Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of nano second laser with wide stable region and large mode field based on artificial intelligence algorithm

LI Jingyu YANG Jing WANG Hao LI Xuepeng NING Zihao GAO Hongwei WANG Xiaojun ZHAO Tianzhuo FAN Zhongwei XU Zuyan

Citation:

Generation of nano second laser with wide stable region and large mode field based on artificial intelligence algorithm

LI Jingyu, YANG Jing, WANG Hao, LI Xuepeng, NING Zihao, GAO Hongwei, WANG Xiaojun, ZHAO Tianzhuo, FAN Zhongwei, XU Zuyan
cstr: 32037.14.aps.74.20250519
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This study presents an optimization method of generating a wide stable-zone, large mode field operation nanosecond laser oscillator based on artificial intelligence algorithms. The work is motivated by the need of the large mode field laser cavities in compact size with variable thermal focal length. A physics model of light field propagation inside the resonator is established by combining thermal lensing tolerance. A multi-objective optimization function is designed to simultaneously balance the beam quality, thermal stability, and cavity compactness. Several algorithms, such as simulated annealing, particle swarm optimization, and genetic algorithms are compared, and ultimately, efficient searching for optimal solutions in complex multi-dimensional parameter spaces is achieved. In the system design, the parameters of cavity segment length, intracavity lens, and Gaussian mirror (VRM) are optimized. Therefore, an optimized cavity structure is experimentally implemented and Q-switching operations are perform. The results demonstrate stable laser output at 100 Hz repetition rate with 190 mJ pulse energy and 7 ns pulse width, and beam quality factors $ M_x^2 $ = 2.1 and $ M_y^2 $ = 1.9 respectively, and the total length of the cavity is only 540 mm, which demonstrates the compactness of laser design. Furthermore, numerical simulations are conducted to compare a variety of resonator configurations and assess the influence of different parameters on the cavity’s thermal stability. After the optimization, the thermal stability curve of the laser resonator shows a significant decrease in slope near the large-mode-field region, indicating an improvement in thermal length adaptability. This enhancement is crucial for ensuring long-term stable operation of high-repetition-rate nanosecond laser oscillators. In summary, this study provides an efficient approach for designing compact, thermally stable, large-mode-area resonators, and valuable insights into designing compact laser with high power output.
      Corresponding author: YANG Jing, yangjing02@aircas.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2024YFB4608400, 2023YFF1303603) and the Major Equipment and Application Program of Guangdong Province, China (Grant No. CC/ZN-202402ZJ0301).
    [1]

    Zhu Z D, Lv S W, Zhang H Y, Hui Y L, Lei H, Li Q 2021 Opt. Express 29 32325Google Scholar

    [2]

    Li C Y, Lu C Q, Li C, Yang N, Li Y, Yang Z, Han S, Shi J F, Zhou Z W 2017 Opt. Commun. 394 1Google Scholar

    [3]

    Li C Y, Lu C Q, Li C, Zang Y N, Yang Z, Han S, Li Y, Yang N, Shi J F, Zhou Z W 2017 Opt. Commun. 56 116115Google Scholar

    [4]

    Fan Z W, Qiu J S, Kang Z J, Chen Y Z, Ge W Q, Tang X X 2017 Light-Sci. Appl. 6 e17004Google Scholar

    [5]

    Lu S W, Gao M, Yang Y, Zhu R, Hou X, Sun J F, Chen W B, Zhu X L 2019 Appl. Opt. 58 7517Google Scholar

    [6]

    Qi Y F, Zhu X L, Lou Q H, Ji J H, Dong J X, Wei R R 2007 J. Opt. Soc. Am. B-Opt. Phys. 24 1042Google Scholar

    [7]

    沈骁, 邹辉, 郑锐林, 郑加金, 韦玮 2015 物理学报 64 024210Google Scholar

    Shen X, Zhou H, Zhen R L, Zhen J J, Wei W 2015 Acta Phys. Sin. 64 024210Google Scholar

    [8]

    周王哲, 李雪鹏, 杨晶, 杨天利, 王小军, 刘炳杰, 王浩竹, 杨俊波, 彭钦军 2023 物理学报 72 014204Google Scholar

    Zhou W Z, Li X P, Yang J, Yang T L, Wang X J, Liu B J, Wang H Z, Yang J B, Peng Q J 2023 Acta Phys. Sin. 72 014204Google Scholar

    [9]

    Murdough M P, Denman C A 1996 Appl. Opt. 35 5925Google Scholar

    [10]

    Cerullo G, Desilvestri S, Magni V, Svelto O 1993 Opt. Quantum Electron. 25 489Google Scholar

    [11]

    薄勇, 耿爱丛, 毕勇, 孙志培, 杨晓东, 李瑞宁, 崔大复, 许祖彦 2006 物理学报 55 1171Google Scholar

    Bo Y, Geng A C, Bi Y, Sun Z P, Yang X D, Li R N, Cui D F, Xu Z Y 2006 Acta Phys. Sin. 55 1171Google Scholar

    [12]

    何广源, 郭靖, 焦中兴, 王彪 2012 物理学报 61 094217Google Scholar

    He G Y, Guo J, Jiao Z X, Wang B 2012 Acta Phys. Sin. 61 094217Google Scholar

    [13]

    Siegman A E 1974 Appl. Opt. 13 353Google Scholar

    [14]

    Liu Q, Liu J, Gong M 2011 Appl. Opt. 50 1186Google Scholar

    [15]

    韩昌昊, 穆宇, 罗辉, 韩隆, 方聪, 王思博, 魏磊 2024 激光与红外 54 179

    Han C H, Mu Y, Luo H, Han L, Fang C, Wang S B, Wei L 2024 Laser Infrared 54 179

    [16]

    Hauck R, Kortz H P, Weber H 1980 Appl. Opt. 19 598Google Scholar

    [17]

    Woodward R I, Kelleher E J R 2016 Sci. Rep. 6 37616Google Scholar

    [18]

    Fang Z W, Pu G Q, Xu Y X, Hu W S, Yi L L 2023 Opt. Express 31 41794Google Scholar

    [19]

    Shi H D, Fan R H, He C F, Wang J Y, Yang S, Xu M, Sun H Y, Li Y C, Fu Q 2024 Photonics 11 164Google Scholar

    [20]

    Liu Z C, Dang Z B, Liu Z X, Li Y, He X, Dai Y C, Chen Y X, Peng P, Fang Z Y 2023 Photonics Res. 11 695Google Scholar

    [21]

    王宁, 陆雨田, 孔勇 2004 中国激光 31 1317

    Wang N, Lu Y T, Kong Y 2004 Chin. J. Lasers 31 1317

    [22]

    Kirkpatrick S, Gelatt C, Vecchi M 1983 Science 220 671Google Scholar

    [23]

    赵知劲, 徐世宇, 郑仕链, 杨小牛 2009 物理学报 58 5118Google Scholar

    Zhao Z J, Xu S Y, Zheng S L, Yang X N 2009 Acta Phys. Sin. 58 5118Google Scholar

    [24]

    Shapiro J 2001 Machine Learning and Its Applications: Advanced Lectures (Berlin, Heidelberg) 2001 pp146–168

    [25]

    Li X P, Yang J, Zhang M S, Yang T L, Wang X J, Peng Q J 2022 Chin. Phys. B 31 084207Google Scholar

  • 图 1  高斯镜非稳腔的优化示意图

    Figure 1.  Optimization environment for Gaussian mirror unstable cavities.

    图 2  不同优化算法在迭代过程中的收敛曲线 (a) 模拟退火算法和粒子群优化算法; (b)遗传算法

    Figure 2.  Convergence curves of different optimization algorithms: (a) Simulated annealing algorithm and particle swarm optimization algorithm; (b) genetic algorithm.

    图 3  基于遗传算法的谐振腔参数优化过程 (a)腔段长度$ {x_1} $随进化代数的变化; (b) 腔段长度${x_2}$随进化代数的变化; (c)腔段长度${x_3}$随进化代数的变化; (d)可调透镜焦距$f$的优化轨迹; (e) 光学参数组$({w_{\text{m}}}, {R_0}, {R_{\text{c}}})$选择随代数的演化, 算法在20代后趋于稳定, 最终选定参数组2 (${w_{\text{m}}} = 3{\mkern 1 mu} {\text{ mm}}, {R_{\text{c}}}{\text{ }} = - 1500{\mkern 1 mu} {\text{ mm}}, {R_0} = 0.3$).

    Figure 3.  Optimization process of resonator parameters via genetic algorithm: (a) Evolution of cavity segment ${x_1}$; (b) evolution of cavity segment ${x_2}$; (c) evolution of cavity segment ${x_3}$; (d) optimization trajectory of adjustable lens focal length $f$; (e) selection of optical parameter groups $({w_{\text{m}}}, {R_0}, {R_{\text{c}}})$ across generations, the algorithm converges after 20 generations, ultimately selecting parameter group 2 (${w_{\text{m}}} = 3{\mkern 1 mu} {\text{ mm}}, {R_{\text{c}}}{\text{ }} = - 1500{\mkern 1 mu} {\text{ mm}}, {R_0} = 0.3$).

    图 4  实验装置示意图. M为高反射后镜, L为平凸透镜, TFP为1064 nm薄膜偏振片, QWP为1/4波片, LM为激光模块, OC为输出耦合镜

    Figure 4.  Experimental setup. M represents high-reflectivity rear mirror, L represents plano-convex lens, TFP represents thin-film polarizer at 1064 nm, QWP represents quarter-wave plate, LM represents laser module, OC represents output coupler.

    图 5  谐振腔内各平面束宽半径分布. M为高反镜, L为透镜, LM为激光模块, OC为高斯耦合输出镜

    Figure 5.  Beam radius distribution at different planes within the resonator. M represents high-reflection mirror, L represents lens, LM represents laser module, OC represents Gaussian mirror output coupler.

    图 6  (a)晶体中心位置基模光斑半径与热焦距的关系, 其中红虚线OC为非高斯镜, 蓝实线OC为高斯镜, I为传统热近非稳区, II为高斯镜非稳区; (b)不同耦合输出器下, 谐振腔模场半径$\omega $对焦距${f_{\text{t}}}$的导数变化趋势

    Figure 6.  (a) Relationship between the fundamental mode beam radius at the crystal center and the thermal focal length, red dashed line OC as a non-Gaussian mirror, blue solid line OC as a Gaussian mirror, I represents traditional thermal near-unstable region, II represents Gaussian mirror unstable region; (b) the derivative of the resonator mode radius $\omega $ with respect to focal length ${f_{\text{t}}}$ under different output couplers.

    图 7  不同腔型的模式直径与最高输出功率关系图

    Figure 7.  Mode diameter vs. maximum output power for different cavity types.

    图 8  (a) 输出能量与泵浦能量的关系及光光转换效率; (b) 输出稳定性在60 min内的测量结果

    Figure 8.  (a) Output energy and O-O efficiency as a function of pump energy; (b) output stability measurement over 60 min.

    图 9  (a) 激光的典型脉冲列; (b) 单个脉冲的扩展轮廓

    Figure 9.  (a) Typical pulse train of laser; (b) an expanded single pulse profile.

    图 10  典型的优化后 M2测量结果, 插图为相应的远场二维光束空间分布图

    Figure 10.  Typical optimized M2 measurement results, with the corresponding far-field 2D beam spatial distribution shown in the inset.

    表 1  高斯镜规格参数

    Table 1.  Specifications of Gaussian mirrors.

    高斯镜
    编号N
    曲率半径
    Rc/mm
    中心反射率 膜斑半径
    ${\omega _{\text{m}}}$/mm
    1 –700 0.35 4
    2 –1500 0.3 3
    3 –2000 0.2 2
    DownLoad: CSV
  • [1]

    Zhu Z D, Lv S W, Zhang H Y, Hui Y L, Lei H, Li Q 2021 Opt. Express 29 32325Google Scholar

    [2]

    Li C Y, Lu C Q, Li C, Yang N, Li Y, Yang Z, Han S, Shi J F, Zhou Z W 2017 Opt. Commun. 394 1Google Scholar

    [3]

    Li C Y, Lu C Q, Li C, Zang Y N, Yang Z, Han S, Li Y, Yang N, Shi J F, Zhou Z W 2017 Opt. Commun. 56 116115Google Scholar

    [4]

    Fan Z W, Qiu J S, Kang Z J, Chen Y Z, Ge W Q, Tang X X 2017 Light-Sci. Appl. 6 e17004Google Scholar

    [5]

    Lu S W, Gao M, Yang Y, Zhu R, Hou X, Sun J F, Chen W B, Zhu X L 2019 Appl. Opt. 58 7517Google Scholar

    [6]

    Qi Y F, Zhu X L, Lou Q H, Ji J H, Dong J X, Wei R R 2007 J. Opt. Soc. Am. B-Opt. Phys. 24 1042Google Scholar

    [7]

    沈骁, 邹辉, 郑锐林, 郑加金, 韦玮 2015 物理学报 64 024210Google Scholar

    Shen X, Zhou H, Zhen R L, Zhen J J, Wei W 2015 Acta Phys. Sin. 64 024210Google Scholar

    [8]

    周王哲, 李雪鹏, 杨晶, 杨天利, 王小军, 刘炳杰, 王浩竹, 杨俊波, 彭钦军 2023 物理学报 72 014204Google Scholar

    Zhou W Z, Li X P, Yang J, Yang T L, Wang X J, Liu B J, Wang H Z, Yang J B, Peng Q J 2023 Acta Phys. Sin. 72 014204Google Scholar

    [9]

    Murdough M P, Denman C A 1996 Appl. Opt. 35 5925Google Scholar

    [10]

    Cerullo G, Desilvestri S, Magni V, Svelto O 1993 Opt. Quantum Electron. 25 489Google Scholar

    [11]

    薄勇, 耿爱丛, 毕勇, 孙志培, 杨晓东, 李瑞宁, 崔大复, 许祖彦 2006 物理学报 55 1171Google Scholar

    Bo Y, Geng A C, Bi Y, Sun Z P, Yang X D, Li R N, Cui D F, Xu Z Y 2006 Acta Phys. Sin. 55 1171Google Scholar

    [12]

    何广源, 郭靖, 焦中兴, 王彪 2012 物理学报 61 094217Google Scholar

    He G Y, Guo J, Jiao Z X, Wang B 2012 Acta Phys. Sin. 61 094217Google Scholar

    [13]

    Siegman A E 1974 Appl. Opt. 13 353Google Scholar

    [14]

    Liu Q, Liu J, Gong M 2011 Appl. Opt. 50 1186Google Scholar

    [15]

    韩昌昊, 穆宇, 罗辉, 韩隆, 方聪, 王思博, 魏磊 2024 激光与红外 54 179

    Han C H, Mu Y, Luo H, Han L, Fang C, Wang S B, Wei L 2024 Laser Infrared 54 179

    [16]

    Hauck R, Kortz H P, Weber H 1980 Appl. Opt. 19 598Google Scholar

    [17]

    Woodward R I, Kelleher E J R 2016 Sci. Rep. 6 37616Google Scholar

    [18]

    Fang Z W, Pu G Q, Xu Y X, Hu W S, Yi L L 2023 Opt. Express 31 41794Google Scholar

    [19]

    Shi H D, Fan R H, He C F, Wang J Y, Yang S, Xu M, Sun H Y, Li Y C, Fu Q 2024 Photonics 11 164Google Scholar

    [20]

    Liu Z C, Dang Z B, Liu Z X, Li Y, He X, Dai Y C, Chen Y X, Peng P, Fang Z Y 2023 Photonics Res. 11 695Google Scholar

    [21]

    王宁, 陆雨田, 孔勇 2004 中国激光 31 1317

    Wang N, Lu Y T, Kong Y 2004 Chin. J. Lasers 31 1317

    [22]

    Kirkpatrick S, Gelatt C, Vecchi M 1983 Science 220 671Google Scholar

    [23]

    赵知劲, 徐世宇, 郑仕链, 杨小牛 2009 物理学报 58 5118Google Scholar

    Zhao Z J, Xu S Y, Zheng S L, Yang X N 2009 Acta Phys. Sin. 58 5118Google Scholar

    [24]

    Shapiro J 2001 Machine Learning and Its Applications: Advanced Lectures (Berlin, Heidelberg) 2001 pp146–168

    [25]

    Li X P, Yang J, Zhang M S, Yang T L, Wang X J, Peng Q J 2022 Chin. Phys. B 31 084207Google Scholar

  • [1] WU Siyuan, LI Hong. Evaluation of the application of large language models in the entire process of battery research and development of a comprehensive database forinorganic solid electrolyte. Acta Physica Sinica, 2025, 74(16): 160701. doi: 10.7498/aps.74.20250572
    [2] XU Jiaxin, XU Lechen, LIU Jingyang, DING Huajian, WANG Qin. Research progress of artificial intelligence empowered quantum communication and quantum sensing systems. Acta Physica Sinica, 2025, 74(12): 120301. doi: 10.7498/aps.74.20250322
    [3] BAI Jingyi, HUANG Qiaogao, GAO Pengcheng, WEN Xin, CHU Yong. Intelligent prediction of manta ray flow field based on a denoising probabilistic diffusion model. Acta Physica Sinica, 2025, 74(10): 104701. doi: 10.7498/aps.74.20241499
    [4] Lin Ji-Yan, Sun Jiao-Xia, Lin Shu-Yu. Intelligent optimization design of large-scale three-dimensional ultrasonic vibration system. Acta Physica Sinica, 2024, 73(8): 084304. doi: 10.7498/aps.73.20240006
    [5] Pan Xin-Yu, Bi Xiao-Xue, Dong Zheng, Geng Zhi, Xu Han, Zhang Yi, Dong Yu-Hui, Zhang Cheng-Long. Review of development for ptychography algorithm. Acta Physica Sinica, 2023, 72(5): 054202. doi: 10.7498/aps.72.20221889
    [6] Hou Chen-Yang, Meng Fan-Chao, Zhao Yi-Ming, Ding Jin-Min, Zhao Xiao-Ting, Liu Hong-Wei, Wang Xin, Lou Shu-Qin, Sheng Xin-Zhi, Liang Sheng. “Machine micro/nano optics scientist”: Application and development of artificial intelligence in micro/nano optical design. Acta Physica Sinica, 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [7] Zhou Wang-Zhe, Li Xue-Peng, Yang Jing, Yang Tian-Li, Wang Xiao-Jun, Liu Bing-Jie, Wang Hao-Zhu, Yang Jun-Bo, Peng Qin-Jun. Generation of one-dimensional high-order Hermite-Gaussian laser beams with large mode volume. Acta Physica Sinica, 2023, 72(1): 014204. doi: 10.7498/aps.72.20221422
    [8] Shen Pei-Xin, Jiang Wen-Jie, Li Wei-Kang, Lu Zhi-De, Deng Dong-Ling. Adversarial learning in quantum artificial intelligence. Acta Physica Sinica, 2021, 70(14): 140302. doi: 10.7498/aps.70.20210789
    [9] Lian Tian-Hong, Wang Shi-Yu, Kou Ke, Liu Yun. Off-axis pumped Hermite-Gaussian mode solid-state laser. Acta Physica Sinica, 2020, 69(11): 114202. doi: 10.7498/aps.69.20200086
    [10] Wang Chen-Yang, Duan Qian-Qian, Zhou Kai, Yao Jing, Su Min, Fu Yi-Chao, Ji Jun-Yang, Hong Xin, Liu Xue-Qin, Wang Zhi-Yong. A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm. Acta Physica Sinica, 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [11] Shen Xiao, Zou Hui, Zheng Rui-Lin, Zheng Jia-Jin, Wei Wei. Progress in gain-guided and index-antiguided large mode area fiber laser pump technology. Acta Physica Sinica, 2015, 64(2): 024210. doi: 10.7498/aps.64.024210
    [12] Zhang Qi, Zeng Wen-Jin, Xia Rui-Dong. Current reflearch and future development of organic laser materials and devices. Acta Physica Sinica, 2015, 64(9): 094202. doi: 10.7498/aps.64.094202
    [13] Song You-Jian, Hu Ming-Lie, Liu Qing-Wen, Li Jin-Yan, Chen Wei, Chai Lu, Wang Qing-Yue. A mode-locked Yb3+-doped double-clad large-mode-area fiber laser. Acta Physica Sinica, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [14] He Wan-Jun, Yao Bao-Quan, Wang Yue-Zhu, Ju You-Lun. Determination of thermal focal length of diode laser end-pumped solid-state amplifier. Acta Physica Sinica, 2007, 56(6): 3240-3245. doi: 10.7498/aps.56.3240
    [15] Xi Zai-Jun, Zheng Qi-Guang, Qin Ying-Xiong, Yu Ben-Hai, Tong Xing-Lin. A study on the resonator of multi-rod series connection solid-state lasers. Acta Physica Sinica, 2003, 52(6): 1396-1402. doi: 10.7498/aps.52.1396
    [16] Shang Lian-Ju. Cavity mode matching analyses of end-pumped solid-state lasers. Acta Physica Sinica, 2003, 52(6): 1408-1411. doi: 10.7498/aps.52.1408
    [17] Shang Lian-Ju. 1.34μm Nd:YVO4 laser end-pumped by a diode-laser with flat-concave cavity type. Acta Physica Sinica, 2003, 52(10): 2476-2480. doi: 10.7498/aps.52.2476
    [18] CHENG JI-XIN, SHI QIANG, SHUANG FENG, ZHU QING-SHI. MAKING LOCAL MODE VIBRATION LONG LIVED BY THE INTERACTION BETWEEN A STRONG MULTI-COLOR LASER FIELD AND MOLECULES. Acta Physica Sinica, 1997, 46(6): 1079-1087. doi: 10.7498/aps.46.1079
    [19] ZHU ZHEN-HE. THEORETICAL CALCULATION OF PULSED ACTIVE-PASSIVE MODE-LOCKED SOLID-STATE LASERS (Ⅱ)——COMPUTER SIMULATION. Acta Physica Sinica, 1985, 34(5): 611-621. doi: 10.7498/aps.34.611
    [20] ZHU ZHEN-HE. THEORETICAL CALCULATION OF PULSED ACTIVE-PASSIVE MODE-LOCKED SOLID-STATE LASERS (Ⅰ)——THEOEETICAL MODEL. Acta Physica Sinica, 1985, 34(5): 603-610. doi: 10.7498/aps.34.603
Metrics
  • Abstract views:  2510
  • PDF Downloads:  20
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2025
  • Accepted Date:  06 June 2025
  • Available Online:  11 June 2025
  • Published Online:  20 August 2025
  • /

    返回文章
    返回