搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体处理水溶液仿真研究——从参数获取、模型构建到智能算法

罗三土 张明岩 张基珅 王子丰 孙博文 刘定新 荣命哲

引用本文:
Citation:

等离子体处理水溶液仿真研究——从参数获取、模型构建到智能算法

罗三土, 张明岩, 张基珅, 王子丰, 孙博文, 刘定新, 荣命哲

Simulation Study of Plasma Treatment of Aqueous Solutions: From Basic Parameter Acquisition and Model Construction to Intelligent Algorithms

Luo San-Tu, Zhang Ming-Yan, Zhang Ji-Shen, Wang Zi-Feng, Sun Bo-Wen, Liu Ding-Xin, Rong Ming-Zhe
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 大气压低温等离子体在生物医学、环境保护、纳米制造等领域有广泛的应用,而这些应用中的核心理化过程通常是等离子体与水溶液的相互作用。等离子体与水溶液的相互作用非常复杂,既包含种类繁多的气液两相反应,也包含相互耦合的粒子传质过程,使得现有的实验技术难以系统地阐释内在机制,仿真研究至关重要。近10余年来,国内外对等离子体与水溶液相互作用的仿真研究取得了重要进展,基本解决了传质与反应参数缺乏的问题,从无到有建立了多种类型的仿真模型,并积极探索基于人工智能的新型仿真方法,显著提升了对该领域的认知水平。本文将从参数获取、模型构建到智能算法3个方面综述近年来的仿真研究进展,以期为国内同行和研究生提供参考。
    Atmospheric-pressure low-temperature plasma has been widely applied in various fields such as biomedicine, environmental protection, and nanomanufacturing, whereas key physicochemical processes in these applications involve the interactions between plasma and aqueous solutions. However, such plasma–liquid interactions are highly complex, encompassing a wide variety of gas– liquid phase reactions as well as coupled mass transfer processes. These intricate mechanisms make it difficult for existing experimental techniques to provide a systematic understanding, highlighting the critical role of simulation studies. Over the past decade, significant progress has been made both domestically and internationally in the simulation of plasma–solution interactions. Researchers have basically addressed the scarcity of data on transport and reaction parameters, established multiple types of simulation models, and are actively exploring new simulation approaches based on intelligence algorithm. These advances have greatly deepened our understanding of this field. Thus, this paper reviews recent developments in simulation studies of plasma–solution interactions from three perspectives, namely parameter acquisition, model construction, and intelligent algorithms, with the aim of providing useful insights for domestic researchers and graduate students.
  • [1]

    Lu X P, Bruggeman P J, Reuter S, Naidis G, Bogaerts A, Laroussi M, Keidar M, Robert E, Pouvesle J M, Liu D W, Ostrikov K 2022 Front. Phys. 10 1040658.

    [2]

    Zhang H, Zhang J S, Xu S D, Wang Z F, Xu D H, Guo L, Liu D X, Kong M G, Rong M Z 2021 Plasma Process. Polym. 18 2100070.

    [3]

    Chen J K, Wang Z F, Sun J C, Zhou R W, Guo L, Zhang H, Liu D X, Rong M Z, Ostrikov K K 2023 Adv. Sci. 10 2207407.

    [4]

    Kong G Y, Liu D X 2014 High Volt. 40 2956. (in Chinese) [孔刚玉,刘定新. 2014 高电压技术 40 2956]

    [5]

    Stancampiano A, Gallingani T, Gherardi M, Machala Z, Maguire P, Colombo V, Pouvesle J M, Robert E 2019 Appl. Sci. 9 3861.

    [6]

    Locke B R, Sato M, Sunka P, Hoffmann M R, Chang J S 2006 Ind. Eng. Chem. Res. 45 882.

    [7]

    Rezaei F, Vanraes P, Nikiforov A, Morent R, Geyter N D 2019 Materials 12 2751.

    [8]

    Liu D X, Liu Z C, Chen C, Yang A J, Li D, Rong M Z, Chen H L, Kong M G 2016 Sci. Rep. 6 23737.

    [9]

    Mussard M D V S, Foucher E, Rousseau A 2015 J. Phys. D: Appl. Phys. 48 424003.

    [10]

    Chen M, Yan J W, Feng Y, Liu D X, Wang Z F, Liu L B, Huang L L, Guo L, Zhang J Y, Liu C 2022 Plasma Sources Sci. Technol. 31 125006.

    [11]

    Rumbach P, Bartels D M, Go D B 2018 Plasma Sources Sci. Technol. 27 115013.

    [12]

    Xu H, Chen Z Y, Liu D X 2020 Trans. China Electrotech. Soc. 35, 3561. (in Chinese) [徐 晗,陈泽煜,刘定新. 2020 电工技术学报35 3561]

    [13]

    Yusupov M, Neyts E C, Simon P, Berdiyorov G, Snoeckx R, Van Duin A C T, Bogaerts A 2013 J. Phys. D: Appl. Phys. 47 025205.

    [14]

    Neyts E C, Yusupov M, Verlackt C C, Bogaerts A 2014 J. Phys. D: Appl. Phys. 47 293001.

    [15]

    Qiao J J, Yang Q, Wang L C, Albrechts M C K, Tsonev I, Bogaerts A, Xiong Q 2025 Plasma Sources Sci. Technol. 34 065008.

    [16]

    Liu D X, Rong M Z, Wang X H, Iza F, Kong M G, Bruggeman P 2010 Plasma Process. Polym. 7 846.

    [17]

    Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G, Graham W G, Graves D B, Hofman-Caris R C H M, Maric D, Reid J P, Ceriani E, Rivas D F, 2016 Plasma Sources Sci. Technol. 25 053002.

    [18]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: John Wiley and Sons. Inc) pp133-146.

    [19]

    Heijkers S, Aghaei M, Bogaerts A 2020 J. Phys. Chem. C 124 7016.

    [20]

    Liu Y F, Wang S, Peng Y, Peng W Y, Liu D X, Fu F 2024 Aip Adv. 14 055019.

    [21]

    Rehman T, Kemaneci E, Graef W A A D, Van Dijk J 2016 J. Phys.: Conf. Ser. 682 012035.

    [22]

    Ishikawa K, Koga K, Ohno N 2024 Plasma 7 160.

    [23]

    Chang H B, Zhang X, Zhang X F, Zhang C, Li H P, Xing X H 2016 Chem. Ind. Eng. Prog. 35 1929. (in Chinese) [常海波,张雪,张晓菲,张翀,李和平,邢新会 2016 化工进展 35 1929.]

    [24]

    https://nl.lxcat.net/

    [25]

    https://kinetics.nist.gov/

    [26]

    https://srdata.nist.gov/solubility/

    [27]

    https://jpldataeval.jpl.nasa.gov/

    [28]

    Vanraes P, Bogaerts A 2018 Appl. Phys. Rev. 5 031103.

    [29]

    Rong M Z, Liu D X, Li M, Wang W Z 2014 Trans. China Electrotech. Soc. 6 271. (in Chinese) [荣命哲,刘定新,李美,王伟宗. 2014 电工技术学报 6 271]

    [30]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722.

    [31]

    Sims I R, Smith I W 1995 Annu. Rev. Phys. Chem. 46 109.

    [32]

    Adamovich I V, Macheret S O, Rich J W, Treanor C E 1998 J. Thermophys. Heat Transf. 12 57.

    [33]

    Luo H, Sebastião I B, Alexeenko A A, Macheret S O 2018 Phys. Rev. Fluids 3 113401.

    [34]

    Thirumdas R, Kothakota A, Annapure U, Siliveru K, Blundell R, Gatt R, Valdramidis V P 2018 Trends Food Sci. Technol. 77 21.

    [35]

    Wang W Z, Snoeckx R, Zhang X, Cha M S, Bogaerts A 2018 J. Phys. Chem. C 122 8704.

    [36]

    Ruiz-Lopez M F, Francisco J S, Martins-Costa M T, Anglada J M 2020 Nat. Rev. Chem. 4 459.

    [37]

    Komp E, Janulaitis N, Valleau S 2022 Phys. Chem. Chem. Phys. 24 2692.

    [38]

    Mardirossian N, Head-Gordon M 2017 Mol. Phys. 115 2315.

    [39]

    Rong M Z, Zhong L L, Wang X H, Gao Q Q, Fu Y W, Liu Y, Liu D X 2016 Trans. China Electrotech. Soc. 31 54. (in Chinese) [荣命哲,仲林林,王小华,高青青,付钰伟,刘洋,刘定新. 2016 电工技术学报 31 54]

    [40]

    Bao J L, Truhlar D G 2017 Chem. Soc. Rev. 46, 7548.

    [41]

    Luo S T, Liu D X, Xi W, Zhou R W, Zhang M Y, Zhou R S, Wang X H, Rong M Z, Ostrikov K 2025 Phys. Rev. E 111 065205.

    [42]

    Pliego J R. 2021 Org. Biomol. Chem. 19 1900.

    [43]

    Tomasi J, Mennucci B, Cammi R 2005 Chem. Rev. 105 2999.

    [44]

    Luo S T, Fu Y W, Zhang M Y, Liu Y F, Wang D K, Zhang J W, Liu D X, Rong M Z 2023 Plasma Chem. Plasma Process. 43 81.

    [45]

    Present R D 1968 J. Chem. Phys. 48 4875.

    [46]

    NIST Standard Reference Database Number 69, NIST Chemistry WebBook, https://webbook.nist.gov/chemistry/fluid/ [2025-07-17]

    [47]

    Herrebout D, Bogaerts A, Yan M, Gijbels R, Goedheer W, Dekempeneer E 2001 J. Appl. Phys. 90 570. (doi: 10.1063/1.1378059)

    [48]

    Burkholder J B, Sander S P, Abbatt J P D, Barker J R, Huie R E, Kolb C E, Kurylo M J, Orkin V L, Wilmouth D M, Wine P H 2015 Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 (Pasadena, USA: Jet Propulsion Laboratory, NASA)

    [49]

    Lindsay A D, Graves D B, Shannon S C 2016 J. Phys. D: Appl. Phys. 49 235204.

    [50]

    Liu Y F, Liu D X, Zhang J S, Sun B W, Luo S T, Zhang H, Guo L, Rong M Z, Kong M G 2021 AIP Adv. 11 055019.

    [51]

    Turner M M 2016 Plasma Sources Sci. Technol. 25 015003

    [52]

    Zhuang J, Zhu C, Han R, Steuer A, Kolb J F, Shi F K 2022 Molecules 27 5861.

    [53]

    Mohajer M A, Basuri P, Evdokimov A, David G, Zindel D, Miliordos E, Signorell R 2025 Science 388 1426.

    [54]

    Zhong J, Kumar M, Francisco J S, Zeng X C 2018 Acc. Chem. Res. 51 1229.

    [55]

    Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J, Aktulga H M, Verstraelen T, 2016 npj Computational Materials 2 1.

    [56]

    Guo J S, Tian S Q, Zhang Y T 2023 Phys. Plasmas 30 043512.

    [57]

    Xu S F, Guo X Y, Wang J, Guo Y, Shi J J 2023 Sci. Total Environ. 896 165329.

    [58]

    Lietz A M, Kushner M J 2016 J. Phys. D: Appl. Phys. 49 425204.

    [59]

    Yang A J, Wang X H, Rong M Z, Liu D X, Iza F, Kong M G 2011 Phys. Plasmas 18 113503.

    [60]

    Hamaguchi S 2013 AIP Conf. Proc. 1545 214.

    [61]

    Kim H Y, Lee H W, Kang S K, Lee H W, Kim G C, Lee J K 2012 Phys. Plasmas 19 073518.

    [62]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201.

    [63]

    Alfianto E, Ikuse K, Hamaguchi S 2023 Plasma Sources Sci. Technol. 32 085014.

    [64]

    Mohades S, Lietz A M, Kushner M J 2020 J. Phys. D: Appl. Phys. 53 435206.

    [65]

    Dobrynin D, Arjunan K, Fridman A, Friedman G, Clyne A M 2011 J. Phys. D: Appl. Phys. 44 075201.

    [66]

    Ning W J, Shang H, Ji Y W, Li R H, Zhao L H, Huang X L, Jia S L 2023 High Volt. 8 326.

    [67]

    Polito J, Quesada M J H, Stapelmann K, Kushner M J 2023 J. Phys. D: Appl. Phys. 56 395205.

    [68]

    Viegas P, Slikboer E, Bonaventura Z, Guaitella O, Sobota A, Bourdon A 2022 Plasma Sources Sc. Technol. 31 053001.

    [69]

    Chen C, Liu D X, Liu Z C, Yang A J, Chen H L, Shama G, Kong M G 2014 Plasma Chem. Plasma Process. 34 403.

    [70]

    Liu Z C, Liu D X, Chen C, Li D, Yang A J, Rong M Z, Chen H L, Kong M G 2015 J. Phys. D: Appl. Phys. 48 495201.

    [71]

    Liu Z C, Guo L, Liu D X, Rong M Z, Chen H L, Kong M G 2017 Plasma Process. Polym. 14 1600113.

    [72]

    Luo S T, Liu Z C, Liu D X, Zhang H, Guo L, Rong M Z, Kong M G 2020 J. Phys. D: Appl. Phys. 54 065203.

    [73]

    Tian W, Kushner M J 2014 J. Phys. D: Appl. Phys. 47 165201.

    [74]

    Tian W, Lietz A M, Kushner M J 2016 Plasma Sources Sci. Technol. 25 055020.

    [75]

    Kruszelnicki J, Lietz A M, Kushner M J 2019 J. Phys. D: Appl. Phys. 52 355207.

    [76]

    Verlackt C C W, Van Boxem W, Bogaerts A 2018 Phys. Chem. Chem. Phys. 20, 6845.

    [77]

    Sun B W, Liu D X, Iza F, Wang S, Yang A J, Liu Z J, Rong M Z, Wang X H 2019 Plasma Sources Sci. Technol. 28 035006.

    [78]

    Murakami T, Sakai O 2020 Plasma Sources Sci. Technol. 29 115018.

    [79]

    Maslov S, Redner S 2008 J. Neurosci. 28 11103.

    [80]

    Sun B W, Liu D X, Liu Y F, Luo S T, Zhang M Y, Zhang J S, Yang A J, Wang X H, Rong M Z 2021 J. Appl. Phys. 130 093303.

    [81]

    Heirman P, Van Boxem W, Bogaerts A 2019 Phys. Chem. Chem. Phys. 21 12881.

    [82]

    Bissonnette-Dulude J, Heirman P, Coulombe S, Bogaert A, Gervais T, Reuter S 2024 Plasma Sources Sci. Technol. 33 015001.

    [83]

    Liu Y F, Wang S, Peng Y, Peng W Y, Liu D X, Fu F 2024 AIP Adv. 14 055019.

    [84]

    Zhong L L, Wang Y F, Ren H, Wu Q, Han W X, Chen H H 2024 High Volt. Eng. 50 2879. (in Chinese) [仲林林, 王逸凡, 任和, 吴奇,韩汶轩,陈洪洪2024 高电压技术 50 2879]

    [85]

    Alves E P, Fiuza F 2022 Phys. Rev. Res. 4 033192.

    [86]

    Carvalho D D, Ferreira D R, Silva L O 2024 Mach. Learn.: Sci. Technol. 5 025048.

    [87]

    Zhang Y T, Gao S H, Ai F 2023 Front. Phys. 11 1125548.

    [88]

    Kawaguchi S, Takahashi K, Ohkama H, Satoh K 2020 Plasma Sources Sci. Technol. 29 025021.

    [89]

    Zhong L L, Gu Q, Wu B 2020 Comput. Phys. Commun. 257, 107496.

    [90]

    Zhong L L, Wu B, Wang Y 2022 Phys. Fluids 34 087116.

    [91]

    Li J Y, Xu J, Rebrov E, Bogaerts A 2025 Chem. Eng. J 507 159897

  • [1] 李晶宇, 杨晶, 王浩, 李雪鹏, 宁梓豪, 高宏伟, 王小军, 赵天卓, 樊仲维, 许祖彦. 基于人工智能算法的宽稳区大模场纳秒激光产生. 物理学报, doi: 10.7498/aps.74.20250519
    [2] 李君, 苏进, 韩小祥, 朱伟杰, 杨瑞霞, 张海洋, 严祥安, 张云婕, 王斐然. 基于智能算法对脉冲在光纤中传输动力学的研究. 物理学报, doi: 10.7498/aps.74.20241473
    [3] 冯乃星, 王欢, 朱子贤, 董纯志, 李宏杨, 张玉贤, 杨利霞, 黄志祥. 基于极限梯度提升的完美匹配单层智能算法实现航空瞬变电磁问题高效吸收. 物理学报, doi: 10.7498/aps.73.20231724
    [4] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真. 物理学报, doi: 10.7498/aps.73.20231056
    [5] 罗杨, 陈茂林, 苏冬冬, 许诺, 王忠晶, 韩志聪, 赵豪. 外磁场作用下的磁等离子体动力学过程仿真. 物理学报, doi: 10.7498/aps.71.20211383
    [6] 赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真. 磁化同轴枪操作参数对球马克产生及等离子体特性的影响. 物理学报, doi: 10.7498/aps.70.20210709
    [7] 陈然一鎏, 赵犇池, 宋旨欣, 赵炫强, 王琨, 王鑫. 混合量子-经典算法: 基础、设计与应用. 物理学报, doi: 10.7498/aps.70.20210985
    [8] 黄辉, 胡晨岩, 田梓聪, 缪秋霞, 王慧琴. 基于移动渐近线算法的大角度偏转分束器的智能设计. 物理学报, doi: 10.7498/aps.70.20210117
    [9] 田梓聪, 郭遗敏, 胡晨岩, 王慧琴, 路翠翠. 宽带高效聚焦的片上集成纳米透镜. 物理学报, doi: 10.7498/aps.69.20200948
    [10] 魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏. 高气压空气环状感性耦合等离子体实验研究和参数诊断. 物理学报, doi: 10.7498/aps.64.175201
    [11] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生. 放电参数对同轴枪中等离子体团的分离的影响. 物理学报, doi: 10.7498/aps.64.075201
    [12] 赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真. 物理学报, doi: 10.7498/aps.64.015101
    [13] 赵高, 熊玉卿, 马超, 刘忠伟, 陈强. 短管螺旋波放电中等离子体参数测量和模式转化研究. 物理学报, doi: 10.7498/aps.63.235202
    [14] 张华, 吴建军, 张代贤, 张锐, 何振. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型. 物理学报, doi: 10.7498/aps.62.210202
    [15] 袁学松, 张宇, 孙利民, 黎晓云, 邓少芝, 许宁生, 鄢扬. 碳纳米管冷阴极脉冲发射特性及仿真模型研究. 物理学报, doi: 10.7498/aps.61.216101
    [16] 安治永, 李应红, 吴 云, 苏长兵, 宋慧敏. 对称等离子体激励器系统电场仿真研究. 物理学报, doi: 10.7498/aps.56.4778
    [17] 袁保山, 游天雪, 秦运文, 冯北滨, 季小全. HL-2A等离子体约束参数的实时确定. 物理学报, doi: 10.7498/aps.55.1315
    [18] 杨 靖, 李景镇, 孙秀泉, 龚向东. 硅烷低温等离子体阶跃响应的仿真(1). 物理学报, doi: 10.7498/aps.54.3251
    [19] 王 龙. 等离子体中的颗粒成长模型. 物理学报, doi: 10.7498/aps.48.1072
    [20] 张承福. 等离子体模型碰撞项的比较. 物理学报, doi: 10.7498/aps.35.947
计量
  • 文章访问数:  23
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-17

/

返回文章
返回