 94 1436Google Scholar

    [91]

    Sharma S, Kaganovich I D, Khrabrov A V, Kaw P, Sen A 2018 Phys. Plasmas 25 080704Google Scholar

    [92]

    Krüger F, Wilczek S, Mussenbrock T, Schulze J 2019 Plasma Sources Sci. Technol. 28 075017Google Scholar

    [93]

    Zhang P, Zhang L, Xu L 2020 Plasma Processes Polym. 17 2000014Google Scholar

    [94]

    Zhang P, Zhang L, Lü K 2020 Plasma Chem. Plasma Process. 40 1605Google Scholar

    [95]

    Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018Google Scholar

    [96]

    Liu J, Zhang Y, Zhao K, Wen D, Wang Y 2021 Plasma Sources Sci. Technol. 23 035401Google Scholar

    [97]

    Lieberman M A, Booth J P, Chabert P, et al. 2002 Plasma Sources Sci. Technol. 11 283Google Scholar

    [98]

    Chabert P, Raimbault J L, Rax J M, Lieberman M A 2004 Phys. Plasmas 11 1775Google Scholar

    [99]

    Rauf S, Bera K, Collins K 2008 Plasma Sources Sci. Technol. 17 035003Google Scholar

    [100]

    Kawamura E, Lieberman M A, Graves D B 2014 Plasma Sources Sci. Technol. 23 064003Google Scholar

    [101]

    Kawamura E, Lichtenberg A J, Lieberman M A, Marakhtanov A M 2016 Plasma Sources Sci. Technol. 25 035007Google Scholar

    [102]

    Sansonnens L, Howling A A, Hollenstein C 2006 Plasma Sources Sci. Technol. 15 302Google Scholar

    [103]

    Lieberman M A, Lichtenberg A J, Kawamura E, Chabert P 2016 Phys. Plasmas 23 013501Google Scholar

    [104]

    Yang Y, Kushner M J 2010 J. Phys. D: Appl. Phys. 43 152001Google Scholar

    [105]

    Yang Y, Kushner M J 2010 J. Appl. Phys. 108 113306Google Scholar

    [106]

    Schmidt H, Sansonnens L, Howling A A, Hollenstein C, Elyaakoubi M, Schmitt J P M 2004 J. Appl. Phys. 95 4559Google Scholar

    [107]

    Kawamura E, Wen D Q, Lieberman M A, Lichtenberg A J 2017 J. Vac. Sci. Technol., A 35 05c311Google Scholar

    [108]

    Zhao K, Liu Y X, Kawamura E, Wen D Q, Lieberman M A, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055017Google Scholar

    [109]

    Zhao K, Wen D Q, Liu Y X, Lieberman M A, Economou D J, Wang Y N 2019 Phys. Rev. Lett. 122 185002Google Scholar

    [110]

    Lieberman M A, Lichtenberg A J, Kawamura E, Marakhtanov A M 2015 Plasma Sources Sci. Technol. 24 055011Google Scholar

    [111]

    Surendra M, Graves D B 1991 Appl. Phys. Lett. 59 2091Google Scholar

    [112]

    Cao Z, Walsh J L, Kong M G 2009 Appl. Phys. Lett. 94 021501Google Scholar

    [113]

    Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol. 14 89Google Scholar

    [114]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506Google Scholar

    [115]

    Heil B G, Schulze J, Mussenbrock T, Brinkmann R P, Czarnetzki U 2008 IEEE Trans. Plasma Sci. 36 1404Google Scholar

    [116]

    Schüngel E, Zhang Q Z, Iwashita S, Schulze J, Hou L J, Wang Y N, Czarnetzki U 2011 J. Phys. D: Appl. Phys. 44 285205Google Scholar

    [117]

    Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308Google Scholar

    [118]

    Delattre P A, Lafleur T, Johnson E, Booth J P 2013 J. Phys. D: Appl. Phys. 46 235201Google Scholar

    [119]

    Bruneau B, Gans T, O'Connell D, Greb A, Johnson E V, Booth J P 2015 Phys. Rev. Lett. 114 125002Google Scholar

    [120]

    Bruneau B, Novikova T, Lafleur T, Booth J P, Johnson E V 2014 Plasma Sources Sci. Technol. 23 065010Google Scholar

    [121]

    Hartmann P, Wang L, Nösges K, et al. 2021 J. Phys. D: Appl. Phys. 54 255202Google Scholar

    [122]

    Schüngel E, Mohr S, Schulze J, Czarnetzki U 2015 Appl. Phys. Lett. 106 054108Google Scholar

    [123]

    Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055003Google Scholar

    [124]

    Korolov I, Steuer D, Bischoff L, Hübner G, Liu Y, Schulz-von der Gathen V, Böke M, Mussenbrock T, Schulze J 2021 J. Phys. D: Appl. Phys. 54 125203Google Scholar

    [125]

    Schulze J, Schüngel E, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 092005Google Scholar

    [126]

    Berger B, Brandt S, Franek J, Schüngel E, Koepke M, Mussenbrock T, Schulze J 2015 J. Appl. Phys. 118 223302Google Scholar

    [127]

    Schüngel E, Eremin D, Schulze J, Mussenbrock T, Czarnetzki U 2012 J. Appl. Phys. 112 053302Google Scholar

    [128]

    Yang S, Chang L, Zhang Y, Jiang W 2018 Plasma Sources Sci. Technol. 27 035008Google Scholar

    [129]

    Schulze J, Donko Z, Schüngel E, et al. 2011 Plasma Sources Sci. Technol. 20 45007Google Scholar

    [130]

    Donke Z, Schulze J, Hartmann P, et al. 2010 Appl. Phys. Lett. 97 033502Google Scholar

    [131]

    Lafleur T, Chabert P, Booth J P 2013 J. Phys. D: Appl. Phys. 46 135201Google Scholar

    [132]

    Proto A, Gudmundsson J T 2018 Atoms 6 65Google Scholar

    [133]

    Donkó Z, Schulze J, Hartmann P, Korolov I, Czarnetzki U, Schüngel E 2010 Appl. Phys. Lett. 97 081501Google Scholar

    [134]

    Derzsi A, Horváth B, Korolov I, Donkó Z, Schulze J 2019 J. Appl. Phys 126 043303Google Scholar

    [135]

    Phelps A V, Pitchford L C, Pédoussat C, Donkó Z 1999 Plasma Sources Sci. Technol. 8 B1Google Scholar

    [136]

    Daksha M, Derzsi A, Wilczek S, Trieschmann J, Mussenbrock T, Awakowicz P, Donkó Z, Schulze J 2017 Plasma Sources Sci. Technol. 26 085006Google Scholar

    [137]

    Daksha M, Derzsi A, Mujahid Z, Schulenberg D, Berger B, Donkó Z, Schulze J 2019 Plasma Sources Sci. Technol. 28 034002Google Scholar

    [138]

    Sun J Y, Wen D Q, Zhang Q Z, Liu Y X, Wang Y N 2019 Phys. Plasmas 26 063505Google Scholar

    [139]

    Derzsi A, Horváth B, Donkó Z, Schulze J 2020 Plasma Sources Sci. Technol. 29 074001Google Scholar

    [140]

    Oberberg M, Engel D, Berger B, Wölfel C, Eremin D, Lunze J, Brinkmann R P, Awakowicz P, Schulze J 2019 Plasma Sources Sci. Technol. 28 115021Google Scholar

  • 图 1  容性耦合等离子体源重点内容结构图

    Figure 1.  Important elements related to capacitively coupled plasma source.

    图 2  CCP放电中等离子体参数控制重点内容结构图

    Figure 2.  Important elements related to plasma parameter control in CCP discharge.

    图 3  (a) 几何对称CCP放电腔室结构; (b) 几何非对称CCP放电腔室结构

    Figure 3.  (a) Schematics of geometrically symmetric CCP discharge; (b) schematics of geometrically asymmetric CCP discharge.

    图 4  PIC/MCC模拟流程图

    Figure 4.  Flow chart of the PIC/MCC simulation.

    图 5  (a) 时空分布的电子碰撞电离图; (b) 电场图; (c) 电子密度图. 放电条件: 四氟化碳气体, L = 1.5 cm, P = 90 Pa, f = 40 MHz, 功率20 W, 单频波[79]

    Figure 5.  Spatio-temporal plots of the ionization rate (a), electric field (b) and electron density (c). The discharge conditions are: CF4 gas, L = 1.5 cm, P = 90 Pa, f = 40 MHz, single frequency voltage waveform with a power 20 W[79].

    图 6  (a) CF4放电中, 实验测得电子碰撞激发速率的时空分布图; (b) PIC/MCC模拟的电子碰撞电离速率时空分布图. 放电条件: L = 1.5 cm, P = 100 Pa, f = 8 MHz, V0 = 300 V[49]

    Figure 6.  (a) Spatio-temporal plots of the exitation rate from experiment; (b) ionization rate from PIC/MCC simulations. The discharge conditions: CF4 gas, L = 1.5 cm, P = 100 Pa, f = 8 MHz, V0 = 300 V[49].

    图 7  时空分布的电子碰撞解离速率图(第一列); 电子碰撞电离速率图(第二列); 电场图(第三列); 净电荷密度图(第四列)和电子吸收功率图(第五列); 放电条件: 氧气, L = 3 cm, P = 40 Pa, f = 6 MHz, V0 = 200 V[80]

    Figure 7.  Spatio-temporal plots of the dissociation rate (first column), ionization rate (second column), electric field (third column), charge density (fourth column), and electron power absorption rate (fifth column). The discharge conditions: oxygen gas, L = 3 cm, P = 40 Pa, f = 6 MHz, V0 = 200 V[80].

    图 8  (a) 放电中心位置的电流密度图; (b) 功率源极板鞘层电压图; (c) 鞘层电压的傅里叶分析图. 放电条件: 氩气, L = 2 cm, P = 20 mTorr, f = 13.56 MHz, Δτ = 6 ns, V0 = 400 V, 高斯波形

    Figure 8.  (a) Current density at the discharge center; (b) voltage drop of the sheath at the powered electrode; (c) the Fourier spectrum of the sheath voltage at the powered electrode. Discharge conditions: Ar gas, L = 2 cm, P = 20 mTorr, f = 13.56 MHz, Δτ = 6 ns, V0 = 400 V, Gaussian waveform.

    图 9  时空分布的(a)电场图、(b) 电子吸收功率图、(c) 电子碰撞激发率图. 放电条件: L = 2 cm, P = 20 mTorr, f = 13.56 MHz, Δτ = 6 ns, V0 = 400 V, 高斯波形

    Figure 9.  Spatio-temporal plots of electric field (a), electron power absorption (b), and ionization rate (c). Discharge conditions: Argon gas, L = 2 cm, P = 20 mTorr, f = 13.56 MHz, Δτ = 6 ns, V0 = 400 V, Gaussian waveform.

    图 10  PIC/MCC及玻尔兹曼分析模型给出的t/TRF = 0.5时, 磁场为0 G (a) 和200 G (b) 时接地极板附近电场的空间分布图. 放电条件: 氧气, L = 2.5 cm, P = 100 mTorr, f = 13.56 MHz, V0 = 300 V[15]

    Figure 10.  Spatial distribution of the electric field near the grounded electrode from the PIC/MCC simulation and Boltzmann term analysis model at the time t/TRF = 0.5 at B = 0 G (a) and B = 200 G (b). Discharge conditions: oxygen gas, L = 2.5 cm, P = 100 mTorr, f = 13.56 MHz, V0 = 300 V[15].

    图 11  模拟、实验及模型给出的归一化的直流自偏压随相位角的变化图. 放电条件: L = 2.5 cm, P = 10 Pa, f = 13.56 MHz, V0 = 150 V[116]

    Figure 11.  Normalized DC self-bias as a function of the phase angle from experiments, simulations and models. Discharge conditions: L = 2.5 cm, P = 10 Pa, f = 13.56 MHz, V0 = 150 V[116].

    图 12  不同相位角下, 功率极板上的氩离子能量分布. 放电条件: L = 2.5 cm, P = 103 mTorr, f1 = 13.56 MHz, f2 = 27.12 MHz, V0 = 150 V[117]

    Figure 12.  Ion energy distribution at the powered electrode as a function of the phase angle. Discharge conditions: L = 2.5 cm, P = 103 mTorr, f1 = 13.56 MHz, f2 = 27.12 MHz, V0 = 150 V[117].

    图 13  在103和30 mTorr下, 不同相位角下氩气及氧气放电中功率极板上的离子通量. 放电条件: L = 2.5 cm, f = 13.56 MHz, V0 = 150 V[117]

    Figure 13.  Ion flux at the powered electrode as a function of the phase angle in argon and oxygen discharge at 103 and 30 mTorr. Other discharge conditions: L = 2.5 cm, f =13.56 MHz, V0 = 150 V[117].

    图 14  随相位角的变化, 电子密度空间分布图. 放电条件: P = 200 mTorr, f = 13.56 MHz, V0 = 100 V, 两个半径为15 cm的平行板电极, 电极间隙为3 cm, 电极和侧壁之间的距离为5 cm[123]

    Figure 14.  Spatial distributions of the electron density at different phase angles. Discharge conditions: P = 200 mTorr, f = 13.56 MHz, V0 = 100 V; the discharge is two plane and parallel electrodes with radii of 15 cm; the electrode gap is 3 cm, and the distance between electrodes and side-walls is 5 cm[123].

    图 15  不同电压下, A和B两种情况下离子密度峰值及其比值, 其中情况A为两个极板材料都是铜; 情况B为功率电极材料为二氧化硅, 接地电极材料为铜; 放电条件: 氩气, L = 4.0 cm, P = 2.0 Pa, f = 13.56 MHz[138]

    Figure 15.  Peak electron density in case A and case B and the peak density ratio as a function of the driving voltage amplitude. In case A, the surface material is Cu for both the powered and grounded electrode. In case B, the powered electrode is made of SiO2, while the grounded electrode is made of Cu. Discharge conditions: Argon gas, L = 4 cm, P = 2.0 Pa, f = 13.56 MHz[138].

    图 16  时空分布的电场图(第一行)、电子功率吸收功率图(第二行)和电离速率图(第三行); 在磁场B = 0 G (第一列)、B = 50 G (第二列)、B = 100 G (第三列)和B = 200 G (第四列)下的时空分布图. 放电条件: 氧气, L = 2.5 cm, P = 100 mTorr, f = 13.56 MHz, V0 = 300 V[15]

    Figure 16.  Spatio-temporal plots of the electric field (first row), electron power absorption rate (second row), and ionization rate (third row) at B = 0, 50, 100, 200 G. Discharge conditions: oxygen gas, L = 2.5 cm, P = 100 mTorr, f = 13.56 MHz, V0 = 300 V[15].

  • [1]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharge for Materials Processing (New York: Wiley-Interscience) pp1−5

    [2]

    Chabert P, Braithwaite N 2011 Physics of Radio-Frequency Plasmas (New York: Cambridge University Press)

    [3]

    Hartmann P, Wang L, Nösges K, Berger B, Wilczek S, Brinkmann R P, Mussenbrock T, Juhasz Z, Donkó Z, Derzsi A, Lee E, Schulze J 2020 Plasma Sources Sci. Technol. 29 075014Google Scholar

    [4]

    Korolov I, Derzsi A, Donkó Z, Schulze J 2013 Appl. Phys. Lett. 103 064102Google Scholar

    [5]

    Schulze J, Schüngel E, Donkó Z, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 015017Google Scholar

    [6]

    Lafleur T, Booth J P 2012 J. Phys. D: Appl. Phys. 45 395203Google Scholar

    [7]

    Lafleur T, Delattre P A, Johnson E V, Booth J P 2012 Appl. Phys. Lett 101 124104Google Scholar

    [8]

    Bruneau B, Lafleur T, Booth J P, Johnson E 2016 Plasma Sources Sci. Technol. 25 025006Google Scholar

    [9]

    Donkó Z, Derzsi A, Vass M, Schulze J, Schuengel E, Hamaguchi S 2018 Plasma Sources Sci. Technol. 27 104008Google Scholar

    [10]

    Turner M M, Hutchinson D, Doyle R A, et al. 1996 Phys Rev Lett. 76 2069Google Scholar

    [11]

    Vasenkov A V 2004 J. Appl. Phys. 95 834Google Scholar

    [12]

    Zheng B, Y Fu, Wang K, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abe9f9Google Scholar

    [13]

    Stefan R, Nikita B, Marcel R, et al. 2018 Plasma Sources Sci. Technol. 27 094001Google Scholar

    [14]

    Oberberg M, Berger B, Buschheuer M, Engel D, Wölfel C, Eremin D, Lunze J, Brinkmann R P, Awakowicz P, Schulze J 2020 Plasma Sources Sci. Technol. 29 075013Google Scholar

    [15]

    Wang L, Wen D Q, Hartmann P, Donkó Z, Derzsi A, Wang X F, Song Y H, Wang Y N, Schulze J 2020 Plasma Sources Sci. Technol. 29 105004Google Scholar

    [16]

    Yang S, Innocenti M E, Zhang Y, Yi L, Jiang W 2017 J. Vac. Sci. Technol., A 35 061311Google Scholar

    [17]

    Zhang Q Z, Wang Y N, Bogaerts A 2014 J. Appl. Phys. 115 3048Google Scholar

    [18]

    Wen D Q, Kawamura E, Lieberman M A, et al. 2017 J. Phys. D: Appl. Phys. 50 495201Google Scholar

    [19]

    Wang L, Peter H, Donko Z, Song Y H, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abf206Google Scholar

    [20]

    Brandt S W, Berger B, Donko Z, et al. 2019 Plasma Sources Sci. Technol. 28 095021Google Scholar

    [21]

    Song S H, Kushner M J 2012 Plasma Sources Sci. Technol. 21 055028Google Scholar

    [22]

    Derzsi A, Lafleur T, Booth J P, et al. 2016 Plasma Sources Sci. Technol. 25 015004Google Scholar

    [23]

    Franek J, Brandt S, Berger B, Liese M, Barthel M, Schungel E, Schulze J 2015 Rev. Sci. Instrum. 86 053504Google Scholar

    [24]

    Schmidt F, Schulze J, Johnson E, Booth J P, Keil D, French D M, Trieschmann J, Mussenbrock T 2018 Plasma Sources Sci. Technol. 27 095012Google Scholar

    [25]

    Wang J K, Dine S, Booth J P, et al. 2019 J. Vac. Sci. Technol., A 37 021303Google Scholar

    [26]

    Cargill P J 2007 Plasma Phys. Controlled Fusion 49 197Google Scholar

    [27]

    Hammond E P, Mahesh K, Moin P J 2002 J. Comput. Phys. 176 402Google Scholar

    [28]

    Larson M G, Bengzon F 2013 The Finite Element Method: Theory, Implementation and Applications (Berlin, Heidelberg: Springer-Verlag)

    [29]

    陆金甫, 关治 2004 偏微分方程数值解法 (北京: 清华大学出版社) 第77−80页

    Lu J P, Guan Z 2004 Numerical Methods for Partial Differential Equations (Beijing: Tsinghua University Press) pp77–80 (in Chinese)

    [30]

    Rebiai S, Bahouh H, Sahli S 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1616Google Scholar

    [31]

    Liu Y X, Liang Y S, Wen D Q, Bi Z H, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025013Google Scholar

    [32]

    Kushner M J 2009 J. Phys. D: Appl. Phys. 42 194013Google Scholar

    [33]

    Czarnetzki U, Mussenbrock T, Brinkmann R P 2006 Phys. Plasmas 13 123503Google Scholar

    [34]

    Lieberman M A, Lichtenberg A J, Kawamura E, Mussenbrock T, Brinkmann R P 2008 Phys. Plasmas 15 063505Google Scholar

    [35]

    Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2016 Plasma Sources Sci. Technol. 26 015007Google Scholar

    [36]

    Mussenbrock T, Brinkmann R P, Lieberman M A, Lichtenberg A J, Kawamura E 2008 Phys. Rev. Lett. 101 085004Google Scholar

    [37]

    Fu Y, Zheng B, Wen D Q, Zhang P, Fan Q H, Verboncoeur J P 2020 Plasma Sources Sci. Technol. 29 09lt01Google Scholar

    [38]

    Derzsi A, Korolov I, Schüngel E, Donkó Z, Schulze J 2015 Plasma Sources Sci. Technol. 24 034002Google Scholar

    [39]

    Horváth B, Daksha M, Korolov I, Derzsi A, Schulze J 2017 Plasma Sources Sci. Technol. 26 124001Google Scholar

    [40]

    Birdsall C K, Langdon A B 1985 Plasma Physics Via Computer Simulation (New York: McGraw-Hill)

    [41]

    Verboncoeur J P 2005 Plasma Phys. Controlled Fusion 47 A231Google Scholar

    [42]

    Donkó Z, Derzsi A, Vass M, et al. 2021 arXiv:2103.09642 [physics.plasm-ph]

    [43]

    Donkó Z 2011 Plasma Sources Sci. Technol. 20 024001

    [44]

    Nanbu K 2000 IEEE Trans Dielectr. Electr. Insul. 28 971Google Scholar

    [45]

    Turner M M 1995 Phys. Rev. Lett. 75 1312Google Scholar

    [46]

    Schulze J, Derzsi A, Dittmann K, Hemke T, Meichsner J, Donko Z 2011 Phys. Rev. Lett. 107 275001Google Scholar

    [47]

    Kim H C, Lee J K 2004 Phys. Rev. Lett. 93 085003Google Scholar

    [48]

    Turner M M, Chabert P 2006 Phys. Rev. Lett. 96 205001Google Scholar

    [49]

    Liu Y X, Schungel E, Korolov I, Donko Z, Wang Y N, Schulze J 2016 Phys. Rev. Lett. 116 255002Google Scholar

    [50]

    Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002Google Scholar

    [51]

    Wilczek S, Trieschmann J, Eremin D, Brinkmann R P, Schulze J, Schuengel E, Derzsi A, Korolov I, Hartmann P, Donkó Z, Mussenbrock T 2016 Phys. Plasmas 23 063514Google Scholar

    [52]

    Jiang W, Wang H Y, Bi Z H, Wang Y N 2011 Plasma Sources Sci. Technol. 20 035013Google Scholar

    [53]

    Zhang Q Z, Zhao S X, Jiang W, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 305203Google Scholar

    [54]

    Eremin D, Bienholz S, Szeremley D, Trieschmann J, Ries S, Awakowicz P, Mussenbrock T, Brinkmann R P 2016 Plasma Sources Sci. Technol. 25 025020Google Scholar

    [55]

    Eremin D 2017 IEEE Trans. Plasma Sci. 45 527Google Scholar

    [56]

    Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2017 Phys. Plasmas 24 083517Google Scholar

    [57]

    Eremin D, Brinkmann R P, Mussenbrock T 2017 Plasma Processes Polym. 14 1600164Google Scholar

    [58]

    Wen D Q, Zhang Q Z, Jiang W, et al. 2014 J. Appl. Phys. 115 233303Google Scholar

    [59]

    Wang L, Hartmann P, Donkó Z, et al. 2021 Plasma Sources Sci. Technol. DOI: 10.1088/1361-6595/abf31dGoogle Scholar

    [60]

    Gudmundsson J T, Kawamura E, Lieberman M A 2013 Plasma Sources Sci. Technol. 22 035011Google Scholar

    [61]

    Verboncoeur J P, Langdon A B, Gladd N T 1995 Comput. Phys. Commun. 87 199Google Scholar

    [62]

    夏伯特P, 布雷斯韦特N 著(王友年, 徐军, 宋远红 译) 2015 射频离子体物理学 (北京: 科学出版社)

    Chabert P, Braithwaite N (translated by Wang Y N, Xu J, Song Y H) 2015 Physics of Radio-Frequency Plasmas (Beijing: Science Press) (in Chinese)

    [63]

    Liu J, Wen D Q, Liu Y X, Gao F, Lu W Q, Wang Y N 2013 J. Vac. Sci. Technol., A 31 061308Google Scholar

    [64]

    Zhu X M, Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001Google Scholar

    [65]

    Li J, Liu F X, Zhu X M, Pu Y K 2011 J. Phys. D: Appl. Phys. 44 292001Google Scholar

    [66]

    Xue C, Gao F, Wen D Q, Wang Y N 2019 J. Appl. Phys. 125 023303Google Scholar

    [67]

    Godyak V A, Piejak R B 1990 Phys. Rev. Lett. 65 996Google Scholar

    [68]

    Lieberman M A 1989 IEEE Trans. Plasma Sci. Soc. 17 338Google Scholar

    [69]

    Kaganovich I D, Polomarov O V, Theodosiou C E 2006 IEEE Trans. Plasma Sci. 34 696Google Scholar

    [70]

    Gozadinos G, Turner M M, Vender D 2001 Phys. Rev. Lett. 87 135004Google Scholar

    [71]

    Lafleur T, Chabert P, Turner M M, Booth J P 2014 Plasma Sources Sci. Technol. 23 015016Google Scholar

    [72]

    Schulze J, Donkó Z, Derzsi A, et al. 2015 Plasma Sources Sci. Technol. 24 015019Google Scholar

    [73]

    Schulze J, Donkó Z, Lafleur T, Wilczek S, Brinkmann R P 2018 Plasma Sources Sci. Technol. 27 055010Google Scholar

    [74]

    Wilczek S, Schulze J, Brinkmann R P, Donkó Z, Trieschmann J, Mussenbrock T 2020 J. Appl. Phys. 127 181101

    [75]

    Vass M, Wilczek S, Lafleur T, et al. 2020 Plasma Sources Sci. Technol. 29 085014Google Scholar

    [76]

    Vass M, Wilczek S, Lafleur T, et al. 2020 Plasma Sources Sci. Technol. 29 025019Google Scholar

    [77]

    Belenguer P, Boeuf J P 1990 Phys. Rev. A 41 4447Google Scholar

    [78]

    Booth J P, Curley G, Marić D, Chabert P 2010 Plasma Sources Sci. Technol. 19 015005Google Scholar

    [79]

    Liu G H, Liu Y X, Wen D Q, Wang Y N 2015 Plasma Sources Sci. Technol. 24 034006Google Scholar

    [80]

    Wang L, Wen D Q, Zhang Q Z, Song Y H, Zhang Y R, Wang Y N 2019 Plasma Sources Sci. Technol. 28 055007Google Scholar

    [81]

    Schulze J, Kampschulte T, Luggenholscher D, Czarnetzki U 2007 J. Phys. Conf. Ser. 86 012010Google Scholar

    [82]

    Berger B, You K, Lee H C, Mussenbrock T, Awakowicz P, Schulze J 2018 Plasma Sources Sci. Technol. 27 12LT02Google Scholar

    [83]

    Schüngel E, Brandt S, Donkó Z, et al. 2016 Plasma Sources Sci. Technol. 24 044009Google Scholar

    [84]

    Schulze J, Heil B G, Luggenhölscher D, Brinkmann R P, Czarnetzki U 2008 J. Phys. D: Appl. Phys. 41 195212Google Scholar

    [85]

    Schulze J, Heil B G, et al. 2008 J. Phys. D: Appl. Phys. 41 42003Google Scholar

    [86]

    Donkó Z, Schulze J, Czarnetzki U, Luggenhölscher D 2009 Appl. Phys. Lett. 94 131501Google Scholar

    [87]

    Schulze J, Donkó Z, Heil B G, Luggenhölscher D, Mussenbrock T, Brinkmann R P, Czarnetzki U 2008 J. Phys. D: Appl. Phys. 41 105214Google Scholar

    [88]

    Campanell M D, Khrabrov A V, Kaganovich I D 2012 Phys. Rev. Lett. 108 255001Google Scholar

    [89]

    Campanell M 2013 Phys. Rev. E 88 033103Google Scholar

    [90]

    Kushner M J 2003 J. Appl. Phys. 94 1436Google Scholar

    [91]

    Sharma S, Kaganovich I D, Khrabrov A V, Kaw P, Sen A 2018 Phys. Plasmas 25 080704Google Scholar

    [92]

    Krüger F, Wilczek S, Mussenbrock T, Schulze J 2019 Plasma Sources Sci. Technol. 28 075017Google Scholar

    [93]

    Zhang P, Zhang L, Xu L 2020 Plasma Processes Polym. 17 2000014Google Scholar

    [94]

    Zhang P, Zhang L, Lü K 2020 Plasma Chem. Plasma Process. 40 1605Google Scholar

    [95]

    Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018Google Scholar

    [96]

    Liu J, Zhang Y, Zhao K, Wen D, Wang Y 2021 Plasma Sources Sci. Technol. 23 035401Google Scholar

    [97]

    Lieberman M A, Booth J P, Chabert P, et al. 2002 Plasma Sources Sci. Technol. 11 283Google Scholar

    [98]

    Chabert P, Raimbault J L, Rax J M, Lieberman M A 2004 Phys. Plasmas 11 1775Google Scholar

    [99]

    Rauf S, Bera K, Collins K 2008 Plasma Sources Sci. Technol. 17 035003Google Scholar

    [100]

    Kawamura E, Lieberman M A, Graves D B 2014 Plasma Sources Sci. Technol. 23 064003Google Scholar

    [101]

    Kawamura E, Lichtenberg A J, Lieberman M A, Marakhtanov A M 2016 Plasma Sources Sci. Technol. 25 035007Google Scholar

    [102]

    Sansonnens L, Howling A A, Hollenstein C 2006 Plasma Sources Sci. Technol. 15 302Google Scholar

    [103]

    Lieberman M A, Lichtenberg A J, Kawamura E, Chabert P 2016 Phys. Plasmas 23 013501Google Scholar

    [104]

    Yang Y, Kushner M J 2010 J. Phys. D: Appl. Phys. 43 152001Google Scholar

    [105]

    Yang Y, Kushner M J 2010 J. Appl. Phys. 108 113306Google Scholar

    [106]

    Schmidt H, Sansonnens L, Howling A A, Hollenstein C, Elyaakoubi M, Schmitt J P M 2004 J. Appl. Phys. 95 4559Google Scholar

    [107]

    Kawamura E, Wen D Q, Lieberman M A, Lichtenberg A J 2017 J. Vac. Sci. Technol., A 35 05c311Google Scholar

    [108]

    Zhao K, Liu Y X, Kawamura E, Wen D Q, Lieberman M A, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055017Google Scholar

    [109]

    Zhao K, Wen D Q, Liu Y X, Lieberman M A, Economou D J, Wang Y N 2019 Phys. Rev. Lett. 122 185002Google Scholar

    [110]

    Lieberman M A, Lichtenberg A J, Kawamura E, Marakhtanov A M 2015 Plasma Sources Sci. Technol. 24 055011Google Scholar

    [111]

    Surendra M, Graves D B 1991 Appl. Phys. Lett. 59 2091Google Scholar

    [112]

    Cao Z, Walsh J L, Kong M G 2009 Appl. Phys. Lett. 94 021501Google Scholar

    [113]

    Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol. 14 89Google Scholar

    [114]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506Google Scholar

    [115]

    Heil B G, Schulze J, Mussenbrock T, Brinkmann R P, Czarnetzki U 2008 IEEE Trans. Plasma Sci. 36 1404Google Scholar

    [116]

    Schüngel E, Zhang Q Z, Iwashita S, Schulze J, Hou L J, Wang Y N, Czarnetzki U 2011 J. Phys. D: Appl. Phys. 44 285205Google Scholar

    [117]

    Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308Google Scholar

    [118]

    Delattre P A, Lafleur T, Johnson E, Booth J P 2013 J. Phys. D: Appl. Phys. 46 235201Google Scholar

    [119]

    Bruneau B, Gans T, O'Connell D, Greb A, Johnson E V, Booth J P 2015 Phys. Rev. Lett. 114 125002Google Scholar

    [120]

    Bruneau B, Novikova T, Lafleur T, Booth J P, Johnson E V 2014 Plasma Sources Sci. Technol. 23 065010Google Scholar

    [121]

    Hartmann P, Wang L, Nösges K, et al. 2021 J. Phys. D: Appl. Phys. 54 255202Google Scholar

    [122]

    Schüngel E, Mohr S, Schulze J, Czarnetzki U 2015 Appl. Phys. Lett. 106 054108Google Scholar

    [123]

    Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055003Google Scholar

    [124]

    Korolov I, Steuer D, Bischoff L, Hübner G, Liu Y, Schulz-von der Gathen V, Böke M, Mussenbrock T, Schulze J 2021 J. Phys. D: Appl. Phys. 54 125203Google Scholar

    [125]

    Schulze J, Schüngel E, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 092005Google Scholar

    [126]

    Berger B, Brandt S, Franek J, Schüngel E, Koepke M, Mussenbrock T, Schulze J 2015 J. Appl. Phys. 118 223302Google Scholar

    [127]

    Schüngel E, Eremin D, Schulze J, Mussenbrock T, Czarnetzki U 2012 J. Appl. Phys. 112 053302Google Scholar

    [128]

    Yang S, Chang L, Zhang Y, Jiang W 2018 Plasma Sources Sci. Technol. 27 035008Google Scholar

    [129]

    Schulze J, Donko Z, Schüngel E, et al. 2011 Plasma Sources Sci. Technol. 20 45007Google Scholar

    [130]

    Donke Z, Schulze J, Hartmann P, et al. 2010 Appl. Phys. Lett. 97 033502Google Scholar

    [131]

    Lafleur T, Chabert P, Booth J P 2013 J. Phys. D: Appl. Phys. 46 135201Google Scholar

    [132]

    Proto A, Gudmundsson J T 2018 Atoms 6 65Google Scholar

    [133]

    Donkó Z, Schulze J, Hartmann P, Korolov I, Czarnetzki U, Schüngel E 2010 Appl. Phys. Lett. 97 081501Google Scholar

    [134]

    Derzsi A, Horváth B, Korolov I, Donkó Z, Schulze J 2019 J. Appl. Phys 126 043303Google Scholar

    [135]

    Phelps A V, Pitchford L C, Pédoussat C, Donkó Z 1999 Plasma Sources Sci. Technol. 8 B1Google Scholar

    [136]

    Daksha M, Derzsi A, Wilczek S, Trieschmann J, Mussenbrock T, Awakowicz P, Donkó Z, Schulze J 2017 Plasma Sources Sci. Technol. 26 085006Google Scholar

    [137]

    Daksha M, Derzsi A, Mujahid Z, Schulenberg D, Berger B, Donkó Z, Schulze J 2019 Plasma Sources Sci. Technol. 28 034002Google Scholar

    [138]

    Sun J Y, Wen D Q, Zhang Q Z, Liu Y X, Wang Y N 2019 Phys. Plasmas 26 063505Google Scholar

    [139]

    Derzsi A, Horváth B, Donkó Z, Schulze J 2020 Plasma Sources Sci. Technol. 29 074001Google Scholar

    [140]

    Oberberg M, Engel D, Berger B, Wölfel C, Eremin D, Lunze J, Brinkmann R P, Awakowicz P, Schulze J 2019 Plasma Sources Sci. Technol. 28 115021Google Scholar

  • [1] Duan Meng-Yue, Jia Wen-Zhu, Zhang Ying-Ying, Zhang Yi-Fan, Song Yuan-Hong. Two-dimensional fluid simulation of spatial distribution of dust particles in a capacitively coupled silane plasma. Acta Physica Sinica, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [2] Song Liu-Qin, Jia Wen-Zhu, Dong Wan, Zhang Yi-Fan, Dai Zhong-Ling, Song Yuan-Hong. Numerical investigation of SiO2 film deposition enhanced by capacitively coupled discharge plasma. Acta Physica Sinica, 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [3] Cao Li-Yang, Ma Xiao-Ping, Deng Li-Li, Lu Man-Ting, Xin Yu. Axial diagnosis of radio-frequency capacitively coupled Ar/O2 plasma. Acta Physica Sinica, 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [4] Zhou Yu, Cao Li-Yang, Ma Xiao-Ping, Deng Li-Li, Xin Yu. Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, 69(8): 085201. doi: 10.7498/aps.69.20191864
    [5] Hu Yan-Ting, Zhang Yu-Ru, Song Yuan-Hong, Wang You-Nian. Effect of phase angle on plasma characteristics in electrically asymmetric capacitive discharge. Acta Physica Sinica, 2018, 67(22): 225203. doi: 10.7498/aps.67.20181400
    [6] Wang Jun, Wang Tao, Tang Cheng-Shuang, Xin Yu. Evolution of electron energy distribution function in capacitively coupled argon plasma driven by very high frequency. Acta Physica Sinica, 2016, 65(5): 055203. doi: 10.7498/aps.65.055203
    [7] Hao Ying-Ying, Meng Xiu-Lan, Yao Fu-Bao, Zhao Guo-Ming, Wang Jing, Zhang Lian-Zhu. Simulations of electrical asymmetry effect on N2-H2 capacitively coupled plasma by particle-in-cell/Monte Carlo model. Acta Physica Sinica, 2014, 63(18): 185205. doi: 10.7498/aps.63.185205
    [8] Wang Jian-Wei, Song Yi-Xu, Ren Tian-Ling, Li Jin-Chun, Chu Guo-Liang. Molecular dynamics simulation of Lag effect in fluorine plasma etching Si. Acta Physica Sinica, 2013, 62(24): 245202. doi: 10.7498/aps.62.245202
    [9] Du Yong-Quan, Liu Wen-Yao, Zhu Ai-Min, Li Xiao-Song, Zhao Tian-Liang, Liu Yong-Xin, Gao Fei, Xu Yong, Wang You-Nian. Phase resolved optical emission spectroscopy of dual frequency capacitively coupled plasma. Acta Physica Sinica, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [10] Zou Shuai, Tang Zhong-Hua, Ji Liang-Liang, Su Xiao-Dong, Xin Yu. Application of floating microwave resonator probe to the measurement of electron density in electronegative capacitively coupled plasma. Acta Physica Sinica, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [11] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [12] Chen Yu-Hui, Wang Yang, Zuo Fang-Yuan, Lai Tian-Shu, Wu Yi-Qun. The electron dynamics of semimetal Sb films. Acta Physica Sinica, 2009, 58(5): 3548-3552. doi: 10.7498/aps.58.3548
    [13] Yang Juan, Xu Ying-Qiao, Zhu Liang-Ming. Diagnostic study on the electron density distribution of microwave plasma jet in local vacuum environment. Acta Physica Sinica, 2008, 57(3): 1788-1791. doi: 10.7498/aps.57.1788
    [14] Study of the harmonics of coherent transition radiation emitted by hot electrons generated in ultra-intense laser plasma interaction due to different heating mechanism. Acta Physica Sinica, 2007, 56(12): 7132-7137. doi: 10.7498/aps.56.7132
    [15] Hao Zuo-Qiang, Yu Jin, Zhang Jie, Yuan Xiao-Hui, Zheng Zhi-Yuan, Yang Hui, Wang Zhao-Hua, Ling Wei-Jun, Wei Zhi-Yi. Acoustic diagnostics of plasma channels in air induced by intense femtosecond laser pulses. Acta Physica Sinica, 2005, 54(3): 1290-1294. doi: 10.7498/aps.54.1290
    [16] XIA JIANG-FAN, ZHANG JUN, ZHANG JIE. MODELING THE ASTROPHYSICAL DYNAMICAL PROCESS WITH LASER-PLASMAS. Acta Physica Sinica, 2001, 50(5): 994-1000. doi: 10.7498/aps.50.994
    [17] Liu Ming-Hai, Hu Xi-Wei, Wu Qin-Chong, Yu Guo-Yang. . Acta Physica Sinica, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [18] WANG WEN-ZHONG, ZHANG TAN-XIN, HE ZHAO-TANG, GU YU-QIU, LONG YONG-LU, JIANG WEN-MIAN. DIAGNOSTICS OF ELECTRON DENSITY OF LASER-PRODU-CED PLASMA FROM THE XUV SPECTRA OF AgXIX. Acta Physica Sinica, 1995, 44(11): 1783-1787. doi: 10.7498/aps.44.1783
    [19] GUAN WEI-SHU, WANG EN-YAO, CHENG SHI-QING, DUAN SHU-YUN, WANG JI-HAI, GU BIAO, SHANG ZHEN-KUI. EXPERIMENTAL INVESTIGATION ON PROPERTIES OF E. C. H. PLASMA AND HOT ELECTRON RING. Acta Physica Sinica, 1989, 38(2): 228-235. doi: 10.7498/aps.38.228
    [20] CHEN YAN-PING, ZHOU YU-MEI. ECRH IN NON-THERMAL EQUILIBRIUM PLASMAS IN WEAKLY RELATIVISTIC REGIME. Acta Physica Sinica, 1984, 33(7): 1050-1057. doi: 10.7498/aps.33.1050
Metrics
  • Abstract views:  9490
  • PDF Downloads:  363
  • Cited By: 0
Publishing process
  • Received Date:  11 March 2021
  • Accepted Date:  23 April 2021
  • Available Online:  28 April 2021
  • Published Online:  05 May 2021

/

返回文章
返回