Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of extreme ultraviolet emissions from interaction between delay-adjustable dual-wavelength laser and Sn target

WANG Tianze HU Zhenlin HE Liang HUANG Zhu LIU Yixian FU Liwen LIN Nan LENG Yuxin

Citation:

Characteristics of extreme ultraviolet emissions from interaction between delay-adjustable dual-wavelength laser and Sn target

WANG Tianze, HU Zhenlin, HE Liang, HUANG Zhu, LIU Yixian, FU Liwen, LIN Nan, LENG Yuxin
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Laser-produced plasma extreme ultraviolet (LPP-EUV) source is one of the key technologies in advanced lithography systems. Recently, solid-state lasers have been proposed as an alternative drive laser for the next-generation LPP-EUV source. Compared with currently used CO2 lasers, solid-state lasers have higher electrical-optical efficiency, more compact size, and better pulse shape tunability. Although limited to shorter operating wavelengths, the solid-state lasers have higher critical plasma density and optical depth. Consequently, re-absorption and spectral broadening cause lower conversion efficiency (CE). Therefore, to optimize EUV emission features and improve CE, a 0.532-μm pre-pulse laser is utilized in this work to modulate the plasma density distribution. The pre-pulse and a 1.064-μm Nd: YAG laser (the main pulse) are incident on an Sn slab target co-axially. The EUV energy and spectra of the Sn plasma are characterized at various delay times. It is demonstrated that compared with the 1.064-μm single pulse, the 0.532-μm pre-pulse laser with short delay times of 10 ns and 20 ns respectively results in a 4% increase in CE at 26° and 18% increase at 39°. The angular distribution of EUV energy is modulated by the 0.532-μm pre-pulse. An isotropic emission can be obtained within a certain delay time. The spectral feature near 13.5 nm is optimized, and a spectral purity of 12.2% is improved by 69%. The laser spot sizes of 0.3 mm and 1 mm for the pre-pulse are compared in the experiment. The results show that the 1-mm spot size has a better modulation effect on the EUV emission. Moreover, the time-resolved visible-band plasma profile is captured by an ICCD with 1.6-ns gate width. The plasma size and the distance to the target surface are increased by the 0.532-μm pre-pulse, which suggests that the energy of the main pulse is deposited in the low-density pre-plasma plume instead of in the plasma near the target surface. The lower plasma density leads to an increase in CE and spectral purity. The angular distribution of EUV energy is found to be closely related to the plasma morphology, and defined as the ratio of the longitudinal size to lateral size of the plasma. This indicates that the variation of plasma morphology can influence the angular distribution of EUV energy, which is caused by the 0.532-μm pre-pulse. This work has guiding significance for optimizing the emission characteristics of solid-state laser driven EUV sources.
  • 图 1  实验布局示意图, 预脉冲 (绿色) 和主脉冲 (红色) 经f400透镜聚焦同轴入射Sn靶面, 入射角为0°, 两台EUV能量计与激光入射角度的夹角分别为26°和39°, EUV光谱仪与激光入射方向夹角为50°, 等离子体在可见光波段的发射通过f200透镜成像并由ICCD采集

    Figure 1.  Schematic of the experimental layout. The pre-pulse (depicted in green) and the main pulse (depicted in red) are focused by a f400 lens co-axially and are incident onto the Sn target surface, the incident angle is 0°, the angle between the laser incident direction and the two EUV monitors are 26° and 39° respectively, the observation angle of the EUV spectrometer is 50°, the visible band emission of the Sn plasma is imaged by a f200 lens and captured by an ICCD.

    图 2  不同预脉冲光斑大小下的CE随延时变化趋势, 虚线为主脉冲单独作用时的CE值 (a) 0.3 mm光斑预脉冲下26°(红色方块)和39° (蓝色圆形)的CE随延时变化趋势; (b) 1 mm光斑预脉冲下26° (红色方块)和39° (蓝色圆形)的CE随延时变化趋势

    Figure 2.  The dependency of CE on delay time for different pre-pulse spot sizes. The dashed lines mark the CE values when the main pulse irradiates the target without the pre-pulse: (a) The dependency of 26° (red square) and 39° (blue circle) CE on the delay time for 0.3 mm pre-pulse spot; (b) the dependency of 26° (red square) and 39° (blue circle) CE on the delay time for 1 mm pre-pulse spot.

    图 3  不同预脉冲光斑大小下的全谱归一化EUV光谱, 图中紫色阴影区域对应EUV带内辐射波段  (a) 0.3 mm光斑预脉冲作用时不同延时下的EUV光谱; (b) 1 mm光斑预脉冲作用时不同延时下的EUV光谱

    Figure 3.  The normalized EUV spectra at different pre-pulse spot sizes, the violet shadow area corresponds to 13.5 nm 2% bandwidth: (a) The EUV spectra at different delay times for 0.3 mm pre-pulse spot; (b) the EUV spectra at different delay times for 1 mm pre-pulse spot.

    图 4  0.3 mm (黑色方块) 与1 mm (红色圆形) 预脉冲光斑大小下SP随延时变化趋势

    Figure 4.  Dependency of SP on delay for 0.3 mm (black square) and 1 mm (red circle) laser spot sizes.

    图 5  等离子体成像测量 (a)—(c) 0, 50, 1000 ns时的等离子体图像, 图像左侧为靶面位置, 激光入射方向为从右到左, 所有图像设置为相同对比度范围; (d) 0.3 mm (黑色方块) 和1 mm (红色圆形) 预脉冲光斑大小下的等离子体纵向尺寸随延时变化趋势; (e) 0.3 mm (黑色方块) 和1 mm (红色圆形) 预脉冲光斑大小下等离子体纵向中心位置随延时变化趋势

    Figure 5.  The plasma imaging measurements: (a)–(c) The plasma images at 0, 50, 1000 ns, the left side of the image is the target surface, and the laser is incident from the right side, all images are set to the same contrast ratio; (d) the dependency of longitudinal size of the plasma on delay time for 0.3 mm (black square) and 1 mm (red circle) laser spot sizes; (e) the dependency of longitudinal central position of the plasma on delay time for 0.3 mm (black square) and 1 mm (red circle) laser spot sizes.

    图 6  CE比例和等离子体纵向/横向长度比 (a) 0.3 mm光斑预脉冲下39°和26°的CE之比和等离子体纵/横比随延时变化趋势; (b) 1 mm光斑预脉冲下39°和26°的CE之比和等离子体纵/横比随延时变化趋势

    Figure 6.  The CE ratio and the longitudinal/lateral size ratio of the plasma: (a) The dependency of the 39°/26° CE ratio and the longitudinal/lateral size ratio on delay time for 0.3 mm pre-pulse; (b) the dependency of the 39°/26° CE ratio and the longitudinal/lateral size ratio on delay time for 1 mm pre-pulse.

  • [1]

    Fomenkov I, Brandt D, Ershov A, Schafgans A, Tao Y, Vaschenko G, Rokitski S, Kats M, Vargas M, Purvis M, Rafac R, Fontaine B L, Dea S D, LaForge A, Stewart J, Chang S, Graham M, Riggs D, Taylor T, Abraham M, Brown D 2017 Adv. Opt. Technol. 6 173Google Scholar

    [2]

    Lin N, Chen Y Y, Wei X, Yang W H, Leng Y L 2023 High Power Laser Sci. Eng. 11 e64Google Scholar

    [3]

    Chen Y Y, Liu Z X, Lin N 2025 Opt. Lasers Eng. 189 108946Google Scholar

    [4]

    林楠, 杨文河, 陈韫懿, 魏鑫, 王成, 赵娇玲, 彭宇杰, 冷雨欣 2022 激光与光电子学进展 59 0922002

    Lin N, Yang W H, Chen Y Y, Wei X, Wang C, Zhao J L, Peng Y J, Leng Y X 2022 Laser & Optoelectronics Progress 59 0922002

    [5]

    Nowak T S, Yokotsuka T, Fujitaka K, Moriya M, Ohta T, Kurosu A, Sumitani A, Fujimoto J 2010 EUVL Workshop p2

    [6]

    Versolato O O, Sheil J, Witte S, Ubachs W, Hoekstra R 2022 J. Opt. 24 054014Google Scholar

    [7]

    Sistrunk E, Alessi D, Bayramian A, Chesnut K, Erlandson A, Galvin T, Gibson D, Nguyen H, Reagan B, Schaffers K, Siders C, Spinka T, Haefner C 2019 Proc. SPIE 11034 1103407

    [8]

    Campos D, Harilal S S, Hassanein A 2010 Appl. Phys. Lett. 96 151501Google Scholar

    [9]

    Harilal S S, Sizyuk T, Hassanein A, Campos D, Hough P, Sizyuk V 2011 J. Appl. Phys. 109 063306Google Scholar

    [10]

    Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar

    [11]

    Freeman J R, Harilal S S, Verhoff B, Hassanein A, Rice B 2012 Plasma Sources Sci. Technol. 21 055003Google Scholar

    [12]

    Ando T, Fujioka S, Nishimura H, Ueda N, Yasuda Y, Nagai K, Norimatsu T, Murakami M, Nishihara K, Miyanaga N, Izawa Y, Mima K, Sunahara A 2006 Appl. Phys. Lett. 89 151501Google Scholar

    [13]

    Harilal S S, O'Shay B, Tillack M S, Tao Y, Paguio R, Nikroo A, Back C A 2006 J. Phys. D: Appl. Phys. 39 484Google Scholar

    [14]

    Hayden P, Cummings A, Murphy N, O’Sullivan G, Sheridan P, White J, Dunne P 2006 J. Appl. Phys. 99 093302Google Scholar

    [15]

    Lan H, Wang X B, Zuo D L 2016 Chin. Phys. B 25 035202Google Scholar

    [16]

    Si M Q, Wen Z L, Zhang Q J, Dou Y P, Li B C, Song X W, Xie Z, Lin J Q 2023 Acta Physica Sinica 72 065201Google Scholar

    [17]

    Freeman J R, Harilal S S, Hassanein A 2011 J. Appl. Phys. 110 083303Google Scholar

    [18]

    Freeman J R, Harilal S S, Hassanein A, Rice B 2013 Appl. Phys. A 110 853Google Scholar

    [19]

    Cummins T, O'Gorman C, Dunne P, Sokell E, O'Sullivan G, Hayden P 2014 Appl. Phys. Lett. 105 044101Google Scholar

    [20]

    Tao Y, Tillack M S, Harilal S S, Sequoia K L, Najmabadi F 2007 J. Appl. Phys. 101 023305Google Scholar

    [21]

    Tao Y, Tillack M S, Harilal S S, Sequoia K L, Burdt R A, Najmabadi F 2007 Opt. Lett. 32 1338Google Scholar

    [22]

    Garbanlabaune C, Fabre E, Max C E, Fabbro R, Amiranoff F, Virmont J, Weinfeld M, Michard A 1982 Phys. Rev. Lett. 48 1018Google Scholar

    [23]

    Wang T Z, Hu Z L, He L, Lin N, Leng Y X, Chen W B 2025 Vacuum 231 113805Google Scholar

    [24]

    胡桢麟, 何梁, 王天泽, 林楠, 冷雨欣 2025 中国激光 52 0601001Google Scholar

    Hu Z L, He L, Wang T Z, Lin N, Leng Y X 2025 Chin. J. Lasers 52 0601001Google Scholar

    [25]

    何梁, 胡桢麟, 王天泽, 林楠, 冷雨欣 2025 激光与光电子学进展 62 0314001Google Scholar

    He L, Hu Z L, Wang T Z, Lin N, Leng Y X 2025 Laser Optoelectron. Prog. 62 0314001Google Scholar

    [26]

    蔡懿, 王文涛, 杨明, 刘建胜, 陆培祥, 李儒新, 徐至展 2008 物理学报 57 5100Google Scholar

    Cai Y, Wang W T, Yang M, Liu J S, Lu P X, Li R X, Xu Z Z 2008 Acta Phys. Sin. 57 5100Google Scholar

    [27]

    Versolato O O 2019 Plasma Sources Sci. Technol. 28 083001Google Scholar

    [28]

    Morris O, O’Reilly F, Dunne P, Hayden P 2008 Appl. Phys. Lett. 92 231503Google Scholar

    [29]

    Schupp R, Torretti F, Meijer R A, Bayraktar M, Sheil J, Scheers J, Kurilovich D, Bayerle A, Schafgans A A, Purvis M, Eikema K S E, Witte S, Ubachs W, Hoekstra R, Versolato O O 2019 Appl. Phys. Lett. 115 124101Google Scholar

    [30]

    Tao Y, Harilal S S, Tillack M S, Sequoia K L, O'Shay B, Najmabadi F 2006 Opt. Lett. 31 2492Google Scholar

  • [1] Li Hui, Tan Fang-Rui, Yin Hao-Yu, Ma Yue-Yang, Wu Xiao-Bin. Simulation study of decoherence and light intensity uniformization for extreme ultraviolet of uniform light pipe. Acta Physica Sinica, doi: 10.7498/aps.73.20240335
    [2] Gao Cheng, Liu Yan-Peng, Yan Guan-Peng, Yan Jie, Chen Xiao-Qi, Hou Yong, Jin Feng-Tao, Wu Jian-Hua, Zeng Jiao-Long, Yuan Jian-Min. Theoretical investigation on extreme ultraviolet radiative opacity and emissivity of Sn plasmas at local-thermodynamic equilibrium. Acta Physica Sinica, doi: 10.7498/aps.72.20230455
    [3] Si Ming-Qi, Wen Zhi-Lin, Zhang Qi-Jin, Dou Yin-Ping, Li Bo-Chao, Song Xiao-Wei, Xie Zhuo, Lin Jing-Quan. Radiation of extreme ultraviolet source and out-of-band from laser-irradiated low-density SnO2 target. Acta Physica Sinica, doi: 10.7498/aps.72.20222385
    [4] Xie Zhuo, Wen Zhi-Lin, Si Ming-Qi, Dou Yin-Ping, Song Xiao-Wei, Lin Jing-Quan. Characteristics of extreme ultraviolet emission from Gd plasma produced by dual pulse laser. Acta Physica Sinica, doi: 10.7498/aps.71.20211450
    [5] The characteristics of extreme ultraviolet emission from Gd plasma produced by dual pulse laser. Acta Physica Sinica, doi: 10.7498/aps.70.20211450
    [6] Hai Bang, Zhang Shao-Feng, Zhang Min, Dong Da-Pu, Lei Jian-Ting, Zhao Dong-Mei, Ma Xin-Wen. A tabletop experimental system for investigating ultrafast atomic dynamics based on femtosecond extreme ultraviolet photons. Acta Physica Sinica, doi: 10.7498/aps.69.20201035
    [7] Liu Yong-Bo, Jian Yong-Jun. Electrokinetic energy conversion efficiency in a polyelectrolyte-grafted nanotube. Acta Physica Sinica, doi: 10.7498/aps.65.084704
    [8] Zhang Kong, Bai Jian-Dong, He Jun, Wang Jun-Min. Influence of laser linewidth on the conversion efficiency of single-pass frequency doubling with a PPMgO: LN crystal. Acta Physica Sinica, doi: 10.7498/aps.65.074207
    [9] Dou Yin-Ping, Xie Zhuo, Song Xiao-Lin, Tian Yong, Lin Jing-Quan. Experimental research on laser-produced Gd target plasma source for 6.7 nm lithography. Acta Physica Sinica, doi: 10.7498/aps.64.235202
    [10] Chen Hong, Lan Hui, Chen Zi-Qi, Liu Lu-Ning, Wu Tao, Zuo Du-Luo, Lu Pei-Xiang, Wang Xin-Bing. Experimental study on laser produced tin droplet plasma extreme ultraviolet light source. Acta Physica Sinica, doi: 10.7498/aps.64.075202
    [11] Li Yu-Tong, Liu Feng, Zhang Yi, Lin Xiao-Xuan, Wang Shou-Jun, Wang Zhao-Hua, Li Ying-Jun, Sheng Zheng-Ming, Xu Miao-Hua, Wei Zhi-Yi, Zhang Jie, Zheng Jun, Meng Li-Min. Enhancement of ion generation in low-contrast laser-foil interactions by defocusing. Acta Physica Sinica, doi: 10.7498/aps.60.045204
    [12] Fang Xin, Shen Wen-Zhong. Oxygen and carbon behaviors in multi-crystalline silicon and their effect on solar cell conversion efficiency. Acta Physica Sinica, doi: 10.7498/aps.60.088801
    [13] Cao Wei-Jun, Cheng Chun-Zhi, Zhou Xiao-Xin. The relationship between conversion efficiency of high-order harmonic generation from atom and wavelength in two-color combined fields. Acta Physica Sinica, doi: 10.7498/aps.60.054210
    [14] Zhou Cheng, Gao Yan-Xia, Wang Pei-Ji, Zhang Zhong, Li Ping. Theoretical analysis of second-harmonic conversion efficiency in negative-index materials. Acta Physica Sinica, doi: 10.7498/aps.58.914
    [15] Hu Da-Wei, Wang Zheng-Ping, Zhang Huai-Jin, Xu Xin-Guang, Wang Ji-Yang, Shao Zong-Shu. Stimulated Raman scattering of YbVO4 crystal. Acta Physica Sinica, doi: 10.7498/aps.57.1714
    [16] Cai Yi, Wang Wen-Tao, Yang Ming, Liu Jian-Sheng, Lu Pei-Xiang, Li Ru-Xin, Xu Zhi-Zhan. Experimental study on extreme ultraviolet light generation from high power laser-irradiated tin slab. Acta Physica Sinica, doi: 10.7498/aps.57.5100
    [17] Song Hui-Jin, Zheng Jia-Gui, Feng Liang-Huan, Cai Wei, Cai Ya-Ping, Zhang Jing-Quan, Li Wei, Li Bing, Wu Li-Li, Lei Zhi, Yan Qiang. Performance of CdTe solar cells with different back electrodes and back contact layers. Acta Physica Sinica, doi: 10.7498/aps.56.1655
    [18] Xu Miao-Hua, Chen Li-Ming, Li Yu-Tong, Yuan Xiao-Hui, Liu Yun-Quan, Kazuhisa Nakajima, Toshi Tajima, Wang Zhao-Hua, Wei Zhi-Yi, Zhao Wei, Zhang Jie. Experimental study on Kα X-ray emission from intense femtosecond laser-solid interactions. Acta Physica Sinica, doi: 10.7498/aps.56.353
    [19] Cheng Yuan-Li, Luan Bo-Han, Wu Yin-Chu, Zhao Yong-Peng, Wang Qi, Zheng Wu-Di, Peng Hui-Min, Yang Da-Wei. Effect of pre-pulses on capillary discharge soft x-ray laser. Acta Physica Sinica, doi: 10.7498/aps.54.4979
    [20] WANG YI-SHAN, CHEN GUO-FU, YU LIAN-JUN, ZHAO SHANG-HONG, ZHAO WEI. GENERATION OF THE HIGH EFFICIENCY HIGH PEAK-POWER FEMTOSECOND BLUE OPTICAL PULSE. Acta Physica Sinica, doi: 10.7498/aps.49.2378
Metrics
  • Abstract views:  264
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  24 January 2025
  • Accepted Date:  21 April 2025
  • Available Online:  27 May 2025
  • /

    返回文章
    返回