-
大气压低温等离子体在生物医学、环境保护、纳米制造等领域有广泛的应用,而这些应用中的核心理化过程通常是等离子体与水溶液的相互作用。等离子体与水溶液的相互作用非常复杂,既包含种类繁多的气液两相反应,也包含相互耦合的粒子传质过程,使得现有的实验技术难以系统地阐释内在机制,仿真研究至关重要。近10余年来,国内外对等离子体与水溶液相互作用的仿真研究取得了重要进展,基本解决了传质与反应参数缺乏的问题,从无到有建立了多种类型的仿真模型,并积极探索基于人工智能的新型仿真方法,显著提升了对该领域的认知水平。本文将从参数获取、模型构建到智能算法3个方面综述近年来的仿真研究进展,以期为国内同行和研究生提供参考。Atmospheric-pressure low-temperature plasma has been widely applied in various fields such as biomedicine, environmental protection, and nanomanufacturing, whereas key physicochemical processes in these applications involve the interactions between plasma and aqueous solutions. However, such plasma–liquid interactions are highly complex, encompassing a wide variety of gas– liquid phase reactions as well as coupled mass transfer processes. These intricate mechanisms make it difficult for existing experimental techniques to provide a systematic understanding, highlighting the critical role of simulation studies. Over the past decade, significant progress has been made both domestically and internationally in the simulation of plasma–solution interactions. Researchers have basically addressed the scarcity of data on transport and reaction parameters, established multiple types of simulation models, and are actively exploring new simulation approaches based on intelligence algorithm. These advances have greatly deepened our understanding of this field. Thus, this paper reviews recent developments in simulation studies of plasma–solution interactions from three perspectives, namely parameter acquisition, model construction, and intelligent algorithms, with the aim of providing useful insights for domestic researchers and graduate students.
-
Keywords:
- Plasma treatment of aqueous solution /
- Basic parameter /
- Simulation models /
- Intelligence algorithm
-
[1] Lu X P, Bruggeman P J, Reuter S, Naidis G, Bogaerts A, Laroussi M, Keidar M, Robert E, Pouvesle J M, Liu D W, Ostrikov K 2022 Front. Phys. 10 1040658.
[2] Zhang H, Zhang J S, Xu S D, Wang Z F, Xu D H, Guo L, Liu D X, Kong M G, Rong M Z 2021 Plasma Process. Polym. 18 2100070.
[3] Chen J K, Wang Z F, Sun J C, Zhou R W, Guo L, Zhang H, Liu D X, Rong M Z, Ostrikov K K 2023 Adv. Sci. 10 2207407.
[4] Kong G Y, Liu D X 2014 High Volt. 40 2956. (in Chinese) [孔刚玉,刘定新. 2014 高电压技术 40 2956]
[5] Stancampiano A, Gallingani T, Gherardi M, Machala Z, Maguire P, Colombo V, Pouvesle J M, Robert E 2019 Appl. Sci. 9 3861.
[6] Locke B R, Sato M, Sunka P, Hoffmann M R, Chang J S 2006 Ind. Eng. Chem. Res. 45 882.
[7] Rezaei F, Vanraes P, Nikiforov A, Morent R, Geyter N D 2019 Materials 12 2751.
[8] Liu D X, Liu Z C, Chen C, Yang A J, Li D, Rong M Z, Chen H L, Kong M G 2016 Sci. Rep. 6 23737.
[9] Mussard M D V S, Foucher E, Rousseau A 2015 J. Phys. D: Appl. Phys. 48 424003.
[10] Chen M, Yan J W, Feng Y, Liu D X, Wang Z F, Liu L B, Huang L L, Guo L, Zhang J Y, Liu C 2022 Plasma Sources Sci. Technol. 31 125006.
[11] Rumbach P, Bartels D M, Go D B 2018 Plasma Sources Sci. Technol. 27 115013.
[12] Xu H, Chen Z Y, Liu D X 2020 Trans. China Electrotech. Soc. 35, 3561. (in Chinese) [徐 晗,陈泽煜,刘定新. 2020 电工技术学报35 3561]
[13] Yusupov M, Neyts E C, Simon P, Berdiyorov G, Snoeckx R, Van Duin A C T, Bogaerts A 2013 J. Phys. D: Appl. Phys. 47 025205.
[14] Neyts E C, Yusupov M, Verlackt C C, Bogaerts A 2014 J. Phys. D: Appl. Phys. 47 293001.
[15] Qiao J J, Yang Q, Wang L C, Albrechts M C K, Tsonev I, Bogaerts A, Xiong Q 2025 Plasma Sources Sci. Technol. 34 065008.
[16] Liu D X, Rong M Z, Wang X H, Iza F, Kong M G, Bruggeman P 2010 Plasma Process. Polym. 7 846.
[17] Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G, Graham W G, Graves D B, Hofman-Caris R C H M, Maric D, Reid J P, Ceriani E, Rivas D F, 2016 Plasma Sources Sci. Technol. 25 053002.
[18] Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: John Wiley and Sons. Inc) pp133-146.
[19] Heijkers S, Aghaei M, Bogaerts A 2020 J. Phys. Chem. C 124 7016.
[20] Liu Y F, Wang S, Peng Y, Peng W Y, Liu D X, Fu F 2024 Aip Adv. 14 055019.
[21] Rehman T, Kemaneci E, Graef W A A D, Van Dijk J 2016 J. Phys.: Conf. Ser. 682 012035.
[22] Ishikawa K, Koga K, Ohno N 2024 Plasma 7 160.
[23] Chang H B, Zhang X, Zhang X F, Zhang C, Li H P, Xing X H 2016 Chem. Ind. Eng. Prog. 35 1929. (in Chinese) [常海波,张雪,张晓菲,张翀,李和平,邢新会 2016 化工进展 35 1929.]
[24] https://nl.lxcat.net/
[25] https://kinetics.nist.gov/
[26] https://srdata.nist.gov/solubility/
[27] https://jpldataeval.jpl.nasa.gov/
[28] Vanraes P, Bogaerts A 2018 Appl. Phys. Rev. 5 031103.
[29] Rong M Z, Liu D X, Li M, Wang W Z 2014 Trans. China Electrotech. Soc. 6 271. (in Chinese) [荣命哲,刘定新,李美,王伟宗. 2014 电工技术学报 6 271]
[30] Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722.
[31] Sims I R, Smith I W 1995 Annu. Rev. Phys. Chem. 46 109.
[32] Adamovich I V, Macheret S O, Rich J W, Treanor C E 1998 J. Thermophys. Heat Transf. 12 57.
[33] Luo H, Sebastião I B, Alexeenko A A, Macheret S O 2018 Phys. Rev. Fluids 3 113401.
[34] Thirumdas R, Kothakota A, Annapure U, Siliveru K, Blundell R, Gatt R, Valdramidis V P 2018 Trends Food Sci. Technol. 77 21.
[35] Wang W Z, Snoeckx R, Zhang X, Cha M S, Bogaerts A 2018 J. Phys. Chem. C 122 8704.
[36] Ruiz-Lopez M F, Francisco J S, Martins-Costa M T, Anglada J M 2020 Nat. Rev. Chem. 4 459.
[37] Komp E, Janulaitis N, Valleau S 2022 Phys. Chem. Chem. Phys. 24 2692.
[38] Mardirossian N, Head-Gordon M 2017 Mol. Phys. 115 2315.
[39] Rong M Z, Zhong L L, Wang X H, Gao Q Q, Fu Y W, Liu Y, Liu D X 2016 Trans. China Electrotech. Soc. 31 54. (in Chinese) [荣命哲,仲林林,王小华,高青青,付钰伟,刘洋,刘定新. 2016 电工技术学报 31 54]
[40] Bao J L, Truhlar D G 2017 Chem. Soc. Rev. 46, 7548.
[41] Luo S T, Liu D X, Xi W, Zhou R W, Zhang M Y, Zhou R S, Wang X H, Rong M Z, Ostrikov K 2025 Phys. Rev. E 111 065205.
[42] Pliego J R. 2021 Org. Biomol. Chem. 19 1900.
[43] Tomasi J, Mennucci B, Cammi R 2005 Chem. Rev. 105 2999.
[44] Luo S T, Fu Y W, Zhang M Y, Liu Y F, Wang D K, Zhang J W, Liu D X, Rong M Z 2023 Plasma Chem. Plasma Process. 43 81.
[45] Present R D 1968 J. Chem. Phys. 48 4875.
[46] NIST Standard Reference Database Number 69, NIST Chemistry WebBook, https://webbook.nist.gov/chemistry/fluid/ [2025-07-17]
[47] Herrebout D, Bogaerts A, Yan M, Gijbels R, Goedheer W, Dekempeneer E 2001 J. Appl. Phys. 90 570. (doi: 10.1063/1.1378059)
[48] Burkholder J B, Sander S P, Abbatt J P D, Barker J R, Huie R E, Kolb C E, Kurylo M J, Orkin V L, Wilmouth D M, Wine P H 2015 Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 (Pasadena, USA: Jet Propulsion Laboratory, NASA)
[49] Lindsay A D, Graves D B, Shannon S C 2016 J. Phys. D: Appl. Phys. 49 235204.
[50] Liu Y F, Liu D X, Zhang J S, Sun B W, Luo S T, Zhang H, Guo L, Rong M Z, Kong M G 2021 AIP Adv. 11 055019.
[51] Turner M M 2016 Plasma Sources Sci. Technol. 25 015003
[52] Zhuang J, Zhu C, Han R, Steuer A, Kolb J F, Shi F K 2022 Molecules 27 5861.
[53] Mohajer M A, Basuri P, Evdokimov A, David G, Zindel D, Miliordos E, Signorell R 2025 Science 388 1426.
[54] Zhong J, Kumar M, Francisco J S, Zeng X C 2018 Acc. Chem. Res. 51 1229.
[55] Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J, Aktulga H M, Verstraelen T, 2016 npj Computational Materials 2 1.
[56] Guo J S, Tian S Q, Zhang Y T 2023 Phys. Plasmas 30 043512.
[57] Xu S F, Guo X Y, Wang J, Guo Y, Shi J J 2023 Sci. Total Environ. 896 165329.
[58] Lietz A M, Kushner M J 2016 J. Phys. D: Appl. Phys. 49 425204.
[59] Yang A J, Wang X H, Rong M Z, Liu D X, Iza F, Kong M G 2011 Phys. Plasmas 18 113503.
[60] Hamaguchi S 2013 AIP Conf. Proc. 1545 214.
[61] Kim H Y, Lee H W, Kang S K, Lee H W, Kim G C, Lee J K 2012 Phys. Plasmas 19 073518.
[62] Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201.
[63] Alfianto E, Ikuse K, Hamaguchi S 2023 Plasma Sources Sci. Technol. 32 085014.
[64] Mohades S, Lietz A M, Kushner M J 2020 J. Phys. D: Appl. Phys. 53 435206.
[65] Dobrynin D, Arjunan K, Fridman A, Friedman G, Clyne A M 2011 J. Phys. D: Appl. Phys. 44 075201.
[66] Ning W J, Shang H, Ji Y W, Li R H, Zhao L H, Huang X L, Jia S L 2023 High Volt. 8 326.
[67] Polito J, Quesada M J H, Stapelmann K, Kushner M J 2023 J. Phys. D: Appl. Phys. 56 395205.
[68] Viegas P, Slikboer E, Bonaventura Z, Guaitella O, Sobota A, Bourdon A 2022 Plasma Sources Sc. Technol. 31 053001.
[69] Chen C, Liu D X, Liu Z C, Yang A J, Chen H L, Shama G, Kong M G 2014 Plasma Chem. Plasma Process. 34 403.
[70] Liu Z C, Liu D X, Chen C, Li D, Yang A J, Rong M Z, Chen H L, Kong M G 2015 J. Phys. D: Appl. Phys. 48 495201.
[71] Liu Z C, Guo L, Liu D X, Rong M Z, Chen H L, Kong M G 2017 Plasma Process. Polym. 14 1600113.
[72] Luo S T, Liu Z C, Liu D X, Zhang H, Guo L, Rong M Z, Kong M G 2020 J. Phys. D: Appl. Phys. 54 065203.
[73] Tian W, Kushner M J 2014 J. Phys. D: Appl. Phys. 47 165201.
[74] Tian W, Lietz A M, Kushner M J 2016 Plasma Sources Sci. Technol. 25 055020.
[75] Kruszelnicki J, Lietz A M, Kushner M J 2019 J. Phys. D: Appl. Phys. 52 355207.
[76] Verlackt C C W, Van Boxem W, Bogaerts A 2018 Phys. Chem. Chem. Phys. 20, 6845.
[77] Sun B W, Liu D X, Iza F, Wang S, Yang A J, Liu Z J, Rong M Z, Wang X H 2019 Plasma Sources Sci. Technol. 28 035006.
[78] Murakami T, Sakai O 2020 Plasma Sources Sci. Technol. 29 115018.
[79] Maslov S, Redner S 2008 J. Neurosci. 28 11103.
[80] Sun B W, Liu D X, Liu Y F, Luo S T, Zhang M Y, Zhang J S, Yang A J, Wang X H, Rong M Z 2021 J. Appl. Phys. 130 093303.
[81] Heirman P, Van Boxem W, Bogaerts A 2019 Phys. Chem. Chem. Phys. 21 12881.
[82] Bissonnette-Dulude J, Heirman P, Coulombe S, Bogaert A, Gervais T, Reuter S 2024 Plasma Sources Sci. Technol. 33 015001.
[83] Liu Y F, Wang S, Peng Y, Peng W Y, Liu D X, Fu F 2024 AIP Adv. 14 055019.
[84] Zhong L L, Wang Y F, Ren H, Wu Q, Han W X, Chen H H 2024 High Volt. Eng. 50 2879. (in Chinese) [仲林林, 王逸凡, 任和, 吴奇,韩汶轩,陈洪洪2024 高电压技术 50 2879]
[85] Alves E P, Fiuza F 2022 Phys. Rev. Res. 4 033192.
[86] Carvalho D D, Ferreira D R, Silva L O 2024 Mach. Learn.: Sci. Technol. 5 025048.
[87] Zhang Y T, Gao S H, Ai F 2023 Front. Phys. 11 1125548.
[88] Kawaguchi S, Takahashi K, Ohkama H, Satoh K 2020 Plasma Sources Sci. Technol. 29 025021.
[89] Zhong L L, Gu Q, Wu B 2020 Comput. Phys. Commun. 257, 107496.
[90] Zhong L L, Wu B, Wang Y 2022 Phys. Fluids 34 087116.
[91] Li J Y, Xu J, Rebrov E, Bogaerts A 2025 Chem. Eng. J 507 159897
计量
- 文章访问数: 23
- PDF下载量: 0
- 被引次数: 0