Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of plasma gasification technology for solid waste treatment

Sun Cheng-Wei Shen Jie Ren Xue-Mei Chen Chang-Lun

Citation:

Research progress of plasma gasification technology for solid waste treatment

Sun Cheng-Wei, Shen Jie, Ren Xue-Mei, Chen Chang-Lun
PDF
HTML
Get Citation
  • The rapid development of social economy leads the output of solid waste to increase rapidly. The traditional treatment methods, such as landfilling, incineration and composting, are not only inefficient, but also have many limitations, such as secondary pollution and waste of resources. Therefore, it is urgent to explore new solid waste treatment technology. Due to its high efficiency, environmental protection and high energy conversion, the plasma gasification technology has been applied to the harmless treatment of solid waste. This article introduces the background and significance of plasma gasification technology in solid waste treatment, and summarizes the application of plasma gasification technology to different solid waste treatments, the technical level and research progress of plasma gasification of solid waste in the world are described in detail, and the existing problems in the current application of plasma gasification of solid waste are emphatically analyzed. It is pointed out that plasma gasification technology is an effective way to treat solid waste.
      Corresponding author: Chen Chang-Lun, clchen@ipp.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant Nos. 2008085MB46, 1808085MA13) and the National Natural Science Foundation of China (Grant No. 51877208)
    [1]

    Laurent A, Bakas I, Clavreul J, Bernstad A, Niero M, Gentil E, Hauschild M Z, Christensen T H 2014 Waste Manage. 34 573Google Scholar

    [2]

    Liu Y J, Liu Y T, Li H, Fu X D, Guo H W, Meng R H, Lu W J, Zhao M, Wang H T 2016 Environ. Int. 97 15Google Scholar

    [3]

    Sultan M, Waheed S, Ali U, Sweetman A J, Jones K C, Malik R N 2019 Ecotoxicol. Environ. Saf. 170 195Google Scholar

    [4]

    Gallo F, Fossi C, Weber R, Santillo D, Sousa J, Ingram I, Nadal A, Romano D 2018 Environ. Sci. Eur. 30 13Google Scholar

    [5]

    Funari V, Mäkinen J, Salminen J, Braga R, Dinelli E, Revitzer H 2017 Waste Manage. 60 397Google Scholar

    [6]

    Sauve G, Van Acker K 2020 J. Environ. Manage. 261 110216Google Scholar

    [7]

    Lin Z Z, Wang Z, Hu Y F, Liu Y L, Xu J 2017 Environ. Eng. Sci. 34 607Google Scholar

    [8]

    Zhang J J, Zhang S G, Liu B 2020 J. Cleaner Prod. 250 119507Google Scholar

    [9]

    Chaturvedi S, Yadav B P, Siddiqui N A, Chaturvedi S K 2020 J. Oceanic Eng. Sci. 5 136Google Scholar

    [10]

    Lim S L, Lee L H, Wu T Y 2016 J. Cleaner Prod. 111 262Google Scholar

    [11]

    Yao P 2017 Arabian J. Chem. 10 S2567Google Scholar

    [12]

    Kumar A, Samadder S R 2017 Waste Manage. 69 407Google Scholar

    [13]

    Munir M T, Mardon I, Al-Zuhair S, Shawabkeh A, Saqib N U 2019 Renewable Sustainable Energy Rev. 116 109461Google Scholar

    [14]

    Fang S W, Gu W L, Chen L, Yu Z S, Dai M Q, Lin Y, Liao Y F, Ma X Q 2018 Bioresour. Technol. 258 5Google Scholar

    [15]

    Inglezakis V J, Amzebek A, Kuspangaliyeva B, Sarbassov Y, Balbayeva G, Yerkinova A, Poulopoulos S G 2018 Desalin. Water Treat. 112 218Google Scholar

    [16]

    Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z 2014 Chem. Eng. J. 236 348Google Scholar

    [17]

    Ghasali E, Alizadeh M, Niazmand M, Ebadzadeh T 2017 J. Alloys Compd. 697 200Google Scholar

    [18]

    Shi B L, Dai Y F, Xie X H, Li S Y, Zhou L 2016 Plasma Chem. Plasma Process. 36 891Google Scholar

    [19]

    Niu H Z, Chen Y F, Zhang D L, Zhang Y S, Lu J W, Zhang W, Zhang P X 2016 Mater. Des. 89 823Google Scholar

    [20]

    Miller K K, Gottfried J L, Walck S D, Pantoya M L, Wu C C 2019 Combust. Flame 206 211Google Scholar

    [21]

    Messerle V E, Mosse A L, Ustimenko A B 2018 Waste Manage. 79 791Google Scholar

    [22]

    Yayalık I, Koyun A, Akgün M 2020 Plasma Chem. Plasma Process. 40 1401Google Scholar

    [23]

    Pujara Y, Pathak P, Sharma A, Govani J 2019 J. Environ. Manage. 248 109238Google Scholar

    [24]

    Meena M D, Yadav R K, Narjary B, Yadav G, Jat H S, Sheoran P, Meena M K, Antil R S, Meena B L, Singh H V, Meena V S, Rai P K, Ghosh A, Moharana P C 2019 Waste Manage. 84 38Google Scholar

    [25]

    Chen Y C 2018 Waste Manage. 79 828Google Scholar

    [26]

    Peterson R A, Buck E C, Chun J, Daniel R C, Herting D L, Ilton E S, Lumetta G J, Clark S B 2018 Environ. Sci. Technol. 52 381Google Scholar

    [27]

    Ghasemi L, Yousefzadeh S, Rastkari N, Naddafi K, Far N S, Nabizadeh R 2018 J. Environ. Health Sci. Eng. 16 171Google Scholar

    [28]

    Ahmed M J K, Ahmaruzzaman M 2016 J. Water Process Eng. 10 39Google Scholar

    [29]

    Gundupalli S P, Hait S, Thakur A 2017 Waste Manage. 60 56Google Scholar

    [30]

    Agon N, Hrabovský M, Chumak O, Hlína M, Kopecký V, Masláni A, Bosmans A, Helsen L, Skoblja S, Van Oost G, Vierendeels J 2016 Waste Manage. 47 246Google Scholar

    [31]

    Hrabovsky M, Kopeckykopecky V, Sember V, Kavka T, Chumak O, Konrad M 2006 IEEE Trans. Plasma Sci. 34 1566Google Scholar

    [32]

    Materazzi M, Lettieri P, Mazzei L, Taylor R, Chapman C 2015 Fuel Process. Technol. 137 259Google Scholar

    [33]

    Shie J, Chen L X, Lin K L, Chang C Y 2014 Energy 66 82Google Scholar

    [34]

    Prado E S P, Miranda F S, Petraconi G, Potiens Jr A J 2020 Radiat. Phys. Chem. 168 108625Google Scholar

    [35]

    Trnovcevic J, Schneider F, Scherer U W 2017 Radiat. Eff. Defects Solids 172 23Google Scholar

    [36]

    Rajan R, Robin D T, Vandanarani M 2019 J. Ayurveda Integr. Med. 10 214Google Scholar

    [37]

    Messerle V E, Mosse A L, Ustimenko A B 2016 IEEE Trans. Plasma Sci. 44 3017Google Scholar

    [38]

    Pei S L, Chen T L, Pan S Y, Yang Y L, Sun Z H, Li Y J 2020 J. Hazard. Mater. 398 122959Google Scholar

    [39]

    Ma W C, Fang Y H, Chen D M, Chen G Y, Xu Y X, Sheng H Z, Zhou Z H 2017 Fuel 210 145Google Scholar

    [40]

    Zhao P, Ni G H, Jiang Y M, Chen L W, Chen M Z, Meng Y D 2010 J. Hazard. Mater. 181 580Google Scholar

    [41]

    Seftejani M N, Schenk J 2018 Metals 8 1051Google Scholar

    [42]

    Yugeswaran S, Ananthapadmanabhan P V, Lusvarghi L 2015 Ceram. Int. 41 265Google Scholar

    [43]

    Yugeswaran S, Ananthapadmanabhan P V, Thiyagarajan T K, Ramachandran K 2015 Ceram. Int. 41 9585Google Scholar

    [44]

    Peng G L, Deng S B, Liu F L, Qi C D, Tao L Y, Li T, Yu G 2020 J. Cleaner Prod. 262 121416Google Scholar

    [45]

    Chen H X, Yuan H H, Mao L Q, Hashmi M Z, Xu F N, Tang X J 2020 Chemosphere 240 124885Google Scholar

    [46]

    Orescanin V, Mikelic I L, Kollar R, Mikulic N, Medunic G 2012 Arh. Hig. Rada Toksikol. 63 337Google Scholar

    [47]

    Vieira Cubas A L, Machado M D M, Machado M d M, Gross F, Magnago R F, Siegel Moecke E H, de Souza I G 2014 Environ. Sci. Technol. 48 2853Google Scholar

    [48]

    Fabry F, Rehmet C, Rohani V, Fulcheri L 2013 Waste Biomass Valorization 4 421Google Scholar

    [49]

    Sanito R C, You S J, Chang T J, Wang Y F 2020 J. Environ. Manage. 270 110910Google Scholar

    [50]

    杨德宇, 俞建荣 2014 新技术新工艺 2 106Google Scholar

    Yang D Y, Yu J R 2014 New Technology & New Process 2 106Google Scholar

    [51]

    Ramos A, Berzosa J, Espí J, Clarens F, Rouboa A 2020 Energy Convers. Manage. 209 112508Google Scholar

    [52]

    任一峰 2011 发电设备 25 370Google Scholar

    Ren Y F 2011 Power Equipment 25 370Google Scholar

    [53]

    Ruj B, Ghosh S 2014 Fuel Process. Technol. 126 298Google Scholar

    [54]

    Choi K, Sheng J W, Lee M C, Song M J 2000 Waste Manage. 20 575Google Scholar

    [55]

    Jeong J, Baik M H, Kang M J, Ahn H J, Hwang D S, Hong D S, Jeong Y H, Kim K 2016 Nucl. Eng. Technol. 48 1368Google Scholar

    [56]

    Byun Y, Namkung W, Cho M, Chung J W, Kim Y S, Lee J H, Lee C R, Hwang S M 2010 Environ. Sci. Technol. 44 6680Google Scholar

    [57]

    Materazzi M, Lettieri P, Mazzei L, Taylor R, Chapman C 2014 Fuel Process. Technol. 128 146Google Scholar

    [58]

    Taylor R, Ray R, Chapman C 2013 Fuel 106 401Google Scholar

    [59]

    Rani D A, Gomez E, Boccaccini A R, Hao L, Deegan D, Cheeseman C R 2008 Waste Manage. 28 1254Google Scholar

    [60]

    Rutberg P G, Kuznetsov V A, Serba E O, Popov S D, Surov A V, Nakonechny G V, Nikonov A V 2013 Appl. Energy 108 505Google Scholar

    [61]

    Surov A V, Popov S D, Popov V E, Subbotin D I, Serba E O, Spodobin V A, Nakonechny G V, Pavlov A V 2017 Fuel 203 1007Google Scholar

    [62]

    Rutberg P G, Bratsev A N, Kuznetsov V A, Popov V E, Ufimtsev A A, Shtengel S V 2011 Biomass Bioenergy 35 495Google Scholar

    [63]

    Fulcheri L, Fabry F, Takali S, Rohani V 2015 Plasma Chem. Plasma Process. 35 565Google Scholar

    [64]

    Zhang Q L, Dor L R, Fenigshtein D, Yang W H, Blasiak W 2012 Appl. Energy 90 106Google Scholar

    [65]

    Zhang Q L, Dor L R, Zhang L, Yang W H, Blasiak W 2012 Appl. Energy 98 219Google Scholar

    [66]

    Zhang Q L, Wu Y S, Dor L R, Yang W H, Blasiak W 2013 Appl. Energy 112 405Google Scholar

    [67]

    王希, 张春飞, 王晓亮, 胡蕴成 2012 现代化工 32 20Google Scholar

    Wang X, Zhang C F, Wang X L, Hu Y C 2012 Modern Chemical Industry 32 20Google Scholar

    [68]

    Fourcault A, Marias F, Michon U 2010 Biomass Bioenergy 34 1363Google Scholar

    [69]

    Jayasankar K, Ray P K, Chaubey A K, Padhi A, Satapathy B K, Mukherjee P S 2012 Int. J. Miner. Metall. Mater. 19 679Google Scholar

    [70]

    Tang B S, Lin J, Qian S, Wang J D, Zhang S 2014 Mater. Lett. 128 68Google Scholar

    [71]

    Zhou H, Meng A H, Long Y Q, Li Q H, Zhang Y G 2014 Renewable Sustainable Energy Rev. 36 107Google Scholar

    [72]

    Zhao X G, Jiang G W, Li A, Wang L 2016 Waste Manage. 48 604Google Scholar

    [73]

    Chu J P, Hwang I, Tzeng C C, Kuo Y Y, Yu Y J 1998 J. Hazard. Mater. 58 179Google Scholar

    [74]

    Yang S F, Chiu W T, Wang T M, Chen C T, Tzeng C C 2014 Waste Manage. 34 1079Google Scholar

    [75]

    黄付平, 黄智宁, 谢启军, 谢建跃, 何少媚, 覃岳隆, 覃霞 2019 环境工程 37 199Google Scholar

    Huang F P, Huang Z N, Xie Q J, Xie J Y, He S M, Tan Y L, Tan X 2019 Environmental Engineering 37 199Google Scholar

    [76]

    Tang L, Huang H 2004 J. Anal. Appl. Pyrolysis 72 35Google Scholar

    [77]

    Zhao Z L, Huang H T, Wu C Z, Li H B, Chen Y 2001 Eng. Life Sci. 1 197Google Scholar

    [78]

    Huang H, Tang L, Wu C Z 2003 Environ. Sci. Technol. 37 4463Google Scholar

    [79]

    程昌明, 童洪辉, 兰伟, 张劲松, 耿少飞, 朱海龙 2013 高电压技术 39 1584Google Scholar

    Cheng M C, Tong H H, Lan W, Zhang J S, Geng S F, Zhu H L 2013 High Voltage Engineering 39 1584Google Scholar

    [80]

    Yan B H, Cheng Y, Li T Y, Cheng Y 2017 Energy 121 10Google Scholar

    [81]

    Ma S, Zhao Y C, Yang J, Zhang S B, Zhang J Y, Zheng C G 2017 Renewable Sustainable Energy Rev. 67 791Google Scholar

    [82]

    杜长明, 蔡晓伟, 余振棠, 宋春莲, 俞哲 2019 高压电技术 45 2999Google Scholar

    Du C M, Cai X W, Yu Z T, Song C L, Yu Z 2019 High Voltage Engineering 45 2999Google Scholar

    [83]

    Danthurebandara M, Van Passel S, Vanderreydt I, Van Acker K 2015 Waste Manage. 45 458Google Scholar

    [84]

    Li J, Liu K, Yan S J, Li Y J, Han D 2016 Waste Manage. 58 260Google Scholar

    [85]

    Favas J, Monteiro E, Rouboa A 2017 Int. J. Hydrogen Energy 42 10997Google Scholar

    [86]

    Perna A, Minutillo M, Lavadera A L, Jannelli E 2018 Waste Manage. 73 424Google Scholar

  • 图 1  反应器示意图(1, 料斗; 2, 反应器; 3, 泥渣收集桶; 4, 淬火室; 5, 加力燃烧室)[30]

    Figure 1.  Schematic diagram of reactor. 1, material hopper; 2, reactor; 3, slag collection bucket; 4, quenching chamber; 5, afterburner [30].

    图 2  (a)等离子气化医疗废物装置示意图[21]; (b)等离子体气化反应器示意图[21]

    Figure 2.  (a) Schematic diagram of plasma gasification medical waste equipment[21]; (b) schematic diagram of the plasma gasification reactor[21].

    图 3  (a)低功率转移弧等离子炬[42]; (b)非转移弧与(c)转移弧等离子炬反应器[47]

    Figure 3.  (a) Low power transfer are plasma torch[42]; (b) non-transfer arc and (c) transfer arc plasma reactor[47].

    图 4  等离子气化系统的示意图[51]

    Figure 4.  Schematic of the plasma gasification system[51].

    图 5  热等离子体工艺处理城市废物示意图[56]

    Figure 5.  Schematic diagram of thermal plasma process for municipal solid waste treatment[56].

    图 6  集成炉示意图[56]

    Figure 6.  Schematic of the integrated furnace[56].

    图 7  APP公司等离子气化工艺示意图[57]

    Figure 7.  Schematic diagram of APP company plasma gasification process[57].

    图 8  等离子玻璃化飞灰的示意图[59]

    Figure 8.  Schematic diagram of plasma vitrification fly ash[59].

    图 9  三相交流等离子体炬示意图[63]

    Figure 9.  Scheme of the three-phase AC plasma torch[63].

    图 10  (a) PGM设备示意图; (b) PGM气化炉示意图[64]

    Figure 10.  (a) Schematic diagram of PGM equipment; (b) schematics of PGM gasifier[64].

    图 11  气化过程示意图[68]

    Figure 11.  Schematic diagram of gasification process[68].

    图 12  直流等离子体反应器示意图[69]

    Figure 12.  Schematic diagram of direct current plasma reactor[69]

    图 13  玻璃化炉的示意图[40]

    Figure 13.  Schematic diagram of vitrification furnace[40].

    图 14  等离子体玻璃化系统的示意图[73]

    Figure 14.  Schematic of the plasma vitrification system[73].

    图 15  等离子体焚烧工艺流程图[79]

    Figure 15.  Process flow diagram of plasma incineration[79].

  • [1]

    Laurent A, Bakas I, Clavreul J, Bernstad A, Niero M, Gentil E, Hauschild M Z, Christensen T H 2014 Waste Manage. 34 573Google Scholar

    [2]

    Liu Y J, Liu Y T, Li H, Fu X D, Guo H W, Meng R H, Lu W J, Zhao M, Wang H T 2016 Environ. Int. 97 15Google Scholar

    [3]

    Sultan M, Waheed S, Ali U, Sweetman A J, Jones K C, Malik R N 2019 Ecotoxicol. Environ. Saf. 170 195Google Scholar

    [4]

    Gallo F, Fossi C, Weber R, Santillo D, Sousa J, Ingram I, Nadal A, Romano D 2018 Environ. Sci. Eur. 30 13Google Scholar

    [5]

    Funari V, Mäkinen J, Salminen J, Braga R, Dinelli E, Revitzer H 2017 Waste Manage. 60 397Google Scholar

    [6]

    Sauve G, Van Acker K 2020 J. Environ. Manage. 261 110216Google Scholar

    [7]

    Lin Z Z, Wang Z, Hu Y F, Liu Y L, Xu J 2017 Environ. Eng. Sci. 34 607Google Scholar

    [8]

    Zhang J J, Zhang S G, Liu B 2020 J. Cleaner Prod. 250 119507Google Scholar

    [9]

    Chaturvedi S, Yadav B P, Siddiqui N A, Chaturvedi S K 2020 J. Oceanic Eng. Sci. 5 136Google Scholar

    [10]

    Lim S L, Lee L H, Wu T Y 2016 J. Cleaner Prod. 111 262Google Scholar

    [11]

    Yao P 2017 Arabian J. Chem. 10 S2567Google Scholar

    [12]

    Kumar A, Samadder S R 2017 Waste Manage. 69 407Google Scholar

    [13]

    Munir M T, Mardon I, Al-Zuhair S, Shawabkeh A, Saqib N U 2019 Renewable Sustainable Energy Rev. 116 109461Google Scholar

    [14]

    Fang S W, Gu W L, Chen L, Yu Z S, Dai M Q, Lin Y, Liao Y F, Ma X Q 2018 Bioresour. Technol. 258 5Google Scholar

    [15]

    Inglezakis V J, Amzebek A, Kuspangaliyeva B, Sarbassov Y, Balbayeva G, Yerkinova A, Poulopoulos S G 2018 Desalin. Water Treat. 112 218Google Scholar

    [16]

    Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z 2014 Chem. Eng. J. 236 348Google Scholar

    [17]

    Ghasali E, Alizadeh M, Niazmand M, Ebadzadeh T 2017 J. Alloys Compd. 697 200Google Scholar

    [18]

    Shi B L, Dai Y F, Xie X H, Li S Y, Zhou L 2016 Plasma Chem. Plasma Process. 36 891Google Scholar

    [19]

    Niu H Z, Chen Y F, Zhang D L, Zhang Y S, Lu J W, Zhang W, Zhang P X 2016 Mater. Des. 89 823Google Scholar

    [20]

    Miller K K, Gottfried J L, Walck S D, Pantoya M L, Wu C C 2019 Combust. Flame 206 211Google Scholar

    [21]

    Messerle V E, Mosse A L, Ustimenko A B 2018 Waste Manage. 79 791Google Scholar

    [22]

    Yayalık I, Koyun A, Akgün M 2020 Plasma Chem. Plasma Process. 40 1401Google Scholar

    [23]

    Pujara Y, Pathak P, Sharma A, Govani J 2019 J. Environ. Manage. 248 109238Google Scholar

    [24]

    Meena M D, Yadav R K, Narjary B, Yadav G, Jat H S, Sheoran P, Meena M K, Antil R S, Meena B L, Singh H V, Meena V S, Rai P K, Ghosh A, Moharana P C 2019 Waste Manage. 84 38Google Scholar

    [25]

    Chen Y C 2018 Waste Manage. 79 828Google Scholar

    [26]

    Peterson R A, Buck E C, Chun J, Daniel R C, Herting D L, Ilton E S, Lumetta G J, Clark S B 2018 Environ. Sci. Technol. 52 381Google Scholar

    [27]

    Ghasemi L, Yousefzadeh S, Rastkari N, Naddafi K, Far N S, Nabizadeh R 2018 J. Environ. Health Sci. Eng. 16 171Google Scholar

    [28]

    Ahmed M J K, Ahmaruzzaman M 2016 J. Water Process Eng. 10 39Google Scholar

    [29]

    Gundupalli S P, Hait S, Thakur A 2017 Waste Manage. 60 56Google Scholar

    [30]

    Agon N, Hrabovský M, Chumak O, Hlína M, Kopecký V, Masláni A, Bosmans A, Helsen L, Skoblja S, Van Oost G, Vierendeels J 2016 Waste Manage. 47 246Google Scholar

    [31]

    Hrabovsky M, Kopeckykopecky V, Sember V, Kavka T, Chumak O, Konrad M 2006 IEEE Trans. Plasma Sci. 34 1566Google Scholar

    [32]

    Materazzi M, Lettieri P, Mazzei L, Taylor R, Chapman C 2015 Fuel Process. Technol. 137 259Google Scholar

    [33]

    Shie J, Chen L X, Lin K L, Chang C Y 2014 Energy 66 82Google Scholar

    [34]

    Prado E S P, Miranda F S, Petraconi G, Potiens Jr A J 2020 Radiat. Phys. Chem. 168 108625Google Scholar

    [35]

    Trnovcevic J, Schneider F, Scherer U W 2017 Radiat. Eff. Defects Solids 172 23Google Scholar

    [36]

    Rajan R, Robin D T, Vandanarani M 2019 J. Ayurveda Integr. Med. 10 214Google Scholar

    [37]

    Messerle V E, Mosse A L, Ustimenko A B 2016 IEEE Trans. Plasma Sci. 44 3017Google Scholar

    [38]

    Pei S L, Chen T L, Pan S Y, Yang Y L, Sun Z H, Li Y J 2020 J. Hazard. Mater. 398 122959Google Scholar

    [39]

    Ma W C, Fang Y H, Chen D M, Chen G Y, Xu Y X, Sheng H Z, Zhou Z H 2017 Fuel 210 145Google Scholar

    [40]

    Zhao P, Ni G H, Jiang Y M, Chen L W, Chen M Z, Meng Y D 2010 J. Hazard. Mater. 181 580Google Scholar

    [41]

    Seftejani M N, Schenk J 2018 Metals 8 1051Google Scholar

    [42]

    Yugeswaran S, Ananthapadmanabhan P V, Lusvarghi L 2015 Ceram. Int. 41 265Google Scholar

    [43]

    Yugeswaran S, Ananthapadmanabhan P V, Thiyagarajan T K, Ramachandran K 2015 Ceram. Int. 41 9585Google Scholar

    [44]

    Peng G L, Deng S B, Liu F L, Qi C D, Tao L Y, Li T, Yu G 2020 J. Cleaner Prod. 262 121416Google Scholar

    [45]

    Chen H X, Yuan H H, Mao L Q, Hashmi M Z, Xu F N, Tang X J 2020 Chemosphere 240 124885Google Scholar

    [46]

    Orescanin V, Mikelic I L, Kollar R, Mikulic N, Medunic G 2012 Arh. Hig. Rada Toksikol. 63 337Google Scholar

    [47]

    Vieira Cubas A L, Machado M D M, Machado M d M, Gross F, Magnago R F, Siegel Moecke E H, de Souza I G 2014 Environ. Sci. Technol. 48 2853Google Scholar

    [48]

    Fabry F, Rehmet C, Rohani V, Fulcheri L 2013 Waste Biomass Valorization 4 421Google Scholar

    [49]

    Sanito R C, You S J, Chang T J, Wang Y F 2020 J. Environ. Manage. 270 110910Google Scholar

    [50]

    杨德宇, 俞建荣 2014 新技术新工艺 2 106Google Scholar

    Yang D Y, Yu J R 2014 New Technology & New Process 2 106Google Scholar

    [51]

    Ramos A, Berzosa J, Espí J, Clarens F, Rouboa A 2020 Energy Convers. Manage. 209 112508Google Scholar

    [52]

    任一峰 2011 发电设备 25 370Google Scholar

    Ren Y F 2011 Power Equipment 25 370Google Scholar

    [53]

    Ruj B, Ghosh S 2014 Fuel Process. Technol. 126 298Google Scholar

    [54]

    Choi K, Sheng J W, Lee M C, Song M J 2000 Waste Manage. 20 575Google Scholar

    [55]

    Jeong J, Baik M H, Kang M J, Ahn H J, Hwang D S, Hong D S, Jeong Y H, Kim K 2016 Nucl. Eng. Technol. 48 1368Google Scholar

    [56]

    Byun Y, Namkung W, Cho M, Chung J W, Kim Y S, Lee J H, Lee C R, Hwang S M 2010 Environ. Sci. Technol. 44 6680Google Scholar

    [57]

    Materazzi M, Lettieri P, Mazzei L, Taylor R, Chapman C 2014 Fuel Process. Technol. 128 146Google Scholar

    [58]

    Taylor R, Ray R, Chapman C 2013 Fuel 106 401Google Scholar

    [59]

    Rani D A, Gomez E, Boccaccini A R, Hao L, Deegan D, Cheeseman C R 2008 Waste Manage. 28 1254Google Scholar

    [60]

    Rutberg P G, Kuznetsov V A, Serba E O, Popov S D, Surov A V, Nakonechny G V, Nikonov A V 2013 Appl. Energy 108 505Google Scholar

    [61]

    Surov A V, Popov S D, Popov V E, Subbotin D I, Serba E O, Spodobin V A, Nakonechny G V, Pavlov A V 2017 Fuel 203 1007Google Scholar

    [62]

    Rutberg P G, Bratsev A N, Kuznetsov V A, Popov V E, Ufimtsev A A, Shtengel S V 2011 Biomass Bioenergy 35 495Google Scholar

    [63]

    Fulcheri L, Fabry F, Takali S, Rohani V 2015 Plasma Chem. Plasma Process. 35 565Google Scholar

    [64]

    Zhang Q L, Dor L R, Fenigshtein D, Yang W H, Blasiak W 2012 Appl. Energy 90 106Google Scholar

    [65]

    Zhang Q L, Dor L R, Zhang L, Yang W H, Blasiak W 2012 Appl. Energy 98 219Google Scholar

    [66]

    Zhang Q L, Wu Y S, Dor L R, Yang W H, Blasiak W 2013 Appl. Energy 112 405Google Scholar

    [67]

    王希, 张春飞, 王晓亮, 胡蕴成 2012 现代化工 32 20Google Scholar

    Wang X, Zhang C F, Wang X L, Hu Y C 2012 Modern Chemical Industry 32 20Google Scholar

    [68]

    Fourcault A, Marias F, Michon U 2010 Biomass Bioenergy 34 1363Google Scholar

    [69]

    Jayasankar K, Ray P K, Chaubey A K, Padhi A, Satapathy B K, Mukherjee P S 2012 Int. J. Miner. Metall. Mater. 19 679Google Scholar

    [70]

    Tang B S, Lin J, Qian S, Wang J D, Zhang S 2014 Mater. Lett. 128 68Google Scholar

    [71]

    Zhou H, Meng A H, Long Y Q, Li Q H, Zhang Y G 2014 Renewable Sustainable Energy Rev. 36 107Google Scholar

    [72]

    Zhao X G, Jiang G W, Li A, Wang L 2016 Waste Manage. 48 604Google Scholar

    [73]

    Chu J P, Hwang I, Tzeng C C, Kuo Y Y, Yu Y J 1998 J. Hazard. Mater. 58 179Google Scholar

    [74]

    Yang S F, Chiu W T, Wang T M, Chen C T, Tzeng C C 2014 Waste Manage. 34 1079Google Scholar

    [75]

    黄付平, 黄智宁, 谢启军, 谢建跃, 何少媚, 覃岳隆, 覃霞 2019 环境工程 37 199Google Scholar

    Huang F P, Huang Z N, Xie Q J, Xie J Y, He S M, Tan Y L, Tan X 2019 Environmental Engineering 37 199Google Scholar

    [76]

    Tang L, Huang H 2004 J. Anal. Appl. Pyrolysis 72 35Google Scholar

    [77]

    Zhao Z L, Huang H T, Wu C Z, Li H B, Chen Y 2001 Eng. Life Sci. 1 197Google Scholar

    [78]

    Huang H, Tang L, Wu C Z 2003 Environ. Sci. Technol. 37 4463Google Scholar

    [79]

    程昌明, 童洪辉, 兰伟, 张劲松, 耿少飞, 朱海龙 2013 高电压技术 39 1584Google Scholar

    Cheng M C, Tong H H, Lan W, Zhang J S, Geng S F, Zhu H L 2013 High Voltage Engineering 39 1584Google Scholar

    [80]

    Yan B H, Cheng Y, Li T Y, Cheng Y 2017 Energy 121 10Google Scholar

    [81]

    Ma S, Zhao Y C, Yang J, Zhang S B, Zhang J Y, Zheng C G 2017 Renewable Sustainable Energy Rev. 67 791Google Scholar

    [82]

    杜长明, 蔡晓伟, 余振棠, 宋春莲, 俞哲 2019 高压电技术 45 2999Google Scholar

    Du C M, Cai X W, Yu Z T, Song C L, Yu Z 2019 High Voltage Engineering 45 2999Google Scholar

    [83]

    Danthurebandara M, Van Passel S, Vanderreydt I, Van Acker K 2015 Waste Manage. 45 458Google Scholar

    [84]

    Li J, Liu K, Yan S J, Li Y J, Han D 2016 Waste Manage. 58 260Google Scholar

    [85]

    Favas J, Monteiro E, Rouboa A 2017 Int. J. Hydrogen Energy 42 10997Google Scholar

    [86]

    Perna A, Minutillo M, Lavadera A L, Jannelli E 2018 Waste Manage. 73 424Google Scholar

  • [1] Wang Yun-Liang, Yan Xue-Qing. Isolated attosecond pulse generation from the interaction of intense laser pulse with solid density plasma. Acta Physica Sinica, 2023, 72(5): 054207. doi: 10.7498/aps.72.20222262
    [2] Li Xin, Zeng Ming, Liu Hui, Ning Zhong-Xi, Yu Da-Ren. Iodine electron cyclotron resonance plasma source for electric propulsion. Acta Physica Sinica, 2023, 72(22): 225202. doi: 10.7498/aps.72.20230785
    [3] Li Tian-Cheng, Zhang Xiao-Hai, Sheng Zheng-Mao. Surface plasma wave excited by laser pulse obliquely incident on a double-layer plasma target and ts application. Acta Physica Sinica, 2023, 72(4): 045201. doi: 10.7498/aps.72.20221305
    [4] Wang Yang, Liu Yu, Wu Cheng-Yin. Generation, manipulation, and application of high-order harmonics in solids. Acta Physica Sinica, 2022, 71(23): 234205. doi: 10.7498/aps.71.20221319
    [5] Chen Shan-Shan, Liu Xing, Liu Zhi-Guang, Li Jia-Fang. Focused ion beam based nano-kirigami/origami for three-dimensional micro/nanomanufacturing and photonic applications. Acta Physica Sinica, 2019, 68(24): 248101. doi: 10.7498/aps.68.20191494
    [6] Li Yao, Su Tong, Lei Fan, Xu Neng, Sheng Li-Zhi, Zhao Bao-Sheng. X-ray transmission characteristics and potential communication application in plasma region. Acta Physica Sinica, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [7] Chen Cong, Liang Pan, Hu Rong-Rong, Jia Tian-Qing, Sun Zhen-Rong, Feng Dong-Hai. Pump-orientation-probe technique and its applications. Acta Physica Sinica, 2018, 67(9): 097201. doi: 10.7498/aps.67.20180244
    [8] Wang Xue-Yang, Qi Zhi-Hua, Song Ying, Liu Dong-Ping. Bacteria sterilization application by using plasma activated physiological saline. Acta Physica Sinica, 2016, 65(12): 123301. doi: 10.7498/aps.65.123301
    [9] Zhang Yi-Chuan, Yang Kuan, Li Huan, Zhu Xiao-Dong. Application of inductively coupled microplasma jet on rapid manufacturing. Acta Physica Sinica, 2016, 65(14): 145201. doi: 10.7498/aps.65.145201
    [10] Zhou Lei, Li Xiao-Ya, Zhu Wen-Jun, Wang Jia-Xiang, Tang Chang-Jian. Plasma recoil induced by laser radiated solid target. Acta Physica Sinica, 2016, 65(8): 085201. doi: 10.7498/aps.65.085201
    [11] Sun Jie, Yang Jian-Feng, Yan Su, Yang Jing-Jing, Huang Ming. Transmission characteristics and potential applications of plasmon-assisted parallel-plated waveguide. Acta Physica Sinica, 2015, 64(7): 078402. doi: 10.7498/aps.64.078402
    [12] Cao He-Fei, Liu Shang-He, Sun Yong-Wei, Yuan Qing-Yun. Unbiased solid surface charging research inplasma environment. Acta Physica Sinica, 2013, 62(11): 119401. doi: 10.7498/aps.62.119401
    [13] Jing Qing-Li, Du Chun-Guang, Gao Jian-Cun. New application of surface plasmon resonance-measurement of weak magnetic field. Acta Physica Sinica, 2013, 62(3): 037302. doi: 10.7498/aps.62.037302
    [14] Cao Zhu-Rong, Zhang Hai-Ying, Dong Jian-Jun, Yuan Zheng, Miao Wen-Yong, Liu Shen-Ye, Jiang Shao-En, Ding Yong-Kun. High dynamic range imaging and application to laser-plasma diagnostics in inertial confinement fusion (ICF) experiment. Acta Physica Sinica, 2011, 60(4): 045212. doi: 10.7498/aps.60.045212
    [15] Yu Xin-Ming, Cheng Shu-Bo, Yi You-Gen, Zhang Ji-Yan, Pu Yu-Dong, Zhao Yang, Hu Feng, Yang Jia-Min, Zheng Zhi-Jian. Analysis of formation mechanism of Li-like satellites in aluminum plasma and experimental application. Acta Physica Sinica, 2011, 60(8): 085201. doi: 10.7498/aps.60.085201
    [16] Li Jing, Xie Wei-Ping, Huang Xian-Bin, Yang Li-Bing, Cai Hong-Chun, Pu Yi-Kang. Application of a collisinal-radiative model for the analysis of K-shell line spectra emitted by Z-pinch plasma. Acta Physica Sinica, 2010, 59(11): 7922-7929. doi: 10.7498/aps.59.7922
    [17] Li Gang, Xu Yan-Ji, Mu Ke-Jin, Nie Chao-Qun, Zhu Jun-Qiang, Zhang Yi, Li Han-Ming. Application of planar laser induced fluorescence in the investigation of the stagger electrode dielectric barrier discharge plasma. Acta Physica Sinica, 2008, 57(10): 6444-6449. doi: 10.7498/aps.57.6444
    [18] Zhang Min, Wu Zhen-Sen. The moments analysis of the pulse propagation through plasma medium and its applications. Acta Physica Sinica, 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [19] Wan Xiong, Yu Sheng-Lin, Wang Chang-Kun, Le Shu-Ping, Li Bing-Ying, He Xing-Dao. Emission spectral tomography algorithm based on multi-objective optimization and its application in plasma diagnosis. Acta Physica Sinica, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [20] Yang Xiao-hua, Chen Yang-Qin, Cai Pei-pei, Wang Rong-jun, Lu Jing-jing. . Acta Physica Sinica, 2000, 49(3): 421-425. doi: 10.7498/aps.49.421
Metrics
  • Abstract views:  15434
  • PDF Downloads:  517
  • Cited By: 0
Publishing process
  • Received Date:  10 October 2020
  • Accepted Date:  22 February 2021
  • Available Online:  19 April 2021
  • Published Online:  05 May 2021

/

返回文章
返回