-
采用基于密度泛函理论的赝势平面波第一性原理方法,研究了LiNH2缺陷及其掺杂原子交互作用对其释氢影响.通过对其进行优化求得它们的局域最稳定结构并计算了含间隙H原子缺陷的LiNH2及其掺杂合金的结合能、间隙缺陷形成能、态密度和电荷布居.结果表明: 系统结合能不能反映LiNH2及其掺杂合金的释氢性质;平衡时,LiNH2中有一定的间隙氢原子存在,Mg,Ti掺杂使形成能大大降低,大大增大了间隙氢的浓度. 间隙H原子在带隙引入了缺陷能级使带隙大大减小,提高释氢能力.间隙H原子导致[NH2]-中NH原子间相互作用减弱,容易释氢.间隙H与[NH2]-中N存在共价作用,可以解释LiNH2释氢反应中NH3的放出.当存在掺杂时,NH键的键强不均衡,部分较弱,部分较强,较弱的NH键中H容易放出.The first-principles plane-wave pseudopotential method based on the density functional theory is used to investigate the mechanism of the influence of interaction between interstitial H atom defect and doped atom on the dehydrogenation performance of LiNH2. We obtain the most stable structure of LiNH2 by geometrical optimization, and calculate the binding-energies, interstitial H atom defect formation energies, densities of states (DOSs), and electric charge populations for LiNH2 and doped LiNH2. Studies show that the results of binding-energy cannot reflect the dehydrogenating properties of LiNH2 and doped LiNH2. In equilibrium, there are a number of interstitial H atom defects; the formation energy of interstitial H atom defect is reduced by doping Mg and Ti, which increases the concentration of interstitial H atoms. Interstitial H atoms can induce the defect energy level in the gap, which reduces the width of the gap, and improves the dehydrogenation performance of LiNH2. The strength of N-H bond in [NH2]- is weakened by interstitial H atom, so that hydrogen atoms in LiNH2 is relatively easy to release. The covalent bond between interstitial H atom and N atom of [NH2]- explains the escape of NH3 from the dehydrogenation reaction of LiNH2 system. The strengths of N-H bonds are not equal in doped LiNH2, a part of N-H bonds are weaker, and other N-H bonds are strong, the hydrogen atoms are easy to release from weaker N-H bonds.
-
Keywords:
- hydrogen storage materials /
- first-principles calculation /
- defect /
- dehydrogenation mechanics
[1] Lei Y Q 2000 New Energy Materials(Tianjin:Tianjin University Press)p28 (in Chinese) [雷永泉 2000 新能源材料 (天津:天津大学出版社) 第28页]
[2] Schlapbach L, Zttel A 2001 Nature 414 353
[3] [4] Li S M, Huang Z P 1996 Vacuum and Cryogenics 2 149 (in Chinese) [李式模、黄忠平 1996 真空与低温 2 149]
[5] [6] [7] Fang S S, Dong Y D 2001 Nature 23 259 (in Chinese) [方守狮、董远达 2001 自然杂志 23 259]
[8] Song Y, Guo Z X 2006 Phys.Rev.B 74 195120
[9] [10] Zhang H, Qi K Z, Zhang G Y, Wu D, Zhu S L 2009 Acta Phys. Sin.58 8077 (in Chinese) [张 辉、戚克振、张国英、吴 迪、朱圣龙 2009 物理学报 58 8077]
[11] [12] [13] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 Phys. Condens. Matter 14 2717
[14] Perdew J P, Wang Y 1992 Phys.Rev. B 45 132441
[15] [16] [17] Hammer B, Hansen L B, Norskov J K 1999 Phys.Rev.B 59 7413
[18] [19] Vanderbilt D 1990 Phys.Rev.B 41 7892
[20] [21] Perdew J P, Wang Y 1992 Phys.Rev.B 46 6671
[22] [23] Fang J X, Lu D 1980 Solid State Physics (Shanghai: Shanghai Scientific and Technology Press) p81 (in Chinese) [方俊鑫、陆 栋 1980 固体物理学(上海:上海科学技术出版社)第81页]
[24] [25] Chen L J, Hou Z F, Zhu Z Z, Yang Y 2003 Acta Phys.Sin.52 2230 (in Chinese) [陈丽娟、侯柱锋、朱梓忠、杨 勇 2003 物理学报 52 2230]
[26] [27] Zhang H, Liu G L, Qi K Z, Zhang G Y, Xiao M Z, Zhu S L 2009 Chin.Phys.B 18 048601
[28] [29] Ichikawa T, Hanada N, Isobe S, Leng H, Fujii H 2004 Phys.Chem. B 108 7887
[30] [31] Wang J, Wang G, Zhao J 2002 Phys.Rev.B 66 035418
-
[1] Lei Y Q 2000 New Energy Materials(Tianjin:Tianjin University Press)p28 (in Chinese) [雷永泉 2000 新能源材料 (天津:天津大学出版社) 第28页]
[2] Schlapbach L, Zttel A 2001 Nature 414 353
[3] [4] Li S M, Huang Z P 1996 Vacuum and Cryogenics 2 149 (in Chinese) [李式模、黄忠平 1996 真空与低温 2 149]
[5] [6] [7] Fang S S, Dong Y D 2001 Nature 23 259 (in Chinese) [方守狮、董远达 2001 自然杂志 23 259]
[8] Song Y, Guo Z X 2006 Phys.Rev.B 74 195120
[9] [10] Zhang H, Qi K Z, Zhang G Y, Wu D, Zhu S L 2009 Acta Phys. Sin.58 8077 (in Chinese) [张 辉、戚克振、张国英、吴 迪、朱圣龙 2009 物理学报 58 8077]
[11] [12] [13] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 Phys. Condens. Matter 14 2717
[14] Perdew J P, Wang Y 1992 Phys.Rev. B 45 132441
[15] [16] [17] Hammer B, Hansen L B, Norskov J K 1999 Phys.Rev.B 59 7413
[18] [19] Vanderbilt D 1990 Phys.Rev.B 41 7892
[20] [21] Perdew J P, Wang Y 1992 Phys.Rev.B 46 6671
[22] [23] Fang J X, Lu D 1980 Solid State Physics (Shanghai: Shanghai Scientific and Technology Press) p81 (in Chinese) [方俊鑫、陆 栋 1980 固体物理学(上海:上海科学技术出版社)第81页]
[24] [25] Chen L J, Hou Z F, Zhu Z Z, Yang Y 2003 Acta Phys.Sin.52 2230 (in Chinese) [陈丽娟、侯柱锋、朱梓忠、杨 勇 2003 物理学报 52 2230]
[26] [27] Zhang H, Liu G L, Qi K Z, Zhang G Y, Xiao M Z, Zhu S L 2009 Chin.Phys.B 18 048601
[28] [29] Ichikawa T, Hanada N, Isobe S, Leng H, Fujii H 2004 Phys.Chem. B 108 7887
[30] [31] Wang J, Wang G, Zhao J 2002 Phys.Rev.B 66 035418
计量
- 文章访问数: 10031
- PDF下载量: 694
- 被引次数: 0