Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application and Prospect of Non-thermal Plasma in Defect Engineering of Energy Materials

XIE Zhipeng ZHANG Da LIANG feng

Citation:

Application and Prospect of Non-thermal Plasma in Defect Engineering of Energy Materials

XIE Zhipeng, ZHANG Da, LIANG feng
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Non-Thermal Plasma (NTP), as an advanced technology capable of efficiently synthesizing and modifying materials under near-ambient temperature, has attracted significant attention in the field of energy materials in recent years. Owing to high electron temperature and low bulk gas temperature, NTP can significantly enhance the electrochemical performance of electrode materials by introducing vacancies, enabling heteroatom doping, and regulating multiscale defects such as porosity and surface roughness, while avoiding thermal damage. The plasma-material surface interaction is a complex system involving mutual influences between the plasma and the material. A deep understanding of this mechanism is essential for achieving precise control over defect type, density, and spatial distribution via NTP modification. This review systematically summarizes the applications of NTP in etching and doping processes for energy materials, with a particular emphasis on defect generation and its role in plasma–surface interactions. Finally, the major challenges associated with the large-scale application of NTP technology are discussed, and future perspectives are outlined.
  • [1]

    Zhang H, Chen L, Dong F, Lu Z W, Lv E M, Dong X L, Li H X, Yuan Z Y, Peng X W, Yang S H, Qiu J S, Guo Z X, Wen Z 2024 Energ. Environ. Sci. 17 6435

    [2]

    Do V H, Lee J M 2024 Chem. Soc. Rev. 53 2693

    [3]

    Zhang Y Q, Liu J J, Xu Y F, Xie C, Wang S Y, Yao X D 2024 Chem. Soc. Rev. 53 10620

    [4]

    Muhammad P, Zada A, Rashid J, Hanif S, Gao Y N, Li C C, Li Y Y, Fan K L, Wang Y L 2024 Adv. Funct. Mater. 34 2314686

    [5]

    Zheng J X, Meng D P, Guo J X, Liu X B, Zhou L, Wang Z 2024 Adv. Mater. 36 2405129

    [6]

    Shen C, Ye T L, Yang P X, Chen G Y 2024 Adv. Mater. 36 2401498

    [7]

    Sun L Z, Pan X, Xie Y N, Zheng J G, Xu S H, L L, Zhao G H 2024. Angew. Chem. Int. Edit. 63 e202402176

    [8]

    Zhang Y Q, Tao L, Xie C, Wang D D, Zou Y Q, Chen R, Wang Y R, Jia C K, Wang S Y 2020 Adv. Mater. 32 1905923

    [9]

    Shi F C, Jiang J Q, Wang X, Gao Y, Chen C, Chen G R, Dudko N, Nevar A A, Zhang D S 2024 Chem. Commun. 60 2700

    [10]

    Wang Z, Chen J, Sun S, Huang Z Q, Zhang X Y, Li X Y, Dong H S 2022 Energy Storage Mater, 50 161

    [11]

    Ye Z P, Zhao L, Nikiforov A, Giraudon J M, Chen Y, Wang J D, Tu X 2022 Adv. Colloid Interfac. 308 102755

    [12]

    Morent R, DE G. N, Verschuren J, De C C, Kiekens P, Leys C 2008 Surf. Coat. Tech. 202 3427

    [13]

    Ouyang B, Zhang Y, Xia X, Rawat R S, Fan H J 2018 Mater. Today Nano 3 28

    [14]

    Dou S, Tao L, Wang R L, Ei H S, Chen R, Wang S Y 2018 Adv. Mater. 30 1705850

    [15]

    Duan S X, Liu X, Wang Y N, Meng Y D, Alsaedi A, Hayat T, Li J X 2017 Plasma Process. Polym. 14 e1600218

    [16]

    Di L B, Zhang J S, Zhang X L, Wang H Y, Li H, Li Y Q, Bu D C 2021 J. Phys. D Appl. Phys. 54 333001

    [17]

    Wang D D, Zou Y Q, Tao L, Zhang Y Q, Liu Z J, Du S Q, Zang, S Q, Wang S Y 2019 Chinese Chem. Lett. 30 826

    [18]

    Zhang L, Liu X, Scurrell M S 2018 Rev. Chem. Eng. 34 201

    [19]

    Huang Y W, Yu Q F, Li M, Sun S N, Zhao H, Jin S X, Fan J, Wang J G 2021 Plasma Process. Polym. 18 e2000171

    [20]

    Liang X, Liu P, Qiu Z, ShenS H, Cao F, Zhang Y Q, Chen M H, He X P, Xia Y, Wang C, Wan W J, Zhang, J, Huang H, Gan Y P, Xia X H, Zhang W K 2024 Chem. Eur. J. 30 e202304168

    [21]

    Domonkos M, Ticha P 2023 Ieee T. Plasma Sci. 51 1671

    [22]

    Chang J, Chang J P 2017 J. Phys. D Appl. Phys. 50 253001

    [23]

    Levchenko I, Ostrikov K, Keidar M, Vladimirov S V 2007 Phys. Plasmas 14 113504

    [24]

    Baranov O, Bazaka K, Kersten H, Keidar M. Cvelbar U, Xu S, Levchenko I 2017 Appl. Phys. Rev. 4 041302

    [25]

    Levchenko I, Romanov M, Korobov M 2004 Surf. Coat. Tech. 184 356

    [26]

    Woller K, Whyte D, Wright G 2017 Nucl. Fusion 57 066005

    [27]

    Meyyappan M, Lance D, Alan C, David H 2003 Plasma Sources Sci. T. 12 205.

    [28]

    Ghosh S, Polaki S R, Kamruddin M, Jeong S M, Ostrikov K 2018 J. Phys. D Appl. Phys. 51 145303

    [29]

    Islam N, Hoque M N F, LI W Y, Wang S, Warzywoda J, Fan Z Y 2019 Carbon 141 523

    [30]

    Wu Z, Zhao Y, Jin W, Jia B H, Wang J, Ma T Y 2021 Adv. Funct. Mater. 31 2009070

    [31]

    Zhu J, Mu S 2020 Adv. Funct. Mater. 30 2001097

    [32]

    Anders A, Anders S 1995 Plasma Sources Sci. T. 4 571

    [33]

    Levchenko I, Ostrikov K, Keidar M, Xu S 2005 J. Appl. Phys. 98 064304

    [34]

    Levchenko I, Korobov M, Romanov M, Keidar M 2004 J. Phys. D Appl. Phys. 37 1690

    [35]

    Bogaerts A, Zhang QZ, Zhang Y R, Van L K, Wang W Z 2019 Catal. Today 337 3

    [36]

    Adelodun A A 2020 J. Ind. Eng. Chem. 92 41

    [37]

    Liu C J, Wang J X, Yu K L, Eliasson B, Xia Q, Xue B Z, Zhang Y H 2002 J. Electrostat. 54 149

    [38]

    Tu X, Gallon H J, Whitehead J 2011 J. Phys. D Appl. Phys. 44 482003

    [39]

    Roland U, Holzer F, Kopinke F D 2002 Catal. Today 73 315

    [40]

    Cvelbar U, Ostrikov K, Levchenko I, Mozetic M, Sunkara M K 2009 Appl. Phys. Lett. 94 211502

    [41]

    Cvelbar U, Levchenko I, Filipič G, Mozetič M, Ostrikov K 2012 Appl. Phys. Lett. 100 243103

    [42]

    Gruart M, Feldberg N, Gayral B, Bougerol C, Pouget S, Bellet A E, Garro N, Cros A, Okuno H, Daudin B 2020 Nanotechnology 31 115602

    [43]

    Baranov O, Levchenko I, Bell J M, Lim J W M, Huang S, Xu L, Wang B, Aussems D U B, Xu S, Bazaka K 2018 Mater. Horiz. 5 765

    [44]

    Neyts E C, Bogaerts A 2014 J. Phys. D Appl. Phys. 47 224010

    [45]

    Zhang Y R, Van L K, Neyts E C, Bogaerts A 2016 Appl. Catal. B-Environ. Energy 185 56

    [46]

    Zhang Y R, Neyts E C, Bogaerts A 2016 J. Phys. Chem. C 120 25923

    [47]

    Tian Y, Ye Y F, Wang X J, Peng S, Wei Z, Zhang X, Liu W M 2017 Appl. Catal. A-Gen. 529 127

    [48]

    Tian Y, Wei Z, Wang X J, Peng S, Zhang X, Liu W M 2017 Int. J. Hydrogen Energ. 42 4184

    [49]

    Childres I, Jauregui l A, Tian J, Chen Y P 2011 New J Phys. 13 025008

    [50]

    Rao P, Yu Y, Wang S, Zhou Y, Wu X, Li K, Qi A Y, Deng P L, Cheng Y G, Li J, Miao Z P, Tian X L 2024 Exploration 4 20230034

    [51]

    Zhong W, Chen J, Zhang P, Deng L B, Yao L, Ren X Z, Li Y Q, Mi H W, Sun L N 2017 J. Mater. Chem. A 5 16605

    [52]

    Zha D W, Jiang S C, Zhang Q, Li J, Jiang Z J, Qin C, Tian X N, Maiyalagan T, Jiang Z Q 2025 Chem. Eng. J. 522 166892

    [53]

    Li Y H, Hung T H, Chen C W 2009 Carbon 47 850

    [54]

    Pasupathi A, Madhu R, Kundu S, Subramaniam Y 2025 J. Power Sources 630 236144

    [55]

    Zhang D Y, Gao H, Li J Y, Sun Y W, Deng Z S, Yuan X Y, Li C C, Chen T X, Chen T X, Peng X W, Wang C, Xu Y, Yang L C, Guo X, Zhao Y F, Huang P, Wang Y, Wang G X, Liu H 2025 Energy Storage Mater. 77 104231

    [56]

    Li H, Yamaguchi T, Matsumoto S, Hoshikawa H, Kumagai T, Okamoto N L, Ichitsubo T 2020 Nat. Commun. 11 1584

    [57]

    Li Z, Gu G Z, Hu S Z, Zou X, Wu G 2019 Chinese J. Catal. 40 1178

    [58]

    Dong P, Zhang D, Guo Y L, Sun A B, Li F P, Zhou Y J, Hou S P, Ren K, Xie Z P, Wu Y, Xue D F, Yang B, Liang F 2025 Energy Storage Mater. 81 104555

    [59]

    Dey A, Chroneos A, Braithwaite N S J, Gandhiraman R P, Krishnamurthy S 2016 Appl. Phys. Rev. 3 021301

    [60]

    Zhou J, Yue H, Qi F, Wang H Q, Chen Y F 2017 Int. J. Hydrogen Energ. 42 27004

    [61]

    Peng K, Cui P, Miao F 2025 Int. J. Hydrogen Energ. 102 1084

    [62]

    Wu S L, Zhang C, Cui X Y, Zhang S, Yang Q, Shao T 2021 J. Phys. D Appl. Phys. 54 265501

    [63]

    Meng D P, Peng X F, Zheng J X, Wang Z 2023 Phys. Chem. Chem. Phys. 25 22679

    [64]

    Myeong S, Ha S, Lim C, Min C G, Ha N, Kim B K, Lee Y S 2024 Electroanal. Chem. 964 118332

    [65]

    Hatakeyama R 2017 Rev. Mod. Plasma Phy. 1 7

    [66]

    Usachov D, Fedorov A, Vilkov O, Senkovskiy B, Adamchuk V K, Yashina L V, Volykhov A A, Farjam M, Verbitskiy N I, Grüneis A, Laubschat C, Vyalikh D V 2014 Nano Lett. 14 4982

    [67]

    Isac D L, Şoriga Ş G, Man I C 2020 J. Phys. Chem. C 124 23177

    [68]

    Liu Y C, Xie Z P, Lu S Q, Peng H Y, Zhang D, Qin J Q, Wu J J, Yang B, Liang F 2024 Dalton T. 53 11454

    [69]

    Ding D, Song Z L, Cheng Z Q, Liu W N, Nie X K, Bian X, Chen Z, Tan W H 2014 J. Mater. Chem. A 2 472

    [70]

    Lin Y C, Lin C Y, Chiu P W 2010 Appl. Phys. Lett. 96 133110

    [71]

    Evlashin S A, Fedorov F S, Chernodoubov D A, Maslakov K I, Dubinin O N, Khmelnitsky R A, Bondareva J V, Zhdanov V L, Pilevsky A A, Sukhanova E V, Popov Z I, Suetin N V 2024 Electroanal. Chem. 956 118091

    [72]

    Yue X F, Xiang H Y, Zhang P, Shu S, Zhao Y X, Zhang J C, Liu J W, Yu D P 2024 Plasma Process. Polym. 21 2300140

    [73]

    Li S, Wang Z, Jiang H, Zhang L M, Ren J Z, Zheng M T, Dong L C, Sun L Y 2016 Chem. Commun. 52 10988

    [74]

    Lu P, Kim D W, Park D W 2019 Plasma Sci. Technol. 21 044005

  • [1] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, doi: 10.7498/aps.73.20231631
    [2] Cao Zhen, Hao Da-Peng, Tang Gang, Xun Zhi-Peng, Xia Hui. Influence of cluster shaped defects on fracture process of fiber bundle. Acta Physica Sinica, doi: 10.7498/aps.70.20210310
    [3] Cui Xing-Hua, Xu Qiao-Jing, Shi Biao, Hou Fu-Hua, Zhao Ying, Zhang Xiao-Dan. Research progress of wide bandgap perovskite materials and solar cells. Acta Physica Sinica, doi: 10.7498/aps.69.20200822
    [4] Yin Yuan, Li Ling, Yin Wan-Jian. Theoretical and computational study on defects of solar cell materials. Acta Physica Sinica, doi: 10.7498/aps.69.20200656
    [5] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, doi: 10.7498/aps.68.20191258
    [6] Liu Hao-Hua, Wang Shao-Hua, Li Bo-Bo, Li Hua-Lin. Defect induced asymmetric soliton transmission in the nonlinear circuit. Acta Physica Sinica, doi: 10.7498/aps.66.100502
    [7] Zhang Xiu-Zhi, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Tian Yu-Ming, Chai Yue-Sheng. Effect of nitrogen on the defect luminescence in diamond. Acta Physica Sinica, doi: 10.7498/aps.64.247802
    [8] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, doi: 10.7498/aps.62.117103
    [9] Chen Xue-Qiong, Chen Zi-Yang, Pu Ji-Xiong, Zhu Jian-Qiang, Zhang Guo-Wen. Intensity distribution of the flat-topped beam propagating through the thick nonlinear medium with defects. Acta Physica Sinica, doi: 10.7498/aps.62.044213
    [10] Wang Xin-Hua, Pang Lei, Chen Xiao-Juan, Yuan Ting-Ting, Luo Wei-Jun, Zheng Ying-Kui, Wei Ke, Liu Xin-Yu. Investigation on trap by the gate fringecapacitance in GaN HEMT. Acta Physica Sinica, doi: 10.7498/aps.60.097101
    [11] Lu Guang-Xia, Zhang Hui, Zhang Guo-Ying, Liang Ting, Li Dan, Zhu Sheng-Long. Mechanism of the influence of the interaction between interstitial H atom and doped atom on the dehydrogenation performance of LiNH2. Acta Physica Sinica, doi: 10.7498/aps.60.117101
    [12] Zhang Hong-Liang, Lei Hai-Le, Tang Yong-Jian, Luo Jiang-Shan, Li Kai, Deng Xiao-Chen. Thermal capacity of nanocrystalline copper at low temperatures. Acta Physica Sinica, doi: 10.7498/aps.59.471
    [13] Xia Zhi-Lin, Shao Jian-Da, Fan Zheng-Xiu. Effect of bulk inclusion in films on damage probability. Acta Physica Sinica, doi: 10.7498/aps.56.400
    [14] Hao Xiao-Peng, Wang Bao-Yi, Yu Run-Sheng, Wei Long. Zirconium-ion implantation of zircaloy-4 investiged by slow positron beam. Acta Physica Sinica, doi: 10.7498/aps.56.6543
    [15] Wang Bo, Zhao You-Wen, Dong Zhi-Yuan, Deng Ai-Hong, Miao Shan-Shan, Yang Jun. Electron irradiation induced defects in high temperature annealed InP single crystal. Acta Physica Sinica, doi: 10.7498/aps.56.1603
    [16] Wu Shi-Gang, Shao Jian-Da, Fan Zheng-Xiu. Negative-ion element impurities breakdown model. Acta Physica Sinica, doi: 10.7498/aps.55.1987
    [17] Zheng Qing, Zhao Xiao-Peng, Li Ming-Ming, Zhao Jing. Regulating ability of defects on the negative refraction of left-handed metamaterials. Acta Physica Sinica, doi: 10.7498/aps.55.6441
    [18] Chen Zhi-Quan, Kawasuso Atsuo. Vacancy-type defects induced by He-implantation in ZnO studied by a slow positron beam. Acta Physica Sinica, doi: 10.7498/aps.55.4353
    [19] Li Peng-Fei, Yan Xiao-Hong, Wang Ru-Zhi. . Acta Physica Sinica, doi: 10.7498/aps.51.2139
    [20] TANG XUE-FENG, GU MU, TONG HONG-YONG, LIANG LING, YAO MING-ZHEN, CHEN LING-YAN, LIAO JING-YING, SHEN BIN-FU, QU XIANG-DONG, YIN ZHI-WEN, XU WEI-XIN, WANG JING-C HENG. A STUDY ON La-DOPED PbWO4 SCINTILLATING CRYSTAL. Acta Physica Sinica, doi: 10.7498/aps.49.2007
Metrics
  • Abstract views:  29
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  10 October 2025
  • /

    返回文章
    返回