Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of plasma treated aqueous solutions: From basic parameter acquisition and model construction to intelligent algorithms

LUO Santu ZHANG Mingyan ZHANG Jishen WANG Zifeng SUN Bowen LIU Dingxin RONG Mingzhe

Citation:

Simulation of plasma treated aqueous solutions: From basic parameter acquisition and model construction to intelligent algorithms

LUO Santu, ZHANG Mingyan, ZHANG Jishen, WANG Zifeng, SUN Bowen, LIU Dingxin, RONG Mingzhe
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Atmospheric-pressure low-temperature plasma has been widely used in various fields such as biomedicine, environmental protection, and nanomanufacturing, and the key physicochemical processes in these applications involve the interactions between plasma and aqueous solutions. However, such plasma-liquid interactions are very complex, involving a wide range of gas-liquid phase reactions as well as coupled mass transfer processes. These intricate mechanisms make it challenging for existing experimental techniques to provide a systematic understanding, thereby highlighting the critical role of simulation studies. Over the past decade, significant progress has been made in the simulation of plasma-solution interactions. Researchers have basically solved the problems of scarce transport and reaction parameter data, established various types of simulation models, and actively explored new simulation methods based on intelligence algorithms. These advances have greatly deepened our understanding of this field. Thus, this paper reviews recent developments in simulation studies of plasma-solution interactions from three perspectives, namely parameter acquisition, model construction, and intelligent algorithms, with the aim of providing useful insights for researchers.
  • 图 1  等离子体处理水溶液的物理化学过程示意图

    Figure 1.  Schematic of physicochemical processes in plasma treatment of aqueous solution.

    图 2  等离子体处理水溶液气液相化学反应类别

    Figure 2.  Types of gaseous and aqueous chemical reactions involved in the plasma treatment of aqueous solution.

    图 3  基于DFT计算的空气等离子体处理水溶液体系中N2O5相关反应 (a) N2O5与NO自由基或O原子反应自由能变化图[41]; (b) N2O5与H2O2的气液相反应自由能变化图

    Figure 3.  DFT-calculated N2O5-related reactions in the system of air plasma treatment for aqueous solution: (a) Free energy diagrams of reactions that N2O5 reacts with NO radical or O atom [41]; (b) gaseous and aqueous reactions of N2O5 and H2O2.

    图 4  不同亨利系数对液相活性粒子浓度分布影响 [50]

    Figure 4.  The effect of different Henry coefficients on the density distribution of aqueous reactive species[50].

    图 5  等离子体产生的$ {\text{O}}_{{\text{2aq}}}^{ - } $与Aβ-淀粉样蛋白片段反应的动态演化过程

    Figure 5.  The dynamic evolution of the reaction between plasma-generated $ {\text{O}}_{{\text{2aq}}}^{-} $ and Aβ-amyloid peptide fragments.

    图 6  等离子体活化水中含氮活性粒子的浓度分布 [70]

    Figure 6.  The concentration distribution of nitrogen reactive species in plasma-activated water[70].

    图 7  He掺杂空气等离子体反应网络图[80]

    Figure 7.  The reaction network diagram of He + Air plasma[80].

    图 8  整体模型与多维流体模型联合计算流程图

    Figure 8.  Flowchart of the joint calculation combining global model and multi-dimensional fluid model.

    表 1  常见粒子种类的实验检测手段及其局限性[12,15]

    Table 1.  Experimental detection methods for commonly-seen reactive species and their limitations[12,15].

    粒子类别 示例粒子 常用检测手段 主要挑战/局限性
    长寿命粒子 H2O2, O3, NO, N2O5 分光光度法; 光化学荧光探针法 非特异性, 受其他粒子干扰; 需要特定pH条件;
    试剂难溶于水
    短寿命粒子 1O2, O, OH 电子自旋共振谱法; 光化学荧光探针法 非特异性, 受其他粒子干扰; 需要特定pH条件;
    捕捉剂昂贵且易被氧化
    激发态分子/离子 N2(v), ONOO 发射光谱法; 液相色谱法 灵敏度低; 粒子猝灭快, 难以原位检测; 温度敏感
    DownLoad: CSV

    表 2  常用等离子体工作气体的LJ参数[47]

    Table 2.  LJ parameters of commonly-used plasma working gas [47].

    工作气体 $ \sigma $/Å ε/K 工作气体 $ \sigma $/Å ε/K
    N2 3.56 102 CO2 3.76 244
    O2 3.44 125 He 2.57 10.2
    Ar 3.43 122 Air 3.71 78.5
    DownLoad: CSV
  • [1]

    Lu X P, Bruggeman P J, Reuter S, Naidis G, Bogaerts A, Laroussi M, Keidar M, Robert E, Pouvesle J M, Liu D W, Ostrikov K 2022 Front. Phys. 10 1040658Google Scholar

    [2]

    Zhang H, Zhang J S, Xu S D, Wang Z F, Xu D H, Guo L, Liu D X, Kong M G, Rong M Z 2021 Plasma Process. Polym. 18 2100070Google Scholar

    [3]

    Chen J K, Wang Z F, Sun J C, Zhou R W, Guo L, Zhang H, Liu D X, Rong M Z, Ostrikov K K 2023 Adv. Sci. 10 2207407Google Scholar

    [4]

    孔刚玉, 刘定新 2014 高电压技术 40 2956

    Kong G Y, Liu D X 2014 High Volt. 40 2956

    [5]

    Stancampiano A, Gallingani T, Gherardi M, Machala Z, Maguire P, Colombo V, Pouvesle J M, Robert E 2019 Appl. Sci. 9 3861Google Scholar

    [6]

    Locke B R, Sato M, Sunka P, Hoffmann M R, Chang J S 2006 Ind. Eng. Chem. Res. 45 882Google Scholar

    [7]

    Rezaei F, Vanraes P, Nikiforov A, Morent R, Geyter N D 2019 Materials 12 2751Google Scholar

    [8]

    Liu D X, Liu Z C, Chen C, Yang A J, Li D, Rong M Z, Chen H L, Kong M G 2016 Sci. Rep. 6 23737Google Scholar

    [9]

    Mussard M D V S, Foucher E, Rousseau A 2015 J. Phys. D: Appl. Phys. 48 424003Google Scholar

    [10]

    Chen M, Yan J W, Feng Y, Liu D X, Wang Z F, Liu L B, Huang L L, Guo L, Zhang J Y, Liu C 2022 Plasma Sources Sci. Technol. 31 125006Google Scholar

    [11]

    Rumbach P, Bartels D M, Go D B 2018 Plasma Sources Sci. Technol. 27 115013Google Scholar

    [12]

    徐晗, 陈泽煜, 刘定新 2020 电工技术学报 35 3561

    Xu H, Chen Z Y, Liu D X 2020 Trans. China Electrotech. Soc. 35 3561

    [13]

    Yusupov M, Neyts E C, Simon P, Berdiyorov G, Snoeckx R, Van Duin A C T, Bogaerts A 2013 J. Phys. D: Appl. Phys. 47 025205

    [14]

    Neyts E C, Yusupov M, Verlackt C C, Bogaerts A 2014 J. Phys. D: Appl. Phys. 47 293001Google Scholar

    [15]

    Qiao J J, Yang Q, Wang L C, Albrechts M C K, Tsonev I, Bogaerts A, Xiong Q 2025 Plasma Sources Sci. Technol. 34 065008Google Scholar

    [16]

    Liu D X, Rong M Z, Wang X H, Iza F, Kong M G, Bruggeman P 2010 Plasma Process. Polym. 7 846Google Scholar

    [17]

    Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G, Graham W G, Graves D B, Hofman-Caris R C H M, Maric D, Reid J P, Ceriani E, Rivas D F 2016 Plasma Sources Sci. Technol. 25 053002Google Scholar

    [18]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: John Wiley and Sons. Inc) pp133-146

    [19]

    Heijkers S, Aghaei M, Bogaerts A 2020 J. Phys. Chem. C 124 7016Google Scholar

    [20]

    Liu Y F, Wang S, Peng Y, Peng W Y, Liu D X, Fu F 2024 AIP Adv. 14 055019Google Scholar

    [21]

    Rehman T, Kemaneci E, Graef W A A D, Van Dijk J 2016 J. Phys. Conf. Ser. 682 012035Google Scholar

    [22]

    Ishikawa K, Koga K, Ohno N 2024 Plasma 7 160Google Scholar

    [23]

    常海波, 张雪, 张晓菲, 张翀, 李和平, 邢新会 2016 化工进展 35 1929

    Chang H B, Zhang X, Zhang X F, Zhang C, Li H P, Xing X H 2016 Chem. Ind. Eng. Prog. 35 1929

    [24]

    https://nl.lxcat.net/

    [25]

    https://kinetics.nist.gov/

    [26]

    https://srdata.nist.gov/solubility/

    [27]

    https://jpldataeval.jpl.nasa.gov/

    [28]

    Vanraes P, Bogaerts A 2018 Appl. Phys. Rev. 5 031103Google Scholar

    [29]

    荣命哲, 刘定新, 李美, 王伟宗 2014 电工技术学报 6 271

    Rong M Z, Liu D X, Li M, Wang W Z 2014 Trans. China Electrotech. Soc. 6 271

    [30]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [31]

    Sims I R, Smith I W 1995 Annu. Rev. Phys. Chem. 46 109Google Scholar

    [32]

    Adamovich I V, Macheret S O, Rich J W, Treanor C E 1998 J. Thermophys. Heat Transf. 12 57Google Scholar

    [33]

    Luo H, Sebastião I B, Alexeenko A A, Macheret S O 2018 Phys. Rev. Fluids 3 113401Google Scholar

    [34]

    Thirumdas R, Kothakota A, Annapure U, Siliveru K, Blundell R, Gatt R, Valdramidis V P 2018 Trends Food Sci. Technol. 77 21Google Scholar

    [35]

    Wang W Z, Snoeckx R, Zhang X, Cha M S, Bogaerts A 2018 J. Phys. Chem. C 122 8704Google Scholar

    [36]

    Ruiz-Lopez M F, Francisco J S, Martins-Costa M T, Anglada J M 2020 Nat. Rev. Chem. 4 459Google Scholar

    [37]

    Komp E, Janulaitis N, Valleau S 2022 Phys. Chem. Chem. Phys. 24 2692Google Scholar

    [38]

    Mardirossian N, Head-Gordon M 2017 Mol. Phys. 115 2315Google Scholar

    [39]

    荣命哲, 仲林林, 王小华, 高青青, 付钰伟, 刘洋, 刘定新 2016 电工技术学报 31 54

    Rong M Z, Zhong L L, Wang X H, Gao Q Q, Fu Y W, Liu Y, Liu D X 2016 Trans. China Electrotech. Soc. 31 54

    [40]

    Bao J L, Truhlar D G 2017 Chem. Soc. Rev. 46 7548Google Scholar

    [41]

    Luo S T, Liu D X, Xi W, Zhou R W, Zhang M Y, Zhou R S, Wang X H, Rong M Z, Ostrikov K 2025 Phys. Rev. E 111 065205Google Scholar

    [42]

    Pliego J R 2021 Org. Biomol. Chem. 19 1900Google Scholar

    [43]

    Tomasi J, Mennucci B, Cammi R 2005 Chem. Rev. 105 2999Google Scholar

    [44]

    Luo S T, Fu Y W, Zhang M Y, Liu Y F, Wang D K, Zhang J W, Liu D X, Rong M Z 2023 Plasma Chem. Plasma Process. 43 81Google Scholar

    [45]

    Present R D 1968 J. Chem. Phys. 48 4875Google Scholar

    [46]

    NIST Standard Reference Database Number 69, NIST Chemistry WebBook, https://webbook.nist.gov/chemistry/fluid/ [2025-07-17]

    [47]

    Herrebout D, Bogaerts A, Yan M, Gijbels R, Goedheer W, Dekempeneer E 2001 J. Appl. Phys. 90 570 (doi: 10.1063/1.1378059

    [48]

    Burkholder J B, Sander S P, Abbatt J P D, Barker J R, Huie R E, Kolb C E, Kurylo M J, Orkin V L, Wilmouth D M, Wine P H 2015 Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 (Pasadena, USA: Jet Propulsion Laboratory, NASA

    [49]

    Lindsay A D, Graves D B, Shannon S C 2016 J. Phys. D: Appl. Phys. 49 235204Google Scholar

    [50]

    Liu Y F, Liu D X, Zhang J S, Sun B W, Luo S T, Zhang H, Guo L, Rong M Z, Kong M G 2021 AIP Adv. 11 055019Google Scholar

    [51]

    Turner M M 2016 Plasma Sources Sci. Technol. 25 015003Google Scholar

    [52]

    Zhuang J, Zhu C, Han R, Steuer A, Kolb J F, Shi F K 2022 Molecules 27 5861Google Scholar

    [53]

    Mohajer M A, Basuri P, Evdokimov A, David G, Zindel D, Miliordos E, Signorell R 2025 Science 388 1426Google Scholar

    [54]

    Zhong J, Kumar M, Francisco J S, Zeng X C 2018 Acc. Chem. Res. 51 1229Google Scholar

    [55]

    Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J, Aktulga H M, Verstraelen T, 2016 npj Comput. Mater. 2 1Google Scholar

    [56]

    Guo J S, Tian S Q, Zhang Y T 2023 Phys. Plasmas 30 043512Google Scholar

    [57]

    Xu S F, Guo X Y, Wang J, Guo Y, Shi J J 2023 Sci. Total Environ. 896 165329Google Scholar

    [58]

    Lietz A M, Kushner M J 2016 J. Phys. D: Appl. Phys. 49 425204Google Scholar

    [59]

    Yang A J, Wang X H, Rong M Z, Liu D X, Iza F, Kong M G 2011 Phys. Plasmas 18 113503Google Scholar

    [60]

    Hamaguchi S 2013 AIP Conf. Proc. 1545 214

    [61]

    Kim H Y, Lee H W, Kang S K, Lee H W, Kim G C, Lee J K 2012 Phys. Plasmas 19 073518Google Scholar

    [62]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [63]

    Alfianto E, Ikuse K, Hamaguchi S 2023 Plasma Sources Sci. Technol. 32 085014Google Scholar

    [64]

    Mohades S, Lietz A M, Kushner M J 2020 J. Phys. D: Appl. Phys. 53 435206Google Scholar

    [65]

    Dobrynin D, Arjunan K, Fridman A, Friedman G, Clyne A M 2011 J. Phys. D: Appl. Phys. 44 075201Google Scholar

    [66]

    Ning W J, Shang H, Ji Y W, Li R H, Zhao L H, Huang X L, Jia S L 2023 High Volt. 8 326Google Scholar

    [67]

    Polito J, Quesada M J H, Stapelmann K, Kushner M J 2023 J. Phys. D: Appl. Phys. 56 395205Google Scholar

    [68]

    Viegas P, Slikboer E, Bonaventura Z, Guaitella O, Sobota A, Bourdon A 2022 Plasma Sources Sc. Technol. 31 053001Google Scholar

    [69]

    Chen C, Liu D X, Liu Z C, Yang A J, Chen H L, Shama G, Kong M G 2014 Plasma Chem. Plasma Process. 34 403Google Scholar

    [70]

    Liu Z C, Liu D X, Chen C, Li D, Yang A J, Rong M Z, Chen H L, Kong M G 2015 J. Phys. D: Appl. Phys. 48 495201Google Scholar

    [71]

    Liu Z C, Guo L, Liu D X, Rong M Z, Chen H L, Kong M G 2017 Plasma Process. Polym. 14 1600113Google Scholar

    [72]

    Luo S T, Liu Z C, Liu D X, Zhang H, Guo L, Rong M Z, Kong M G 2020 J. Phys. D: Appl. Phys. 54 065203

    [73]

    Tian W, Kushner M J 2014 J. Phys. D: Appl. Phys. 47 165201Google Scholar

    [74]

    Tian W, Lietz A M, Kushner M J 2016 Plasma Sources Sci. Technol. 25 055020Google Scholar

    [75]

    Kruszelnicki J, Lietz A M, Kushner M J 2019 J. Phys. D: Appl. Phys. 52 355207Google Scholar

    [76]

    Verlackt C C W, Van Boxem W, Bogaerts A 2018 Phys. Chem. Chem. Phys. 20 6845Google Scholar

    [77]

    Sun B W, Liu D X, Iza F, Wang S, Yang A J, Liu Z J, Rong M Z, Wang X H 2019 Plasma Sources Sci. Technol. 28 035006Google Scholar

    [78]

    Murakami T, Sakai O 2020 Plasma Sources Sci. Technol. 29 115018Google Scholar

    [79]

    Maslov S, Redner S 2008 J. Neurosci. 28 11103Google Scholar

    [80]

    Sun B W, Liu D X, Liu Y F, Luo S T, Zhang M Y, Zhang J S, Yang A J, Wang X H, Rong M Z 2021 J. Appl. Phys. 130 093303Google Scholar

    [81]

    Heirman P, Van Boxem W, Bogaerts A 2019 Phys. Chem. Chem. Phys. 21 12881Google Scholar

    [82]

    Bissonnette-Dulude J, Heirman P, Coulombe S, Bogaert A, Gervais T, Reuter S 2024 Plasma Sources Sci. Technol. 33 015001Google Scholar

    [83]

    Liu Y F, Wang S, Peng Y, Peng W Y, Liu D X, Fu F 2024 AIP Adv. 14 055019Google Scholar

    [84]

    仲林林, 王逸凡, 任和, 吴奇, 韩汶轩, 陈洪洪 2024 高电压技术 50 2879

    Zhong L L, Wang Y F, Ren H, Wu Q, Han W X, Chen H H 2024 High Volt. Eng. 50 2879

    [85]

    Alves E P, Fiuza F 2022 Phys. Rev. Res. 4 033192Google Scholar

    [86]

    Carvalho D D, Ferreira D R, Silva L O 2024 Mach. Learn. Sci. Technol. 5 025048Google Scholar

    [87]

    Zhang Y T, Gao S H, Ai F 2023 Front. Phys. 11 1125548Google Scholar

    [88]

    Kawaguchi S, Takahashi K, Ohkama H, Satoh K 2020 Plasma Sources Sci. Technol. 29 025021Google Scholar

    [89]

    Zhong L L, Gu Q, Wu B 2020 Comput. Phys. Commun. 257 107496Google Scholar

    [90]

    Zhong L L, Wu B, Wang Y 2022 Phys. Fluids 34 087116Google Scholar

    [91]

    Li J Y, Xu J, Rebrov E, Bogaerts A 2025 Chem. Eng. J. 507 159897Google Scholar

  • [1] LI Jingyu, YANG Jing, WANG Hao, LI Xuepeng, NING Zihao, GAO Hongwei, WANG Xiaojun, ZHAO Tianzhuo, FAN Zhongwei, XU Zuyan. Generation of nano second laser with wide stable region and large mode field based on artificial intelligence algorithm. Acta Physica Sinica, doi: 10.7498/aps.74.20250519
    [2] LI Jun, SU Jin, HAN Xiaoxiang, ZHU Weijie, YANG Ruixia, ZHANG Haiyang, YAN Xiang’an, ZHANG Yunjie, WANG Feiran. Research on pulse transmission dynamics in optical fiber based on intelligent algorithms. Acta Physica Sinica, doi: 10.7498/aps.74.20241473
    [3] Feng Nai-Xing, Wang Huan, Zhu Zi-Xian, Dong Chun-Zhi, Li Hong-Yang, Zhang Yu-Xian, Yang Li-Xia, Huang Zhi-Xiang. Intelligent algorithm of extreme gradient boosting based perfectly matched monolayer and its efficient absorption on airborne transient electromagnetics problems. Acta Physica Sinica, doi: 10.7498/aps.73.20231724
    [4] Zhang Dong-He-Yu, Liu Jin-Bao, Fu Yang-Yang. Multiphysics modeling and simulations of laser-sustained plasmas. Acta Physica Sinica, doi: 10.7498/aps.73.20231056
    [5] Luo Yang, Chen Mao-Lin, Su Dong-Dong, Xu Nuo, Wang Zhong-Jing, Han Zhi-Cong, Zhao Hao. Simulation of magnetoplasmadynamic process with applied magnetic field. Acta Physica Sinica, doi: 10.7498/aps.71.20211383
    [6] Zhao Fan-Tao, Song Jian, Zhang Jin-Shuo, Qi Liang-Wen, Zhao Chong-Xiao, Wang De-Zhen. Effects of magnetized coaxial plasma gun operation on spheromak formation and plasma characteristics. Acta Physica Sinica, doi: 10.7498/aps.70.20210709
    [7] Chen Ran-Yi-Liu, Zhao Ben-Chi, Song Zhi-Xin, Zhao Xuan-Qiang, Wang Kun, Wang Xin. Hybrid quantum-classical algorithms: Foundation, design and applications. Acta Physica Sinica, doi: 10.7498/aps.70.20210985
    [8] Huang Hui, Hu Chen-Yan, Tian Zi-Cong, Miu Qiu-Xia, Wang Hui-Qin. Intelligent design of large angle deflection beam splitter based on method of moving asymptotes. Acta Physica Sinica, doi: 10.7498/aps.70.20210117
    [9] Tian Zi-Cong, Guo Yi-Min, Hu Chen-Yan, Wang Hui-Qin, Lu Cui-Cui. Broadband efficient focusing on-chip integrated nano-lens. Acta Physica Sinica, doi: 10.7498/aps.69.20200948
    [10] Wei Xiao-Long, Xu Hao-Jun, Li Jian-Hai, Lin Min, Song Hui-Min. Experimental investigation and parameter diagnosis of air high-pressure ring-shaped inductively coupled plasma. Acta Physica Sinica, doi: 10.7498/aps.64.175201
    [11] Zhang Jun-Long, Yang Liang, Yan Hui-Jie, Hua Yue, Ren Chun-Sheng. Influence of discharge parameters on blow-by in a coaxial plasma gun. Acta Physica Sinica, doi: 10.7498/aps.64.075201
    [12] Zhao Guang-Yin, Li Ying-Hong, Liang Hua, Hua Wei-Zhuo, Han Meng-Hu. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta Physica Sinica, doi: 10.7498/aps.64.015101
    [13] Zhao Gao, Xiong Yu-Qing, Ma Chao, Liu Zhong-Wei, Chen Qiang. Characterization of plasma in a short-tube helicon source. Acta Physica Sinica, doi: 10.7498/aps.63.235202
    [14] Zhang Hua, Wu Jian-Jun, Zhang Dai-Xian, Zhang Rui, He Zhen. A modified electromechanical model with one-dimensional abalation model for numerical analysis of the pulsed plasma thruster. Acta Physica Sinica, doi: 10.7498/aps.62.210202
    [15] Yuan Xue-Song, Zhang Yu, Sun Li-Min, Li Xiao-Yun, Deng Shao-Zhi, Xu Ning-Sheng, Yan Yang. Study of pulsed field emission characteristics and simulation models of carbon nanotube cold cathodes. Acta Physica Sinica, doi: 10.7498/aps.61.216101
    [16] An Zhi-Yong, Li Ying-Hong, Wu Yun, Su Chang-Bing, Song Hui-Min. Electric field simulation of a symmetrical plasma actuator system. Acta Physica Sinica, doi: 10.7498/aps.56.4778
    [17] Yuan Bao-Shan, You Tian-Xue, Qin Yun-Wen, Feng Bei-Bin, Ji Xiao-Quan. Real-time determination of plasma confinement parameters in HL-2A. Acta Physica Sinica, doi: 10.7498/aps.55.1315
    [18] Yang Jing, Li Jing-Zhen, Sun Xiu-Quan, Gong Xiang-Dong. Simulation of step response of silane low-temperature pasma(1). Acta Physica Sinica, doi: 10.7498/aps.54.3251
    [19] WANG LONG. A MODEL FOR THE GROWTH OF GRAINS IN A PLASMA. Acta Physica Sinica, doi: 10.7498/aps.48.1072
    [20] ZHANG CHENG-FU. COMPARISION OF TWO COLLISION MODELS IN PLASMA. Acta Physica Sinica, doi: 10.7498/aps.35.947
Metrics
  • Abstract views:  181
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Received Date:  07 September 2025
  • Accepted Date:  12 October 2025
  • Available Online:  17 October 2025
  • /

    返回文章
    返回