-
非热等离子体 (non-thermal plasma, NTP) 作为一种在接近室温条件下高效实现材料制备与改性的先进技术, 近年来在能源材料领域备受关注. 由于其电子温度高而整体气体温度低, NTP能够在避免热损伤的前提下, 通过引入空位、杂原子掺杂, 调控孔隙率和表面粗糙程度等多尺度缺陷, 显著改善电极材料的电化学性能. 等离子体-材料表面相互作用是一个复杂的体系, 涉及等离子体与材料之间的相互影响规律, 深入理解该作用机制对实现NTP改性精准调控材料缺陷类型、密度、空间分布至关重要. 本综述系统总结了NTP在能源材料刻蚀和掺杂领域的应用, 重点阐述了缺陷的生成及其对等离子体与材料表面相互作用中的影响. 最后, 分析了NTP技术规模化应用过程中面临的主要挑战并对其未来发展进行了展望.
-
关键词:
- 非热等离子体 /
- 等离子体-材料表面相互作用 /
- 缺陷 /
- 能源材料
Non-thermal plasma (NTP), as an advanced technology capable of efficiently synthesizing and modifying materials at near-ambient temperatures, has attracted significant attention in the field of energy materials in recent years. Owing to its high electron temperature and low bulk gas temperature, NTP can significantly enhance the electrochemical performance of electrode materials by creating vacancies, enabling heteroatom doping, and adjusting multiscale defects such as porosity and surface roughness, while preventing thermal damage. The plasma-material surface interaction is a complex system involving mutual influences between the plasma and the material. An in-depth understanding of this mechanism is essential for achieving precise control over defect type, density, and spatial distribution by modifying NTP . This paper systematically summarizes recent advances in the application of NTP for etching and doping energy materials, with special emphasis on the formation mechanisms of defects and their functional role in plasma-surface interactions. The plasma sheath effects, defect generation pathways, and the influence of material morphology on local plasma behavior are discussed in detail. Finally, this paper outlines prospects for future research on NTP-modified energy materials.-
Keywords:
- non-thermal plasma /
- plasma-material surface interaction /
- defects /
- energy materials
-
图 3 (a) 在矩形排列的单个纳米管附近离子通量的分布随等离子体密度和纳米管直径变化. 电子温度Te = 2 eV, 离子通量分布相对于相邻纳米管的方向以暗黄色圆圈表示, S1, S2和S3分别表示位于基底表面上方75, 50和25 nm处的纳米管横截面[23]; (b) 在基于射频等离子体的工艺中生长出的尖且长的碳纳米锥体生长机制和扫描电子显微镜图像[40]; (c) 混合阵列的合成示意图以及模型图案内原子密度和电场的相应数值模拟[41]
Fig. 3. (a) The distribution of ion flux near the single nanotubes arranged in a rectangular pattern varies with plasma density and nanotube diameter, the electron temperature Te = 2 eV, the ion flux distribution is indicated by dark yellow circles relative to the direction of the adjacent nanotubes. S1, S2, and S3 respectively represent the cross-sections of nanotubes located 75, 50, and 25 nm above the substrate surface[23]; (b) the growth mechanism and SEM images of sharp, long carbon nanocones grown in a RF plasma-based process[40]; (c) schematic of the synthesis of a mixed array, and corresponding numerical simulations of the adatom density and electric field within the model pattern[41].
图 5 (a) P-Si/C/Bi复合材料的制备工艺及概念设计; (b) NVP的示意图和第一性原理计算; (c) 优化后的NVP-4N中间层中Na原子的吸附构型及吸附Na的电荷密度差, 黄色和青色电子云分别代表电子积累和耗尽; (d) 计算的NVP-0 N和NVP-4N中Na+的扩散势垒分布; (e), (f) NVP-0N和NVP-4N的映射态密度[58]
Fig. 5. (a) Fabrication process and conceptual design of P-Si/C/Bi composite; (b) schematic illustration for NVP and first-principles calculation; (c) optimized adsorption configuration and charge density differences of a Na atom in the interlayer: yellow and cyan electron clouds represent electron accumulation and depletion, respectively; (d) calculated diffusion barrier profiles of Na+ for NVP-0N and NVP-4N; (e) pore size distributions, and (e), (f) projected density of states of NVP-0N and NVP-4N[58].
图 6 (a) 非热等离子体制备等离子体催化电极的合成工艺流程图; (b) 等离子体制备催化电极的步骤示意图; (c) 氮原子掺杂机理; (d) 含氧官能团的引入过程[72]
Fig. 6. (a) The synthesis procedure diagram of the plasma-prepared catalytic electrode by non-thermal plasma; (b) schematic diagram shows the steps of plasma preparing catalytic electrode; (c) doping mechanism of nitrogen atoms; (d) introduction process of oxygen-containing functional groups[72].
-
[1] Zhang H, Chen L, Dong F, Lu Z W, Lv E M, Dong X L, Li H X, Yuan Z Y, Peng X W, Yang S H, Qiu J S, Guo Z X, Wen Z 2024 Energ. Environ. Sci. 17 6435
Google Scholar
[2] Do V H, Lee J M 2024 Chem. Soc. Rev. 53 2693
Google Scholar
[3] Zhang Y Q, Liu J J, Xu Y F, Xie C, Wang S Y, Yao X D 2024 Chem. Soc. Rev. 53 10620
Google Scholar
[4] Muhammad P, Zada A, Rashid J, Hanif S, Gao Y N, Li C C, Li Y Y, Fan K L, Wang Y L 2024 Adv. Funct. Mater. 34 2314686
Google Scholar
[5] Zheng J X, Meng D P, Guo J X, Liu X B, Zhou L, Wang Z 2024 Adv. Mater. 36 2405129
Google Scholar
[6] Shen C, Ye T L, Yang P X, Chen G Y 2024 Adv. Mater. 36 2401498
Google Scholar
[7] Sun L Z, Pan X, Xie Y N, Zheng J G, Xu S H, L L, Zhao G H 2024 Angew. Chem. Int. Edit. 63 e202402176
Google Scholar
[8] Zhang Y Q, Tao L, Xie C, Wang D D, Zou Y Q, Chen R, Wang Y R, Jia C K, Wang S Y 2020 Adv. Mater. 32 1905923
Google Scholar
[9] Shi F C, Jiang J Q, Wang X, Gao Y, Chen C, Chen G R, Dudko N, Nevar A A, Zhang D S 2024 Chem. Commun. 60 2700
Google Scholar
[10] Deng L L, Ma X P, Lu M T, He Y, Fan R L, Xin Y 2022 Chin. Phys. B, 31 118201
Google Scholar
[11] 张海宝, 陈强 2021 物理学报 70 095203
Google Scholar
Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203
Google Scholar
[12] Morent R, DE G N, Verschuren J, De C C, Kiekens P, Leys C 2008 Surf. Coat. Tech. 202 3427
Google Scholar
[13] Ouyang B, Zhang Y, Xia X, Rawat R S, Fan H J 2018 Mater. Today Nano 3 28
Google Scholar
[14] Dou S, Tao L, Wang R L, Ei H S, Chen R, Wang S Y 2018 Adv. Mater. 30 1705850
Google Scholar
[15] Duan S X, Liu X, Wang Y N, Meng Y D, Alsaedi A, Hayat T, Li J X 2017 Plasma Process. Polym. 14 e1600218
Google Scholar
[16] Di L B, Zhang J S, Zhang X L, Wang H Y, Li H, Li Y Q, Bu D C 2021 J. Phys. D Appl. Phys. 54 333001
Google Scholar
[17] Wang D D, Zou Y Q, Tao L, Zhang Y Q, Liu Z J, Du S Q, Zang, S Q, Wang S Y 2019 Chin. Chem. Lett. 30 826
Google Scholar
[18] 李壮, 底兰波, 于锋, 张秀玲 2018 物理学报 67 215202
Google Scholar
Li Z, Di L B, Yu F, Zhang X L 2018 Acta Phys. Sin. 67 215202
Google Scholar
[19] Huang Y W, Yu Q F, Li M, Sun S N, Zhao H, Jin S X, Fan J, Wang J G 2021 Plasma Process. Polym. 18 e2000171
Google Scholar
[20] Liang X, Liu P, Qiu Z, ShenS H, Cao F, Zhang Y Q, Chen M H, He X P, Xia Y, Wang C, Wan W J, Zhang, J, Huang H, Gan Y P, Xia X H, Zhang W K 2024 Chem. Eur. J. 30 e202304168
Google Scholar
[21] Domonkos M, Ticha P 2023 Ieee T. Plasma Sci. 51 1671
Google Scholar
[22] Chang J, Chang J P 2017 J. Phys. D Appl. Phys. 50 253001
Google Scholar
[23] Levchenko I, Ostrikov K, Keidar M, Vladimirov S V 2007 Phys. Plasmas 14 113504
Google Scholar
[24] Baranov O, Bazaka K, Kersten H, Keidar M. Cvelbar U, Xu S, Levchenko I 2017 Appl. Phys. Rev. 4 041302
Google Scholar
[25] Levchenko I, Romanov M, Korobov M 2004 Surf. Coat. Tech. 184 356
Google Scholar
[26] Woller K, Whyte D, Wright G 2017 Nucl. Fusion 57 066005
Google Scholar
[27] Meyyappan M, Lance D, Alan C, David H 2003 Plasma Sources Sci. T. 12 205.
Google Scholar
[28] Ghosh S, Polaki S R, Kamruddin M, Jeong S M, Ostrikov K 2018 J. Phys. D Appl. Phys. 51 145303
Google Scholar
[29] Islam N, Hoque M N F, LI W Y, Wang S, Warzywoda J, Fan Z Y 2019 Carbon 141 523
Google Scholar
[30] Wu Z, Zhao Y, Jin W, Jia B H, Wang J, Ma T Y 2021 Adv. Funct. Mater. 31 2009070
Google Scholar
[31] Zhu J, Mu S 2020 Adv. Funct. Mater. 30 2001097
Google Scholar
[32] Anders A, Anders S 1995 Plasma Sources Sci. T. 4 571
[33] Levchenko I, Ostrikov K, Keidar M, Xu S 2005 J. Appl. Phys. 98 064304
Google Scholar
[34] Levchenko I, Korobov M, Romanov M, Keidar M 2004 J. Phys. D Appl. Phys. 37 1690
Google Scholar
[35] Bogaerts A, Zhang QZ, Zhang Y R, Van L K, Wang W Z 2019 Catal. Today 337 3
Google Scholar
[36] Adelodun A A 2020 J. Ind. Eng. Chem. 92 41
Google Scholar
[37] Liu C J, Wang J X, Yu K L, Eliasson B, Xia Q, Xue B Z, Zhang Y H 2002 J. Electrostat. 54 149
Google Scholar
[38] Tu X, Gallon H J, Whitehead J 2011 J. Phys. D Appl. Phys. 44 482003
Google Scholar
[39] Roland U, Holzer F, Kopinke F D 2002 Catal. Today 73 315
Google Scholar
[40] Cvelbar U, Ostrikov K, Levchenko I, Mozetic M, Sunkara M K 2009 Appl. Phys. Lett. 94 211502
Google Scholar
[41] Cvelbar U, Levchenko I, Filipič G, Mozetič M, Ostrikov K 2012 Appl. Phys. Lett. 100 243103
Google Scholar
[42] Gruart M, Feldberg N, Gayral B, Bougerol C, Pouget S, Bellet A E, Garro N, Cros A, Okuno H, Daudin B 2020 Nanotechnology 31 115602
Google Scholar
[43] Baranov O, Levchenko I, Bell J M, Lim J W M, Huang S, Xu L, Wang B, Aussems D U B, Xu S, Bazaka K 2018 Mater. Horiz. 5 765
Google Scholar
[44] Neyts E C, Bogaerts A 2014 J. Phys. D Appl. Phys. 47 224010
Google Scholar
[45] Zhang Y R, Van L K, Neyts E C, Bogaerts A 2016 Appl. Catal. B-Environ. Energy 185 56
Google Scholar
[46] Zhang Y R, Neyts E C, Bogaerts A 2016 J. Phys. Chem. C 120 25923
Google Scholar
[47] Tian Y, Ye Y F, Wang X J, Peng S, Wei Z, Zhang X, Liu W M 2017 Appl. Catal. A-Gen. 529 127
Google Scholar
[48] Tian Y, Wei Z, Wang X J, Peng S, Zhang X, Liu W M 2017 Int. J. Hydrogen Energ. 42 4184
Google Scholar
[49] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣 2021 物理学报 70 095208
Google Scholar
Zhao W Q, Zhang D, Cui M H, Du Y, Zhang S Y, Ou Q R 2021 Acta Phys. Sin. 70 095208
Google Scholar
[50] Rao P, Yu Y, Wang S, Zhou Y, Wu X, Li K, Qi A Y, Deng P L, Cheng Y G, Li J, Miao Z P, Tian X L 2024 Exploration 4 20230034
Google Scholar
[51] Zhong W, Chen J, Zhang P, Deng L B, Yao L, Ren X Z, Li Y Q, Mi H W, Sun L N 2017 J. Mater. Chem. A 5 16605
Google Scholar
[52] Zha D W, Jiang S C, Zhang Q, Li J, Jiang Z J, Qin C, Tian X N, Maiyalagan T, Jiang Z Q 2025 Chem. Eng. J. 522 166892
Google Scholar
[53] Li Y H, Hung T H, Chen C W 2009 Carbon 47 850
Google Scholar
[54] Pasupathi A, Madhu R, Kundu S, Subramaniam Y 2025 J. Power Sources 630 236144
Google Scholar
[55] Zhang D Y, Gao H, Li J Y, Sun Y W, Deng Z S, Yuan X Y, Li C C, Chen T X, Chen T X, Peng X W, Wang C, Xu Y, Yang L C, Guo X, Zhao Y F, Huang P, Wang Y, Wang G X, Liu H 2025 Energy Storage Mater. 77 104231
Google Scholar
[56] Li H, Yamaguchi T, Matsumoto S, Hoshikawa H, Kumagai T, Okamoto N L, Ichitsubo T 2020 Nat. Commun. 11 1584
Google Scholar
[57] Li Z, Gu G Z, Hu S Z, Zou X, Wu G 2019 Chin. J. Catal. 40 1178
Google Scholar
[58] Dong P, Zhang D, Guo Y L, Sun A B, Li F P, Zhou Y J, Hou S P, Ren K, Xie Z P, Wu Y, Xue D F, Yang B, Liang F 2025 Energy Storage Mater. 81 104555
Google Scholar
[59] Dey A, Chroneos A, Braithwaite N S J, Gandhiraman R P, Krishnamurthy S 2016 Appl. Phys. Rev. 3 021301
Google Scholar
[60] Zhou J, Yue H, Qi F, Wang H Q, Chen Y F 2017 Int. J. Hydrogen Energ. 42 27004
Google Scholar
[61] Peng K, Cui P, Miao F 2025 Int. J. Hydrogen Energ. 102 1084
Google Scholar
[62] Wu S L, Zhang C, Cui X Y, Zhang S, Yang Q, Shao T 2021 J. Phys. D Appl. Phys. 54 265501
Google Scholar
[63] Meng D P, Peng X F, Zheng J X, Wang Z 2023 Phys. Chem. Chem. Phys. 25 22679
Google Scholar
[64] Myeong S, Ha S, Lim C, Min C G, Ha N, Kim B K, Lee Y S 2024 Electroanal. Chem. 964 118332
Google Scholar
[65] Hatakeyama R 2017 Rev. Mod. Plasma Phy. 1 7
Google Scholar
[66] Usachov D, Fedorov A, Vilkov O, Senkovskiy B, Adamchuk V K, Yashina L V, Volykhov A A, Farjam M, Verbitskiy N I, Grüneis A, Laubschat C, Vyalikh D V 2014 Nano Lett. 14 4982
Google Scholar
[67] Isac D L, Şoriga Ş G, Man I C 2020 J. Phys. Chem. C 124 23177
Google Scholar
[68] Liu Y C, Xie Z P, Lu S Q, Peng H Y, Zhang D, Qin J Q, Wu J J, Yang B, Liang F 2024 Dalton T. 53 11454
Google Scholar
[69] Ding D, Song Z L, Cheng Z Q, Liu W N, Nie X K, Bian X, Chen Z, Tan W H 2014 J. Mater. Chem. A 2 472
Google Scholar
[70] Lin Y C, Lin C Y, Chiu P W 2010 Appl. Phys. Lett. 96 133110
Google Scholar
[71] Evlashin S A, Fedorov F S, Chernodoubov D A, Maslakov K I, Dubinin O N, Khmelnitsky R A, Bondareva J V, Zhdanov V L, Pilevsky A A, Sukhanova E V, Popov Z I, Suetin N V 2024 Electroanal. Chem. 956 118091
Google Scholar
[72] Yue X F, Xiang H Y, Zhang P, Shu S, Zhao Y X, Zhang J C, Liu J W, Yu D P 2024 Plasma Process. Polym. 21 2300140
Google Scholar
[73] Li S, Wang Z, Jiang H, Zhang L M, Ren J Z, Zheng M T, Dong L C, Sun L Y 2016 Chem. Commun. 52 10988
Google Scholar
[74] Lu P, Kim D W, Park D W 2019 Plasma Sci. Technol. 21 044005
Google Scholar
计量
- 文章访问数: 373
- PDF下载量: 3
- 被引次数: 0








下载: