搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非热等离子体在能源材料缺陷工程中的应用

解志鹏 张达 梁风

引用本文:
Citation:

非热等离子体在能源材料缺陷工程中的应用

解志鹏, 张达, 梁风

Applications and prospects of non-thermal plasma in defect engineering of energy materials

XIE Zhipeng, ZHANG Da, LIANG Feng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 非热等离子体 (non-thermal plasma, NTP) 作为一种在接近室温条件下高效实现材料制备与改性的先进技术, 近年来在能源材料领域备受关注. 由于其电子温度高而整体气体温度低, NTP能够在避免热损伤的前提下, 通过引入空位、杂原子掺杂, 调控孔隙率和表面粗糙程度等多尺度缺陷, 显著改善电极材料的电化学性能. 等离子体-材料表面相互作用是一个复杂的体系, 涉及等离子体与材料之间的相互影响规律, 深入理解该作用机制对实现NTP改性精准调控材料缺陷类型、密度、空间分布至关重要. 本综述系统总结了NTP在能源材料刻蚀和掺杂领域的应用, 重点阐述了缺陷的生成及其对等离子体与材料表面相互作用中的影响. 最后, 分析了NTP技术规模化应用过程中面临的主要挑战并对其未来发展进行了展望.
    Non-thermal plasma (NTP), as an advanced technology capable of efficiently synthesizing and modifying materials at near-ambient temperatures, has attracted significant attention in the field of energy materials in recent years. Owing to its high electron temperature and low bulk gas temperature, NTP can significantly enhance the electrochemical performance of electrode materials by creating vacancies, enabling heteroatom doping, and adjusting multiscale defects such as porosity and surface roughness, while preventing thermal damage. The plasma-material surface interaction is a complex system involving mutual influences between the plasma and the material. An in-depth understanding of this mechanism is essential for achieving precise control over defect type, density, and spatial distribution by modifying NTP . This paper systematically summarizes recent advances in the application of NTP for etching and doping energy materials, with special emphasis on the formation mechanisms of defects and their functional role in plasma-surface interactions. The plasma sheath effects, defect generation pathways, and the influence of material morphology on local plasma behavior are discussed in detail. Finally, this paper outlines prospects for future research on NTP-modified energy materials.
  • 图 1  (a) 等离子体鞘层, (b) 空位缺陷, (c) 孔缺陷, (d) 掺杂缺陷示意图

    Fig. 1.  Schematic of (a) plasma sheath, (b) vacancy defect, (c) pore defect, and (d) doping detect.

    图 2  材料表面结构对等离子体鞘层的影响示意图

    Fig. 2.  Schematic of the influence of material surface structure on the plasma sheath.

    图 3  (a) 在矩形排列的单个纳米管附近离子通量的分布随等离子体密度和纳米管直径变化. 电子温度Te = 2 eV, 离子通量分布相对于相邻纳米管的方向以暗黄色圆圈表示, S1, S2和S3分别表示位于基底表面上方75, 50和25 nm处的纳米管横截面[23]; (b) 在基于射频等离子体的工艺中生长出的尖且长的碳纳米锥体生长机制和扫描电子显微镜图像[40]; (c) 混合阵列的合成示意图以及模型图案内原子密度和电场的相应数值模拟[41]

    Fig. 3.  (a) The distribution of ion flux near the single nanotubes arranged in a rectangular pattern varies with plasma density and nanotube diameter, the electron temperature Te = 2 eV, the ion flux distribution is indicated by dark yellow circles relative to the direction of the adjacent nanotubes. S1, S2, and S3 respectively represent the cross-sections of nanotubes located 75, 50, and 25 nm above the substrate surface[23]; (b) the growth mechanism and SEM images of sharp, long carbon nanocones grown in a RF plasma-based process[40]; (c) schematic of the synthesis of a mixed array, and corresponding numerical simulations of the adatom density and electric field within the model pattern[41].

    图 4  (a) Fe—N/C-0和(b) Fe—N/C-120的SEM图像, 等离子体刻蚀对Fe—N/C的结构表征; (c) 拉曼光谱; (d) 氮气吸脱附曲线; (e) 孔径分布; (f) 傅里叶红外光谱[51]

    Fig. 4.  SEM images of (a) Fe—N/C-0 and (b) Fe—N/C-120; (c) Raman spectra; (d) N2 adsorption–desorption curves; (e) pore size distributions; (f) FT-IR spectra[51].

    图 5  (a) P-Si/C/Bi复合材料的制备工艺及概念设计; (b) NVP的示意图和第一性原理计算; (c) 优化后的NVP-4N中间层中Na原子的吸附构型及吸附Na的电荷密度差, 黄色和青色电子云分别代表电子积累和耗尽; (d) 计算的NVP-0 N和NVP-4N中Na+的扩散势垒分布; (e), (f) NVP-0N和NVP-4N的映射态密度[58]

    Fig. 5.  (a) Fabrication process and conceptual design of P-Si/C/Bi composite; (b) schematic illustration for NVP and first-principles calculation; (c) optimized adsorption configuration and charge density differences of a Na atom in the interlayer: yellow and cyan electron clouds represent electron accumulation and depletion, respectively; (d) calculated diffusion barrier profiles of Na+ for NVP-0N and NVP-4N; (e) pore size distributions, and (e), (f) projected density of states of NVP-0N and NVP-4N[58].

    图 6  (a) 非热等离子体制备等离子体催化电极的合成工艺流程图; (b) 等离子体制备催化电极的步骤示意图; (c) 氮原子掺杂机理; (d) 含氧官能团的引入过程[72]

    Fig. 6.  (a) The synthesis procedure diagram of the plasma-prepared catalytic electrode by non-thermal plasma; (b) schematic diagram shows the steps of plasma preparing catalytic electrode; (c) doping mechanism of nitrogen atoms; (d) introduction process of oxygen-containing functional groups[72].

    表 1  氮掺杂反应中涉及的键能表[72]

    Table 1.  The bond energy table involved in the nitrogen doping reaction[72].

    化学键 键能/eV 化学键 键能/eV
    C—H 3.2—4.7 C—C 2.6—5.2
    N—H 2.1—4.7 C—O 0.95—3.0
    C—N 1.2—3.1 C=C 3.3—7.5
    C=O 5.5 O—H 3.4—5.2
    下载: 导出CSV
  • [1]

    Zhang H, Chen L, Dong F, Lu Z W, Lv E M, Dong X L, Li H X, Yuan Z Y, Peng X W, Yang S H, Qiu J S, Guo Z X, Wen Z 2024 Energ. Environ. Sci. 17 6435Google Scholar

    [2]

    Do V H, Lee J M 2024 Chem. Soc. Rev. 53 2693Google Scholar

    [3]

    Zhang Y Q, Liu J J, Xu Y F, Xie C, Wang S Y, Yao X D 2024 Chem. Soc. Rev. 53 10620Google Scholar

    [4]

    Muhammad P, Zada A, Rashid J, Hanif S, Gao Y N, Li C C, Li Y Y, Fan K L, Wang Y L 2024 Adv. Funct. Mater. 34 2314686Google Scholar

    [5]

    Zheng J X, Meng D P, Guo J X, Liu X B, Zhou L, Wang Z 2024 Adv. Mater. 36 2405129Google Scholar

    [6]

    Shen C, Ye T L, Yang P X, Chen G Y 2024 Adv. Mater. 36 2401498Google Scholar

    [7]

    Sun L Z, Pan X, Xie Y N, Zheng J G, Xu S H, L L, Zhao G H 2024 Angew. Chem. Int. Edit. 63 e202402176Google Scholar

    [8]

    Zhang Y Q, Tao L, Xie C, Wang D D, Zou Y Q, Chen R, Wang Y R, Jia C K, Wang S Y 2020 Adv. Mater. 32 1905923Google Scholar

    [9]

    Shi F C, Jiang J Q, Wang X, Gao Y, Chen C, Chen G R, Dudko N, Nevar A A, Zhang D S 2024 Chem. Commun. 60 2700Google Scholar

    [10]

    Deng L L, Ma X P, Lu M T, He Y, Fan R L, Xin Y 2022 Chin. Phys. B, 31 118201Google Scholar

    [11]

    张海宝, 陈强 2021 物理学报 70 095203Google Scholar

    Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar

    [12]

    Morent R, DE G N, Verschuren J, De C C, Kiekens P, Leys C 2008 Surf. Coat. Tech. 202 3427Google Scholar

    [13]

    Ouyang B, Zhang Y, Xia X, Rawat R S, Fan H J 2018 Mater. Today Nano 3 28Google Scholar

    [14]

    Dou S, Tao L, Wang R L, Ei H S, Chen R, Wang S Y 2018 Adv. Mater. 30 1705850Google Scholar

    [15]

    Duan S X, Liu X, Wang Y N, Meng Y D, Alsaedi A, Hayat T, Li J X 2017 Plasma Process. Polym. 14 e1600218Google Scholar

    [16]

    Di L B, Zhang J S, Zhang X L, Wang H Y, Li H, Li Y Q, Bu D C 2021 J. Phys. D Appl. Phys. 54 333001Google Scholar

    [17]

    Wang D D, Zou Y Q, Tao L, Zhang Y Q, Liu Z J, Du S Q, Zang, S Q, Wang S Y 2019 Chin. Chem. Lett. 30 826Google Scholar

    [18]

    李壮, 底兰波, 于锋, 张秀玲 2018 物理学报 67 215202Google Scholar

    Li Z, Di L B, Yu F, Zhang X L 2018 Acta Phys. Sin. 67 215202Google Scholar

    [19]

    Huang Y W, Yu Q F, Li M, Sun S N, Zhao H, Jin S X, Fan J, Wang J G 2021 Plasma Process. Polym. 18 e2000171Google Scholar

    [20]

    Liang X, Liu P, Qiu Z, ShenS H, Cao F, Zhang Y Q, Chen M H, He X P, Xia Y, Wang C, Wan W J, Zhang, J, Huang H, Gan Y P, Xia X H, Zhang W K 2024 Chem. Eur. J. 30 e202304168Google Scholar

    [21]

    Domonkos M, Ticha P 2023 Ieee T. Plasma Sci. 51 1671Google Scholar

    [22]

    Chang J, Chang J P 2017 J. Phys. D Appl. Phys. 50 253001Google Scholar

    [23]

    Levchenko I, Ostrikov K, Keidar M, Vladimirov S V 2007 Phys. Plasmas 14 113504Google Scholar

    [24]

    Baranov O, Bazaka K, Kersten H, Keidar M. Cvelbar U, Xu S, Levchenko I 2017 Appl. Phys. Rev. 4 041302Google Scholar

    [25]

    Levchenko I, Romanov M, Korobov M 2004 Surf. Coat. Tech. 184 356Google Scholar

    [26]

    Woller K, Whyte D, Wright G 2017 Nucl. Fusion 57 066005Google Scholar

    [27]

    Meyyappan M, Lance D, Alan C, David H 2003 Plasma Sources Sci. T. 12 205.Google Scholar

    [28]

    Ghosh S, Polaki S R, Kamruddin M, Jeong S M, Ostrikov K 2018 J. Phys. D Appl. Phys. 51 145303Google Scholar

    [29]

    Islam N, Hoque M N F, LI W Y, Wang S, Warzywoda J, Fan Z Y 2019 Carbon 141 523Google Scholar

    [30]

    Wu Z, Zhao Y, Jin W, Jia B H, Wang J, Ma T Y 2021 Adv. Funct. Mater. 31 2009070Google Scholar

    [31]

    Zhu J, Mu S 2020 Adv. Funct. Mater. 30 2001097Google Scholar

    [32]

    Anders A, Anders S 1995 Plasma Sources Sci. T. 4 571

    [33]

    Levchenko I, Ostrikov K, Keidar M, Xu S 2005 J. Appl. Phys. 98 064304Google Scholar

    [34]

    Levchenko I, Korobov M, Romanov M, Keidar M 2004 J. Phys. D Appl. Phys. 37 1690Google Scholar

    [35]

    Bogaerts A, Zhang QZ, Zhang Y R, Van L K, Wang W Z 2019 Catal. Today 337 3Google Scholar

    [36]

    Adelodun A A 2020 J. Ind. Eng. Chem. 92 41Google Scholar

    [37]

    Liu C J, Wang J X, Yu K L, Eliasson B, Xia Q, Xue B Z, Zhang Y H 2002 J. Electrostat. 54 149Google Scholar

    [38]

    Tu X, Gallon H J, Whitehead J 2011 J. Phys. D Appl. Phys. 44 482003Google Scholar

    [39]

    Roland U, Holzer F, Kopinke F D 2002 Catal. Today 73 315Google Scholar

    [40]

    Cvelbar U, Ostrikov K, Levchenko I, Mozetic M, Sunkara M K 2009 Appl. Phys. Lett. 94 211502Google Scholar

    [41]

    Cvelbar U, Levchenko I, Filipič G, Mozetič M, Ostrikov K 2012 Appl. Phys. Lett. 100 243103Google Scholar

    [42]

    Gruart M, Feldberg N, Gayral B, Bougerol C, Pouget S, Bellet A E, Garro N, Cros A, Okuno H, Daudin B 2020 Nanotechnology 31 115602Google Scholar

    [43]

    Baranov O, Levchenko I, Bell J M, Lim J W M, Huang S, Xu L, Wang B, Aussems D U B, Xu S, Bazaka K 2018 Mater. Horiz. 5 765Google Scholar

    [44]

    Neyts E C, Bogaerts A 2014 J. Phys. D Appl. Phys. 47 224010Google Scholar

    [45]

    Zhang Y R, Van L K, Neyts E C, Bogaerts A 2016 Appl. Catal. B-Environ. Energy 185 56Google Scholar

    [46]

    Zhang Y R, Neyts E C, Bogaerts A 2016 J. Phys. Chem. C 120 25923Google Scholar

    [47]

    Tian Y, Ye Y F, Wang X J, Peng S, Wei Z, Zhang X, Liu W M 2017 Appl. Catal. A-Gen. 529 127Google Scholar

    [48]

    Tian Y, Wei Z, Wang X J, Peng S, Zhang X, Liu W M 2017 Int. J. Hydrogen Energ. 42 4184Google Scholar

    [49]

    赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣 2021 物理学报 70 095208Google Scholar

    Zhao W Q, Zhang D, Cui M H, Du Y, Zhang S Y, Ou Q R 2021 Acta Phys. Sin. 70 095208Google Scholar

    [50]

    Rao P, Yu Y, Wang S, Zhou Y, Wu X, Li K, Qi A Y, Deng P L, Cheng Y G, Li J, Miao Z P, Tian X L 2024 Exploration 4 20230034Google Scholar

    [51]

    Zhong W, Chen J, Zhang P, Deng L B, Yao L, Ren X Z, Li Y Q, Mi H W, Sun L N 2017 J. Mater. Chem. A 5 16605Google Scholar

    [52]

    Zha D W, Jiang S C, Zhang Q, Li J, Jiang Z J, Qin C, Tian X N, Maiyalagan T, Jiang Z Q 2025 Chem. Eng. J. 522 166892Google Scholar

    [53]

    Li Y H, Hung T H, Chen C W 2009 Carbon 47 850Google Scholar

    [54]

    Pasupathi A, Madhu R, Kundu S, Subramaniam Y 2025 J. Power Sources 630 236144Google Scholar

    [55]

    Zhang D Y, Gao H, Li J Y, Sun Y W, Deng Z S, Yuan X Y, Li C C, Chen T X, Chen T X, Peng X W, Wang C, Xu Y, Yang L C, Guo X, Zhao Y F, Huang P, Wang Y, Wang G X, Liu H 2025 Energy Storage Mater. 77 104231Google Scholar

    [56]

    Li H, Yamaguchi T, Matsumoto S, Hoshikawa H, Kumagai T, Okamoto N L, Ichitsubo T 2020 Nat. Commun. 11 1584Google Scholar

    [57]

    Li Z, Gu G Z, Hu S Z, Zou X, Wu G 2019 Chin. J. Catal. 40 1178Google Scholar

    [58]

    Dong P, Zhang D, Guo Y L, Sun A B, Li F P, Zhou Y J, Hou S P, Ren K, Xie Z P, Wu Y, Xue D F, Yang B, Liang F 2025 Energy Storage Mater. 81 104555Google Scholar

    [59]

    Dey A, Chroneos A, Braithwaite N S J, Gandhiraman R P, Krishnamurthy S 2016 Appl. Phys. Rev. 3 021301Google Scholar

    [60]

    Zhou J, Yue H, Qi F, Wang H Q, Chen Y F 2017 Int. J. Hydrogen Energ. 42 27004Google Scholar

    [61]

    Peng K, Cui P, Miao F 2025 Int. J. Hydrogen Energ. 102 1084Google Scholar

    [62]

    Wu S L, Zhang C, Cui X Y, Zhang S, Yang Q, Shao T 2021 J. Phys. D Appl. Phys. 54 265501Google Scholar

    [63]

    Meng D P, Peng X F, Zheng J X, Wang Z 2023 Phys. Chem. Chem. Phys. 25 22679Google Scholar

    [64]

    Myeong S, Ha S, Lim C, Min C G, Ha N, Kim B K, Lee Y S 2024 Electroanal. Chem. 964 118332Google Scholar

    [65]

    Hatakeyama R 2017 Rev. Mod. Plasma Phy. 1 7Google Scholar

    [66]

    Usachov D, Fedorov A, Vilkov O, Senkovskiy B, Adamchuk V K, Yashina L V, Volykhov A A, Farjam M, Verbitskiy N I, Grüneis A, Laubschat C, Vyalikh D V 2014 Nano Lett. 14 4982Google Scholar

    [67]

    Isac D L, Şoriga Ş G, Man I C 2020 J. Phys. Chem. C 124 23177Google Scholar

    [68]

    Liu Y C, Xie Z P, Lu S Q, Peng H Y, Zhang D, Qin J Q, Wu J J, Yang B, Liang F 2024 Dalton T. 53 11454Google Scholar

    [69]

    Ding D, Song Z L, Cheng Z Q, Liu W N, Nie X K, Bian X, Chen Z, Tan W H 2014 J. Mater. Chem. A 2 472Google Scholar

    [70]

    Lin Y C, Lin C Y, Chiu P W 2010 Appl. Phys. Lett. 96 133110Google Scholar

    [71]

    Evlashin S A, Fedorov F S, Chernodoubov D A, Maslakov K I, Dubinin O N, Khmelnitsky R A, Bondareva J V, Zhdanov V L, Pilevsky A A, Sukhanova E V, Popov Z I, Suetin N V 2024 Electroanal. Chem. 956 118091Google Scholar

    [72]

    Yue X F, Xiang H Y, Zhang P, Shu S, Zhao Y X, Zhang J C, Liu J W, Yu D P 2024 Plasma Process. Polym. 21 2300140Google Scholar

    [73]

    Li S, Wang Z, Jiang H, Zhang L M, Ren J Z, Zheng M T, Dong L C, Sun L Y 2016 Chem. Commun. 52 10988Google Scholar

    [74]

    Lu P, Kim D W, Park D W 2019 Plasma Sci. Technol. 21 044005Google Scholar

  • [1] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, doi: 10.7498/aps.73.20231631
    [2] 曹振, 郝大鹏, 唐刚, 寻之朋, 夏辉. 团簇状缺陷对纤维束断裂过程的影响. 物理学报, doi: 10.7498/aps.70.20210310
    [3] 崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹. 宽带隙钙钛矿材料及太阳电池的研究进展. 物理学报, doi: 10.7498/aps.69.20200822
    [4] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究. 物理学报, doi: 10.7498/aps.69.20200656
    [5] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, doi: 10.7498/aps.68.20191258
    [6] 刘昊华, 王少华, 李波波, 李桦林. 缺陷致非线性电路孤子非对称传输. 物理学报, doi: 10.7498/aps.66.100502
    [7] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, doi: 10.7498/aps.64.247802
    [8] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, doi: 10.7498/aps.62.117103
    [9] 陈雪琼, 陈子阳, 蒲继雄, 朱健强, 张国文. 平顶光束经表面有缺陷的厚非线性介质后的光强分布. 物理学报, doi: 10.7498/aps.62.044213
    [10] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇. GaN HEMT栅边缘电容用于缺陷的研究. 物理学报, doi: 10.7498/aps.60.097101
    [11] 路广霞, 张辉, 张国英, 梁婷, 李丹, 朱圣龙. LiNH2储氢材料中间隙H与掺杂原子交互作用对其释氢性能影响机理研究. 物理学报, doi: 10.7498/aps.60.117101
    [12] 张洪亮, 雷海乐, 唐永建, 罗江山, 李恺, 邓晓臣. 纳米结构Cu固体材料的低温热容性能研究. 物理学报, doi: 10.7498/aps.59.471
    [13] 夏志林, 邵建达, 范正修. 薄膜体内缺陷对损伤概率的影响. 物理学报, doi: 10.7498/aps.56.400
    [14] 郝小鹏, 王宝义, 于润升, 魏 龙. 锆离子注入锆-4合金缺陷的慢正电子研究. 物理学报, doi: 10.7498/aps.56.6543
    [15] 王 博, 赵有文, 董志远, 邓爱红, 苗杉杉, 杨 俊. 高温退火后非掺杂磷化铟材料的电子辐照缺陷. 物理学报, doi: 10.7498/aps.56.1603
    [16] 吴师岗, 邵建达, 范正修. 负离子元素杂质破坏模型. 物理学报, doi: 10.7498/aps.55.1987
    [17] 郑 晴, 赵晓鹏, 李明明, 赵 晶. 缺陷对左手材料负折射的调控行为. 物理学报, doi: 10.7498/aps.55.6441
    [18] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究. 物理学报, doi: 10.7498/aps.55.4353
    [19] 李鹏飞, 颜晓红, 王如志. 缺陷对准周期磁超晶格输运性质的影响. 物理学报, doi: 10.7498/aps.51.2139
    [20] 汤学峰, 顾 牡, 童宏勇, 梁 玲, 姚明珍, 陈玲燕, 廖晶莹, 沈炳浮, 曲向东, 殷之文, 徐炜新, 王景成. 掺镧PbWO4闪烁晶体的缺陷研究. 物理学报, doi: 10.7498/aps.49.2007
计量
  • 文章访问数:  373
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-01
  • 修回日期:  2025-09-27
  • 上网日期:  2025-10-10

/

返回文章
返回