Atmospheric-pressure low-temperature plasma has been widely used in various fields such as biomedicine, environmental protection, and nanomanufacturing, and the key physicochemical processes in these applications involve the interactions between plasma and aqueous solutions. However, such plasma-liquid interactions are very complex, involving a wide range of gas-liquid phase reactions as well as coupled mass transfer processes. These intricate mechanisms make it challenging for existing experimental techniques to provide a systematic understanding, thereby highlighting the critical role of simulation studies. Over the past decade, significant progress has been made in the simulation of plasma-solution interactions. Researchers have basically solved the problems of scarce transport and reaction parameter data, established various types of simulation models, and actively explored new simulation methods based on intelligence algorithms. These advances have greatly deepened our understanding of this field. Thus, this paper reviews recent developments in simulation studies of plasma-solution interactions from three perspectives, namely parameter acquisition, model construction, and intelligent algorithms, with the aim of providing useful insights for researchers.