-
Atmospheric-pressure low-temperature plasma has been widely used in various fields such as biomedicine, environmental protection, and nanomanufacturing, and the key physicochemical processes in these applications involve the interactions between plasma and aqueous solutions. However, such plasma-liquid interactions are very complex, involving a wide range of gas-liquid phase reactions as well as coupled mass transfer processes. These intricate mechanisms make it challenging for existing experimental techniques to provide a systematic understanding, thereby highlighting the critical role of simulation studies. Over the past decade, significant progress has been made in the simulation of plasma-solution interactions. Researchers have basically solved the problems of scarce transport and reaction parameter data, established various types of simulation models, and actively explored new simulation methods based on intelligence algorithms. These advances have greatly deepened our understanding of this field. Thus, this paper reviews recent developments in simulation studies of plasma-solution interactions from three perspectives, namely parameter acquisition, model construction, and intelligent algorithms, with the aim of providing useful insights for researchers.
-
Keywords:
- plasma treatment of aqueous solution /
- basic parameter /
- simulation models /
- intelligence algorithm
-
图 3 基于DFT计算的空气等离子体处理水溶液体系中N2O5相关反应 (a) N2O5与NO自由基或O原子反应自由能变化图[41]; (b) N2O5与H2O2的气液相反应自由能变化图
Figure 3. DFT-calculated N2O5-related reactions in the system of air plasma treatment for aqueous solution: (a) Free energy diagrams of reactions that N2O5 reacts with NO radical or O atom [41]; (b) gaseous and aqueous reactions of N2O5 and H2O2.
Table 1. Experimental detection methods for commonly-seen reactive species and their limitations[12,15].
粒子类别 示例粒子 常用检测手段 主要挑战/局限性 长寿命粒子 H2O2, O3, NO, N2O5 分光光度法; 光化学荧光探针法 非特异性, 受其他粒子干扰; 需要特定pH条件;
试剂难溶于水短寿命粒子 1O2, O, OH 电子自旋共振谱法; 光化学荧光探针法 非特异性, 受其他粒子干扰; 需要特定pH条件;
捕捉剂昂贵且易被氧化激发态分子/离子 N2(v), ONOO– 发射光谱法; 液相色谱法 灵敏度低; 粒子猝灭快, 难以原位检测; 温度敏感 -
[1] Lu X P, Bruggeman P J, Reuter S, Naidis G, Bogaerts A, Laroussi M, Keidar M, Robert E, Pouvesle J M, Liu D W, Ostrikov K 2022 Front. Phys. 10 1040658
Google Scholar
[2] Zhang H, Zhang J S, Xu S D, Wang Z F, Xu D H, Guo L, Liu D X, Kong M G, Rong M Z 2021 Plasma Process. Polym. 18 2100070
Google Scholar
[3] Chen J K, Wang Z F, Sun J C, Zhou R W, Guo L, Zhang H, Liu D X, Rong M Z, Ostrikov K K 2023 Adv. Sci. 10 2207407
Google Scholar
[4] 孔刚玉, 刘定新 2014 高电压技术 40 2956
Kong G Y, Liu D X 2014 High Volt. 40 2956
[5] Stancampiano A, Gallingani T, Gherardi M, Machala Z, Maguire P, Colombo V, Pouvesle J M, Robert E 2019 Appl. Sci. 9 3861
Google Scholar
[6] Locke B R, Sato M, Sunka P, Hoffmann M R, Chang J S 2006 Ind. Eng. Chem. Res. 45 882
Google Scholar
[7] Rezaei F, Vanraes P, Nikiforov A, Morent R, Geyter N D 2019 Materials 12 2751
Google Scholar
[8] Liu D X, Liu Z C, Chen C, Yang A J, Li D, Rong M Z, Chen H L, Kong M G 2016 Sci. Rep. 6 23737
Google Scholar
[9] Mussard M D V S, Foucher E, Rousseau A 2015 J. Phys. D: Appl. Phys. 48 424003
Google Scholar
[10] Chen M, Yan J W, Feng Y, Liu D X, Wang Z F, Liu L B, Huang L L, Guo L, Zhang J Y, Liu C 2022 Plasma Sources Sci. Technol. 31 125006
Google Scholar
[11] Rumbach P, Bartels D M, Go D B 2018 Plasma Sources Sci. Technol. 27 115013
Google Scholar
[12] 徐晗, 陈泽煜, 刘定新 2020 电工技术学报 35 3561
Xu H, Chen Z Y, Liu D X 2020 Trans. China Electrotech. Soc. 35 3561
[13] Yusupov M, Neyts E C, Simon P, Berdiyorov G, Snoeckx R, Van Duin A C T, Bogaerts A 2013 J. Phys. D: Appl. Phys. 47 025205
[14] Neyts E C, Yusupov M, Verlackt C C, Bogaerts A 2014 J. Phys. D: Appl. Phys. 47 293001
Google Scholar
[15] Qiao J J, Yang Q, Wang L C, Albrechts M C K, Tsonev I, Bogaerts A, Xiong Q 2025 Plasma Sources Sci. Technol. 34 065008
Google Scholar
[16] Liu D X, Rong M Z, Wang X H, Iza F, Kong M G, Bruggeman P 2010 Plasma Process. Polym. 7 846
Google Scholar
[17] Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G, Graham W G, Graves D B, Hofman-Caris R C H M, Maric D, Reid J P, Ceriani E, Rivas D F 2016 Plasma Sources Sci. Technol. 25 053002
Google Scholar
[18] Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: John Wiley and Sons. Inc) pp133-146
[19] Heijkers S, Aghaei M, Bogaerts A 2020 J. Phys. Chem. C 124 7016
Google Scholar
[20] Liu Y F, Wang S, Peng Y, Peng W Y, Liu D X, Fu F 2024 AIP Adv. 14 055019
Google Scholar
[21] Rehman T, Kemaneci E, Graef W A A D, Van Dijk J 2016 J. Phys. Conf. Ser. 682 012035
Google Scholar
[22] Ishikawa K, Koga K, Ohno N 2024 Plasma 7 160
Google Scholar
[23] 常海波, 张雪, 张晓菲, 张翀, 李和平, 邢新会 2016 化工进展 35 1929
Chang H B, Zhang X, Zhang X F, Zhang C, Li H P, Xing X H 2016 Chem. Ind. Eng. Prog. 35 1929
[24] https://nl.lxcat.net/
[25] https://kinetics.nist.gov/
[26] https://srdata.nist.gov/solubility/
[27] https://jpldataeval.jpl.nasa.gov/
[28] Vanraes P, Bogaerts A 2018 Appl. Phys. Rev. 5 031103
Google Scholar
[29] 荣命哲, 刘定新, 李美, 王伟宗 2014 电工技术学报 6 271
Rong M Z, Liu D X, Li M, Wang W Z 2014 Trans. China Electrotech. Soc. 6 271
[30] Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
Google Scholar
[31] Sims I R, Smith I W 1995 Annu. Rev. Phys. Chem. 46 109
Google Scholar
[32] Adamovich I V, Macheret S O, Rich J W, Treanor C E 1998 J. Thermophys. Heat Transf. 12 57
Google Scholar
[33] Luo H, Sebastião I B, Alexeenko A A, Macheret S O 2018 Phys. Rev. Fluids 3 113401
Google Scholar
[34] Thirumdas R, Kothakota A, Annapure U, Siliveru K, Blundell R, Gatt R, Valdramidis V P 2018 Trends Food Sci. Technol. 77 21
Google Scholar
[35] Wang W Z, Snoeckx R, Zhang X, Cha M S, Bogaerts A 2018 J. Phys. Chem. C 122 8704
Google Scholar
[36] Ruiz-Lopez M F, Francisco J S, Martins-Costa M T, Anglada J M 2020 Nat. Rev. Chem. 4 459
Google Scholar
[37] Komp E, Janulaitis N, Valleau S 2022 Phys. Chem. Chem. Phys. 24 2692
Google Scholar
[38] Mardirossian N, Head-Gordon M 2017 Mol. Phys. 115 2315
Google Scholar
[39] 荣命哲, 仲林林, 王小华, 高青青, 付钰伟, 刘洋, 刘定新 2016 电工技术学报 31 54
Rong M Z, Zhong L L, Wang X H, Gao Q Q, Fu Y W, Liu Y, Liu D X 2016 Trans. China Electrotech. Soc. 31 54
[40] Bao J L, Truhlar D G 2017 Chem. Soc. Rev. 46 7548
Google Scholar
[41] Luo S T, Liu D X, Xi W, Zhou R W, Zhang M Y, Zhou R S, Wang X H, Rong M Z, Ostrikov K 2025 Phys. Rev. E 111 065205
Google Scholar
[42] Pliego J R 2021 Org. Biomol. Chem. 19 1900
Google Scholar
[43] Tomasi J, Mennucci B, Cammi R 2005 Chem. Rev. 105 2999
Google Scholar
[44] Luo S T, Fu Y W, Zhang M Y, Liu Y F, Wang D K, Zhang J W, Liu D X, Rong M Z 2023 Plasma Chem. Plasma Process. 43 81
Google Scholar
[45] Present R D 1968 J. Chem. Phys. 48 4875
Google Scholar
[46] NIST Standard Reference Database Number 69, NIST Chemistry WebBook, https://webbook.nist.gov/chemistry/fluid/ [2025-07-17]
[47] Herrebout D, Bogaerts A, Yan M, Gijbels R, Goedheer W, Dekempeneer E 2001 J. Appl. Phys. 90 570 (doi: 10.1063/1.1378059
[48] Burkholder J B, Sander S P, Abbatt J P D, Barker J R, Huie R E, Kolb C E, Kurylo M J, Orkin V L, Wilmouth D M, Wine P H 2015 Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 (Pasadena, USA: Jet Propulsion Laboratory, NASA
[49] Lindsay A D, Graves D B, Shannon S C 2016 J. Phys. D: Appl. Phys. 49 235204
Google Scholar
[50] Liu Y F, Liu D X, Zhang J S, Sun B W, Luo S T, Zhang H, Guo L, Rong M Z, Kong M G 2021 AIP Adv. 11 055019
Google Scholar
[51] Turner M M 2016 Plasma Sources Sci. Technol. 25 015003
Google Scholar
[52] Zhuang J, Zhu C, Han R, Steuer A, Kolb J F, Shi F K 2022 Molecules 27 5861
Google Scholar
[53] Mohajer M A, Basuri P, Evdokimov A, David G, Zindel D, Miliordos E, Signorell R 2025 Science 388 1426
Google Scholar
[54] Zhong J, Kumar M, Francisco J S, Zeng X C 2018 Acc. Chem. Res. 51 1229
Google Scholar
[55] Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J, Aktulga H M, Verstraelen T, 2016 npj Comput. Mater. 2 1
Google Scholar
[56] Guo J S, Tian S Q, Zhang Y T 2023 Phys. Plasmas 30 043512
Google Scholar
[57] Xu S F, Guo X Y, Wang J, Guo Y, Shi J J 2023 Sci. Total Environ. 896 165329
Google Scholar
[58] Lietz A M, Kushner M J 2016 J. Phys. D: Appl. Phys. 49 425204
Google Scholar
[59] Yang A J, Wang X H, Rong M Z, Liu D X, Iza F, Kong M G 2011 Phys. Plasmas 18 113503
Google Scholar
[60] Hamaguchi S 2013 AIP Conf. Proc. 1545 214
[61] Kim H Y, Lee H W, Kang S K, Lee H W, Kim G C, Lee J K 2012 Phys. Plasmas 19 073518
Google Scholar
[62] Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201
Google Scholar
[63] Alfianto E, Ikuse K, Hamaguchi S 2023 Plasma Sources Sci. Technol. 32 085014
Google Scholar
[64] Mohades S, Lietz A M, Kushner M J 2020 J. Phys. D: Appl. Phys. 53 435206
Google Scholar
[65] Dobrynin D, Arjunan K, Fridman A, Friedman G, Clyne A M 2011 J. Phys. D: Appl. Phys. 44 075201
Google Scholar
[66] Ning W J, Shang H, Ji Y W, Li R H, Zhao L H, Huang X L, Jia S L 2023 High Volt. 8 326
Google Scholar
[67] Polito J, Quesada M J H, Stapelmann K, Kushner M J 2023 J. Phys. D: Appl. Phys. 56 395205
Google Scholar
[68] Viegas P, Slikboer E, Bonaventura Z, Guaitella O, Sobota A, Bourdon A 2022 Plasma Sources Sc. Technol. 31 053001
Google Scholar
[69] Chen C, Liu D X, Liu Z C, Yang A J, Chen H L, Shama G, Kong M G 2014 Plasma Chem. Plasma Process. 34 403
Google Scholar
[70] Liu Z C, Liu D X, Chen C, Li D, Yang A J, Rong M Z, Chen H L, Kong M G 2015 J. Phys. D: Appl. Phys. 48 495201
Google Scholar
[71] Liu Z C, Guo L, Liu D X, Rong M Z, Chen H L, Kong M G 2017 Plasma Process. Polym. 14 1600113
Google Scholar
[72] Luo S T, Liu Z C, Liu D X, Zhang H, Guo L, Rong M Z, Kong M G 2020 J. Phys. D: Appl. Phys. 54 065203
[73] Tian W, Kushner M J 2014 J. Phys. D: Appl. Phys. 47 165201
Google Scholar
[74] Tian W, Lietz A M, Kushner M J 2016 Plasma Sources Sci. Technol. 25 055020
Google Scholar
[75] Kruszelnicki J, Lietz A M, Kushner M J 2019 J. Phys. D: Appl. Phys. 52 355207
Google Scholar
[76] Verlackt C C W, Van Boxem W, Bogaerts A 2018 Phys. Chem. Chem. Phys. 20 6845
Google Scholar
[77] Sun B W, Liu D X, Iza F, Wang S, Yang A J, Liu Z J, Rong M Z, Wang X H 2019 Plasma Sources Sci. Technol. 28 035006
Google Scholar
[78] Murakami T, Sakai O 2020 Plasma Sources Sci. Technol. 29 115018
Google Scholar
[79] Maslov S, Redner S 2008 J. Neurosci. 28 11103
Google Scholar
[80] Sun B W, Liu D X, Liu Y F, Luo S T, Zhang M Y, Zhang J S, Yang A J, Wang X H, Rong M Z 2021 J. Appl. Phys. 130 093303
Google Scholar
[81] Heirman P, Van Boxem W, Bogaerts A 2019 Phys. Chem. Chem. Phys. 21 12881
Google Scholar
[82] Bissonnette-Dulude J, Heirman P, Coulombe S, Bogaert A, Gervais T, Reuter S 2024 Plasma Sources Sci. Technol. 33 015001
Google Scholar
[83] Liu Y F, Wang S, Peng Y, Peng W Y, Liu D X, Fu F 2024 AIP Adv. 14 055019
Google Scholar
[84] 仲林林, 王逸凡, 任和, 吴奇, 韩汶轩, 陈洪洪 2024 高电压技术 50 2879
Zhong L L, Wang Y F, Ren H, Wu Q, Han W X, Chen H H 2024 High Volt. Eng. 50 2879
[85] Alves E P, Fiuza F 2022 Phys. Rev. Res. 4 033192
Google Scholar
[86] Carvalho D D, Ferreira D R, Silva L O 2024 Mach. Learn. Sci. Technol. 5 025048
Google Scholar
[87] Zhang Y T, Gao S H, Ai F 2023 Front. Phys. 11 1125548
Google Scholar
[88] Kawaguchi S, Takahashi K, Ohkama H, Satoh K 2020 Plasma Sources Sci. Technol. 29 025021
Google Scholar
[89] Zhong L L, Gu Q, Wu B 2020 Comput. Phys. Commun. 257 107496
Google Scholar
[90] Zhong L L, Wu B, Wang Y 2022 Phys. Fluids 34 087116
Google Scholar
[91] Li J Y, Xu J, Rebrov E, Bogaerts A 2025 Chem. Eng. J. 507 159897
Google Scholar
Metrics
- Abstract views: 181
- PDF Downloads: 2
- Cited By: 0









DownLoad: