Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation Study of Plasma Treatment of Aqueous Solutions: From Basic Parameter Acquisition and Model Construction to Intelligent Algorithms

Luo San-Tu Zhang Ming-Yan Zhang Ji-Shen Wang Zi-Feng Sun Bo-Wen Liu Ding-Xin Rong Ming-Zhe

Citation:

Simulation Study of Plasma Treatment of Aqueous Solutions: From Basic Parameter Acquisition and Model Construction to Intelligent Algorithms

Luo San-Tu, Zhang Ming-Yan, Zhang Ji-Shen, Wang Zi-Feng, Sun Bo-Wen, Liu Ding-Xin, Rong Ming-Zhe
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Atmospheric-pressure low-temperature plasma has been widely applied in various fields such as biomedicine, environmental protection, and nanomanufacturing, whereas key physicochemical processes in these applications involve the interactions between plasma and aqueous solutions. However, such plasma–liquid interactions are highly complex, encompassing a wide variety of gas– liquid phase reactions as well as coupled mass transfer processes. These intricate mechanisms make it difficult for existing experimental techniques to provide a systematic understanding, highlighting the critical role of simulation studies. Over the past decade, significant progress has been made both domestically and internationally in the simulation of plasma–solution interactions. Researchers have basically addressed the scarcity of data on transport and reaction parameters, established multiple types of simulation models, and are actively exploring new simulation approaches based on intelligence algorithm. These advances have greatly deepened our understanding of this field. Thus, this paper reviews recent developments in simulation studies of plasma–solution interactions from three perspectives, namely parameter acquisition, model construction, and intelligent algorithms, with the aim of providing useful insights for domestic researchers and graduate students.
  • [1]

    Lu X P, Bruggeman P J, Reuter S, Naidis G, Bogaerts A, Laroussi M, Keidar M, Robert E, Pouvesle J M, Liu D W, Ostrikov K 2022 Front. Phys. 10 1040658.

    [2]

    Zhang H, Zhang J S, Xu S D, Wang Z F, Xu D H, Guo L, Liu D X, Kong M G, Rong M Z 2021 Plasma Process. Polym. 18 2100070.

    [3]

    Chen J K, Wang Z F, Sun J C, Zhou R W, Guo L, Zhang H, Liu D X, Rong M Z, Ostrikov K K 2023 Adv. Sci. 10 2207407.

    [4]

    Kong G Y, Liu D X 2014 High Volt. 40 2956. (in Chinese) [孔刚玉,刘定新. 2014 高电压技术 40 2956]

    [5]

    Stancampiano A, Gallingani T, Gherardi M, Machala Z, Maguire P, Colombo V, Pouvesle J M, Robert E 2019 Appl. Sci. 9 3861.

    [6]

    Locke B R, Sato M, Sunka P, Hoffmann M R, Chang J S 2006 Ind. Eng. Chem. Res. 45 882.

    [7]

    Rezaei F, Vanraes P, Nikiforov A, Morent R, Geyter N D 2019 Materials 12 2751.

    [8]

    Liu D X, Liu Z C, Chen C, Yang A J, Li D, Rong M Z, Chen H L, Kong M G 2016 Sci. Rep. 6 23737.

    [9]

    Mussard M D V S, Foucher E, Rousseau A 2015 J. Phys. D: Appl. Phys. 48 424003.

    [10]

    Chen M, Yan J W, Feng Y, Liu D X, Wang Z F, Liu L B, Huang L L, Guo L, Zhang J Y, Liu C 2022 Plasma Sources Sci. Technol. 31 125006.

    [11]

    Rumbach P, Bartels D M, Go D B 2018 Plasma Sources Sci. Technol. 27 115013.

    [12]

    Xu H, Chen Z Y, Liu D X 2020 Trans. China Electrotech. Soc. 35, 3561. (in Chinese) [徐 晗,陈泽煜,刘定新. 2020 电工技术学报35 3561]

    [13]

    Yusupov M, Neyts E C, Simon P, Berdiyorov G, Snoeckx R, Van Duin A C T, Bogaerts A 2013 J. Phys. D: Appl. Phys. 47 025205.

    [14]

    Neyts E C, Yusupov M, Verlackt C C, Bogaerts A 2014 J. Phys. D: Appl. Phys. 47 293001.

    [15]

    Qiao J J, Yang Q, Wang L C, Albrechts M C K, Tsonev I, Bogaerts A, Xiong Q 2025 Plasma Sources Sci. Technol. 34 065008.

    [16]

    Liu D X, Rong M Z, Wang X H, Iza F, Kong M G, Bruggeman P 2010 Plasma Process. Polym. 7 846.

    [17]

    Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G, Graham W G, Graves D B, Hofman-Caris R C H M, Maric D, Reid J P, Ceriani E, Rivas D F, 2016 Plasma Sources Sci. Technol. 25 053002.

    [18]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: John Wiley and Sons. Inc) pp133-146.

    [19]

    Heijkers S, Aghaei M, Bogaerts A 2020 J. Phys. Chem. C 124 7016.

    [20]

    Liu Y F, Wang S, Peng Y, Peng W Y, Liu D X, Fu F 2024 Aip Adv. 14 055019.

    [21]

    Rehman T, Kemaneci E, Graef W A A D, Van Dijk J 2016 J. Phys.: Conf. Ser. 682 012035.

    [22]

    Ishikawa K, Koga K, Ohno N 2024 Plasma 7 160.

    [23]

    Chang H B, Zhang X, Zhang X F, Zhang C, Li H P, Xing X H 2016 Chem. Ind. Eng. Prog. 35 1929. (in Chinese) [常海波,张雪,张晓菲,张翀,李和平,邢新会 2016 化工进展 35 1929.]

    [24]

    https://nl.lxcat.net/

    [25]

    https://kinetics.nist.gov/

    [26]

    https://srdata.nist.gov/solubility/

    [27]

    https://jpldataeval.jpl.nasa.gov/

    [28]

    Vanraes P, Bogaerts A 2018 Appl. Phys. Rev. 5 031103.

    [29]

    Rong M Z, Liu D X, Li M, Wang W Z 2014 Trans. China Electrotech. Soc. 6 271. (in Chinese) [荣命哲,刘定新,李美,王伟宗. 2014 电工技术学报 6 271]

    [30]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722.

    [31]

    Sims I R, Smith I W 1995 Annu. Rev. Phys. Chem. 46 109.

    [32]

    Adamovich I V, Macheret S O, Rich J W, Treanor C E 1998 J. Thermophys. Heat Transf. 12 57.

    [33]

    Luo H, Sebastião I B, Alexeenko A A, Macheret S O 2018 Phys. Rev. Fluids 3 113401.

    [34]

    Thirumdas R, Kothakota A, Annapure U, Siliveru K, Blundell R, Gatt R, Valdramidis V P 2018 Trends Food Sci. Technol. 77 21.

    [35]

    Wang W Z, Snoeckx R, Zhang X, Cha M S, Bogaerts A 2018 J. Phys. Chem. C 122 8704.

    [36]

    Ruiz-Lopez M F, Francisco J S, Martins-Costa M T, Anglada J M 2020 Nat. Rev. Chem. 4 459.

    [37]

    Komp E, Janulaitis N, Valleau S 2022 Phys. Chem. Chem. Phys. 24 2692.

    [38]

    Mardirossian N, Head-Gordon M 2017 Mol. Phys. 115 2315.

    [39]

    Rong M Z, Zhong L L, Wang X H, Gao Q Q, Fu Y W, Liu Y, Liu D X 2016 Trans. China Electrotech. Soc. 31 54. (in Chinese) [荣命哲,仲林林,王小华,高青青,付钰伟,刘洋,刘定新. 2016 电工技术学报 31 54]

    [40]

    Bao J L, Truhlar D G 2017 Chem. Soc. Rev. 46, 7548.

    [41]

    Luo S T, Liu D X, Xi W, Zhou R W, Zhang M Y, Zhou R S, Wang X H, Rong M Z, Ostrikov K 2025 Phys. Rev. E 111 065205.

    [42]

    Pliego J R. 2021 Org. Biomol. Chem. 19 1900.

    [43]

    Tomasi J, Mennucci B, Cammi R 2005 Chem. Rev. 105 2999.

    [44]

    Luo S T, Fu Y W, Zhang M Y, Liu Y F, Wang D K, Zhang J W, Liu D X, Rong M Z 2023 Plasma Chem. Plasma Process. 43 81.

    [45]

    Present R D 1968 J. Chem. Phys. 48 4875.

    [46]

    NIST Standard Reference Database Number 69, NIST Chemistry WebBook, https://webbook.nist.gov/chemistry/fluid/ [2025-07-17]

    [47]

    Herrebout D, Bogaerts A, Yan M, Gijbels R, Goedheer W, Dekempeneer E 2001 J. Appl. Phys. 90 570. (doi: 10.1063/1.1378059)

    [48]

    Burkholder J B, Sander S P, Abbatt J P D, Barker J R, Huie R E, Kolb C E, Kurylo M J, Orkin V L, Wilmouth D M, Wine P H 2015 Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 (Pasadena, USA: Jet Propulsion Laboratory, NASA)

    [49]

    Lindsay A D, Graves D B, Shannon S C 2016 J. Phys. D: Appl. Phys. 49 235204.

    [50]

    Liu Y F, Liu D X, Zhang J S, Sun B W, Luo S T, Zhang H, Guo L, Rong M Z, Kong M G 2021 AIP Adv. 11 055019.

    [51]

    Turner M M 2016 Plasma Sources Sci. Technol. 25 015003

    [52]

    Zhuang J, Zhu C, Han R, Steuer A, Kolb J F, Shi F K 2022 Molecules 27 5861.

    [53]

    Mohajer M A, Basuri P, Evdokimov A, David G, Zindel D, Miliordos E, Signorell R 2025 Science 388 1426.

    [54]

    Zhong J, Kumar M, Francisco J S, Zeng X C 2018 Acc. Chem. Res. 51 1229.

    [55]

    Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J, Aktulga H M, Verstraelen T, 2016 npj Computational Materials 2 1.

    [56]

    Guo J S, Tian S Q, Zhang Y T 2023 Phys. Plasmas 30 043512.

    [57]

    Xu S F, Guo X Y, Wang J, Guo Y, Shi J J 2023 Sci. Total Environ. 896 165329.

    [58]

    Lietz A M, Kushner M J 2016 J. Phys. D: Appl. Phys. 49 425204.

    [59]

    Yang A J, Wang X H, Rong M Z, Liu D X, Iza F, Kong M G 2011 Phys. Plasmas 18 113503.

    [60]

    Hamaguchi S 2013 AIP Conf. Proc. 1545 214.

    [61]

    Kim H Y, Lee H W, Kang S K, Lee H W, Kim G C, Lee J K 2012 Phys. Plasmas 19 073518.

    [62]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201.

    [63]

    Alfianto E, Ikuse K, Hamaguchi S 2023 Plasma Sources Sci. Technol. 32 085014.

    [64]

    Mohades S, Lietz A M, Kushner M J 2020 J. Phys. D: Appl. Phys. 53 435206.

    [65]

    Dobrynin D, Arjunan K, Fridman A, Friedman G, Clyne A M 2011 J. Phys. D: Appl. Phys. 44 075201.

    [66]

    Ning W J, Shang H, Ji Y W, Li R H, Zhao L H, Huang X L, Jia S L 2023 High Volt. 8 326.

    [67]

    Polito J, Quesada M J H, Stapelmann K, Kushner M J 2023 J. Phys. D: Appl. Phys. 56 395205.

    [68]

    Viegas P, Slikboer E, Bonaventura Z, Guaitella O, Sobota A, Bourdon A 2022 Plasma Sources Sc. Technol. 31 053001.

    [69]

    Chen C, Liu D X, Liu Z C, Yang A J, Chen H L, Shama G, Kong M G 2014 Plasma Chem. Plasma Process. 34 403.

    [70]

    Liu Z C, Liu D X, Chen C, Li D, Yang A J, Rong M Z, Chen H L, Kong M G 2015 J. Phys. D: Appl. Phys. 48 495201.

    [71]

    Liu Z C, Guo L, Liu D X, Rong M Z, Chen H L, Kong M G 2017 Plasma Process. Polym. 14 1600113.

    [72]

    Luo S T, Liu Z C, Liu D X, Zhang H, Guo L, Rong M Z, Kong M G 2020 J. Phys. D: Appl. Phys. 54 065203.

    [73]

    Tian W, Kushner M J 2014 J. Phys. D: Appl. Phys. 47 165201.

    [74]

    Tian W, Lietz A M, Kushner M J 2016 Plasma Sources Sci. Technol. 25 055020.

    [75]

    Kruszelnicki J, Lietz A M, Kushner M J 2019 J. Phys. D: Appl. Phys. 52 355207.

    [76]

    Verlackt C C W, Van Boxem W, Bogaerts A 2018 Phys. Chem. Chem. Phys. 20, 6845.

    [77]

    Sun B W, Liu D X, Iza F, Wang S, Yang A J, Liu Z J, Rong M Z, Wang X H 2019 Plasma Sources Sci. Technol. 28 035006.

    [78]

    Murakami T, Sakai O 2020 Plasma Sources Sci. Technol. 29 115018.

    [79]

    Maslov S, Redner S 2008 J. Neurosci. 28 11103.

    [80]

    Sun B W, Liu D X, Liu Y F, Luo S T, Zhang M Y, Zhang J S, Yang A J, Wang X H, Rong M Z 2021 J. Appl. Phys. 130 093303.

    [81]

    Heirman P, Van Boxem W, Bogaerts A 2019 Phys. Chem. Chem. Phys. 21 12881.

    [82]

    Bissonnette-Dulude J, Heirman P, Coulombe S, Bogaert A, Gervais T, Reuter S 2024 Plasma Sources Sci. Technol. 33 015001.

    [83]

    Liu Y F, Wang S, Peng Y, Peng W Y, Liu D X, Fu F 2024 AIP Adv. 14 055019.

    [84]

    Zhong L L, Wang Y F, Ren H, Wu Q, Han W X, Chen H H 2024 High Volt. Eng. 50 2879. (in Chinese) [仲林林, 王逸凡, 任和, 吴奇,韩汶轩,陈洪洪2024 高电压技术 50 2879]

    [85]

    Alves E P, Fiuza F 2022 Phys. Rev. Res. 4 033192.

    [86]

    Carvalho D D, Ferreira D R, Silva L O 2024 Mach. Learn.: Sci. Technol. 5 025048.

    [87]

    Zhang Y T, Gao S H, Ai F 2023 Front. Phys. 11 1125548.

    [88]

    Kawaguchi S, Takahashi K, Ohkama H, Satoh K 2020 Plasma Sources Sci. Technol. 29 025021.

    [89]

    Zhong L L, Gu Q, Wu B 2020 Comput. Phys. Commun. 257, 107496.

    [90]

    Zhong L L, Wu B, Wang Y 2022 Phys. Fluids 34 087116.

    [91]

    Li J Y, Xu J, Rebrov E, Bogaerts A 2025 Chem. Eng. J 507 159897

  • [1] LI Jingyu, YANG Jing, WANG Hao, LI Xuepeng, NING Zihao, GAO Hongwei, WANG Xiaojun, ZHAO Tianzhuo, FAN Zhongwei, XU Zuyan. Generation of nano second laser with wide stable region and large mode field based on artificial intelligence algorithm. Acta Physica Sinica, doi: 10.7498/aps.74.20250519
    [2] LI Jun, SU Jin, HAN Xiaoxiang, ZHU Weijie, YANG Ruixia, ZHANG Haiyang, YAN Xiang’an, ZHANG Yunjie, WANG Feiran. Research on pulse transmission dynamics in optical fiber based on intelligent algorithms. Acta Physica Sinica, doi: 10.7498/aps.74.20241473
    [3] Feng Nai-Xing, Wang Huan, Zhu Zi-Xian, Dong Chun-Zhi, Li Hong-Yang, Zhang Yu-Xian, Yang Li-Xia, Huang Zhi-Xiang. Intelligent algorithm of extreme gradient boosting based perfectly matched monolayer and its efficient absorption on airborne transient electromagnetics problems. Acta Physica Sinica, doi: 10.7498/aps.73.20231724
    [4] Zhang Dong-He-Yu, Liu Jin-Bao, Fu Yang-Yang. Multiphysics modeling and simulations of laser-sustained plasmas. Acta Physica Sinica, doi: 10.7498/aps.73.20231056
    [5] Luo Yang, Chen Mao-Lin, Su Dong-Dong, Xu Nuo, Wang Zhong-Jing, Han Zhi-Cong, Zhao Hao. Simulation of magnetoplasmadynamic process with applied magnetic field. Acta Physica Sinica, doi: 10.7498/aps.71.20211383
    [6] Zhao Fan-Tao, Song Jian, Zhang Jin-Shuo, Qi Liang-Wen, Zhao Chong-Xiao, Wang De-Zhen. Effects of magnetized coaxial plasma gun operation on spheromak formation and plasma characteristics. Acta Physica Sinica, doi: 10.7498/aps.70.20210709
    [7] Chen Ran-Yi-Liu, Zhao Ben-Chi, Song Zhi-Xin, Zhao Xuan-Qiang, Wang Kun, Wang Xin. Hybrid quantum-classical algorithms: Foundation, design and applications. Acta Physica Sinica, doi: 10.7498/aps.70.20210985
    [8] Huang Hui, Hu Chen-Yan, Tian Zi-Cong, Miu Qiu-Xia, Wang Hui-Qin. Intelligent design of large angle deflection beam splitter based on method of moving asymptotes. Acta Physica Sinica, doi: 10.7498/aps.70.20210117
    [9] Tian Zi-Cong, Guo Yi-Min, Hu Chen-Yan, Wang Hui-Qin, Lu Cui-Cui. Broadband efficient focusing on-chip integrated nano-lens. Acta Physica Sinica, doi: 10.7498/aps.69.20200948
    [10] Wei Xiao-Long, Xu Hao-Jun, Li Jian-Hai, Lin Min, Song Hui-Min. Experimental investigation and parameter diagnosis of air high-pressure ring-shaped inductively coupled plasma. Acta Physica Sinica, doi: 10.7498/aps.64.175201
    [11] Zhang Jun-Long, Yang Liang, Yan Hui-Jie, Hua Yue, Ren Chun-Sheng. Influence of discharge parameters on blow-by in a coaxial plasma gun. Acta Physica Sinica, doi: 10.7498/aps.64.075201
    [12] Zhao Guang-Yin, Li Ying-Hong, Liang Hua, Hua Wei-Zhuo, Han Meng-Hu. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta Physica Sinica, doi: 10.7498/aps.64.015101
    [13] Zhao Gao, Xiong Yu-Qing, Ma Chao, Liu Zhong-Wei, Chen Qiang. Characterization of plasma in a short-tube helicon source. Acta Physica Sinica, doi: 10.7498/aps.63.235202
    [14] Zhang Hua, Wu Jian-Jun, Zhang Dai-Xian, Zhang Rui, He Zhen. A modified electromechanical model with one-dimensional abalation model for numerical analysis of the pulsed plasma thruster. Acta Physica Sinica, doi: 10.7498/aps.62.210202
    [15] Yuan Xue-Song, Zhang Yu, Sun Li-Min, Li Xiao-Yun, Deng Shao-Zhi, Xu Ning-Sheng, Yan Yang. Study of pulsed field emission characteristics and simulation models of carbon nanotube cold cathodes. Acta Physica Sinica, doi: 10.7498/aps.61.216101
    [16] An Zhi-Yong, Li Ying-Hong, Wu Yun, Su Chang-Bing, Song Hui-Min. Electric field simulation of a symmetrical plasma actuator system. Acta Physica Sinica, doi: 10.7498/aps.56.4778
    [17] Yuan Bao-Shan, You Tian-Xue, Qin Yun-Wen, Feng Bei-Bin, Ji Xiao-Quan. Real-time determination of plasma confinement parameters in HL-2A. Acta Physica Sinica, doi: 10.7498/aps.55.1315
    [18] Yang Jing, Li Jing-Zhen, Sun Xiu-Quan, Gong Xiang-Dong. Simulation of step response of silane low-temperature pasma(1). Acta Physica Sinica, doi: 10.7498/aps.54.3251
    [19] WANG LONG. A MODEL FOR THE GROWTH OF GRAINS IN A PLASMA. Acta Physica Sinica, doi: 10.7498/aps.48.1072
    [20] ZHANG CHENG-FU. COMPARISION OF TWO COLLISION MODELS IN PLASMA. Acta Physica Sinica, doi: 10.7498/aps.35.947
Metrics
  • Abstract views:  52
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  17 October 2025
  • /

    返回文章
    返回