-
The extreme ultraviolet (EUV) lithography technology required for high-end chip manufacturing is the first of 35 “bottleneck” key technologies that China is facing currently. The high conversion efficiency EUV source and low out-of-band radiation play a significant role in the application of the EUV lithography system. In this work, the EUV source and out-of-band radiation are studied by using laser irradiated solid Sn target and low-density SnO2 target. The result shows that a strong EUV radiation at a wavelength of 13.5 nm is generated when the laser irradiates the two forms of Sn targets. Owing to the self-absorption effect of the solid Sn target plasma, the maximum intensity of the wavelength is not located at the position of 13.5 nm, which is working wavelength of EUV lithography system. However, the peak radiation spectrum is located at the position of 13.5 nm with low-density SnO2 target due to its weaker plasma self-absorption effect. In addition, the satellite lines are weaker in low-density SnO2 target than in the solid Sn target, so that the spectrum efficiency of the EUV at 13.5 nm (2% bandwidth) is increased by about 20%. On the other hand, the experimental study of the out-of-band radiation is carried out. The out-of-band radiation spectral results show that the out-of-band radiation is mainly dominated by the continuum spectrum. Compared with the solid Sn target, the low-density SnO2 target contains a part of the low Z element O (Z = 8), resulting in a low-intensity continuum spectrum. In addition, the collision probability of ion-ion and electron-ion both become low when the laser irradiates the low-density SnO2 target, resulting in a short out-of-band radiation duration time. Therefore, the out-of-band radiation generated by the laser irradiated on the low-density SnO2 target is weak based on the above reasons. The angular distribution of out-of-band radiation measurement results shows that the intensity of out-of-band radiation decreases with the angle increasing. A cosine function
$A \cos ^\alpha \theta$ can fit the angular distribution of the total radiation.-
Keywords:
- low-density target /
- extreme ultraviolet source /
- out-of-band radiation /
- spectral efficiency
[1] Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Commun. 11 2334Google Scholar
[2] Huang Q, Medvedev V, van de Kruijs R, Yakshin A, Louis E, Bijkerk F 2017 Appl. Phys. Lett. 4 011104Google Scholar
[3] van de Kerkhof M, Liu F, Meeuwissen M, Zhang X Q, de Kruif R, Davydova N, Schiffelers G, Wählisch F, van Setten E, Varenkamp W, Ricken K, de Winter L, Mcnamara J, Bayraktar M 2020 Journal of Micro/Nanolithography, MEMS, and MOEMS San Jose, California, United States, September 22, 2020 p033801
[4] Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar
[5] Behnke L, Schupp R, Bouza Z, Bayraktar M, Mazzotta Z, Meijer R, Sheil J, Witte S, Ubachs W, Hoekstra R, Versolato O O 2021 Opt. Express 29 4475Google Scholar
[6] Freeman J R, Harilal S S, Verhoff B, Hassanein A, Rice B 2012 Plasma Sources Sci. T. 21 055003Google Scholar
[7] Harilal S S, Coons R W, Hough P, Hassanein A 2009 Appl. Phys. Lett. 95 221501Google Scholar
[8] Higashiguchi T, Rajyaguru C, Kubodera S, Sasaki W, Yugami N, Kikuchi T, Kavata S, Andreev A 2005 Appl. Phys. Lett. 86 231502Google Scholar
[9] Higashiguchi T, Kawasaki K, Sasaki W, Kubodera S 2006 Appl. Phys. Lett. 88 161502Google Scholar
[10] 谢卓, 温智琳, 司明奇, 窦银萍, 宋晓伟, 林景全 2022 物理学报 71 035202Google Scholar
Xie Z, Wen Z L, Si M Q, Dou Y P, Song X W, Lin J Q 2022 Acta. Phys. Sin. 71 035202Google Scholar
[11] 李镇广, 窦银萍, 谢卓, 王海建, 宋晓伟, 林景全 2021 中国激光 48 1601005Google Scholar
Li Z G, Dou Y P, Xie Z, Wang H J, Song X W, Lin J Q 2021 Chin. J. Lasers. 48 1601005Google Scholar
[12] Okuno T, Fujiokaa S, Nishimura H, Tao Y, Nagai K, Gu Q, Ued N a, Ando T, Nishihara K, Norimatsu T, Miyanaga N, Izawa Y, Mima K 2006 Appl. Phys. Lett. 88 161501Google Scholar
[13] Harilal S S, Tillack M S, Tao Y, O'Shay B, Paguio R, Nikroo A. 2006 Opt. Lett. 31 1549Google Scholar
[14] O'Sullivan, G D, Faulkner R 1994 Opt. Eng. 33 3978Google Scholar
[15] Fujioka S, Nishimura H, Okuno T, Tao Y, Ueda N, Ando T, Kurayama H, Yasuda Y, Uchida S, Shimada Y, Yamaura M, Gu Q, Nagai K, Norimatsu T, Furukawa H, Sunahara A, Kang Y G, Murakami M, Nishihara K, Miyanaga N, Izawa Y 2005 Emerging Lithographic Technologies IX San Jose, California, United States, May 6, 2005 p578
[16] Torretti F, Schupp R, Kurilovich D, Bayerle A, Scheers J, Ubachs W, Hoekstra R, Versolato O O 2018 J. Phys. B: At., Mol. Opt. Phys. 51 045005Google Scholar
[17] Stuik R, Scholze F, Tümmler J, Bijkerk F 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 492 305Google Scholar
[18] Louis E, van de Kruijs R W E, Yakshin A E, Alonso van der Westen S, Bijkerk F, van Herpen M M J W, Klunder D J W, Bakker L, Enkisch H, Müllender S, Richter M, Banine V 2006 In Emerging Lithographic Technologies X San Jose, California, United States, March 24, 2006 p887
[19] Parchamy H, Szilagyi J, Masnavi M, Richardson M 2017 J. Appl. Phys. 122 173303Google Scholar
[20] Namba S, Fujioka S, Sakaguchi H, Nishimura H, Yasuda Y, Nagai K, Miyanaga N, Izawa Y, Mima K, Sato K, Takiyama K 2008 J. Appl. Phys. 104 013305Google Scholar
[21] Sakaguchi H, Fujioka S, Namba S, Tanuma H, Ohashi H, Suda S, Shimomura M, Nakai Y, Kimura Y, Yasuda Y, Nishimura H, Norimatsu T, Sunahara A, Nishihara K, Miyanaga N, Izawa Y, Mima K 2008 Appl. Phys. Lett. 92 111503Google Scholar
[22] Mbanaso C, Antohe A O, Bull H, Denbeaux G, Goodwin F, Hershcovitch A 2012 J. Micro/Nanolithgr. MEMS. MOEMS. 11 021116Google Scholar
[23] 宋晓林, 宋晓伟, 窦银萍, 田勇, 谢卓, 高勋, 林景全 2016 光谱学与光谱分析 36 3114Google Scholar
Song X L, Song X W, Dou Y P, Tian Y, Xie Z, Gao X, Lin J Q 2016 Spectrosc. Spect. Anal. 36 3114Google Scholar
[24] Morris O, Hayden P, O’Reilly F, Murphy N, Dunne P, Bakshi V 2007 Appl. Phys. Lett. 91 081506Google Scholar
[25] Tomie T 2012 J. Micro-nanolith. Mem. 11 021109Google Scholar
[26] O'Sullivan G 1983 J. Phys. B At. Mol. Phys. 16 3291Google Scholar
[27] Cummings A, O'Sullivan G, Dunne P, Sokell E, Murphy N, White, Hayden J P, Sheridan P, Lysaght M, O'Reilly F 2006 J. Phys. D: Appl. Phys. 39 73Google Scholar
-
图 6 激光能量为400 mJ、探测角度为30°时所测量的时间分辨离带热辐射 (a)带通滤波片波长325—385 nm; (b)带通滤波片波长435—500 nm; (c)带通滤波片波长485—565 nm
Figure 6. Out-of-band radiation of laser produced Sn and SnO2 plasma was measured at the detection angle of 30° when laser energy of 400 mJ: (a) Band pass filter wavelength of 325–385 nm; (b) band pass filter wavelength of 435–500 nm; (c) band pass filter wavelength of 485–565 nm.
图 7 激光能量为400 mJ, 两种靶材所产生离带热辐射强度的角分布 (a)带通滤波片波长325—385 nm; (b)带通滤波片波长435—500 nm; (c)带通滤波片波长485—565 nm
Figure 7. Angle distribution of out-of-band radiation of laser produced Sn and SnO2 plasma at laser energy of 400 mJ: (a) Band pass filter wavelength of 325–385 nm; (b) band pass filter wavelength of 435–500 nm; (c) band pass filter wavelength of 485–565 nm.
-
[1] Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Commun. 11 2334Google Scholar
[2] Huang Q, Medvedev V, van de Kruijs R, Yakshin A, Louis E, Bijkerk F 2017 Appl. Phys. Lett. 4 011104Google Scholar
[3] van de Kerkhof M, Liu F, Meeuwissen M, Zhang X Q, de Kruif R, Davydova N, Schiffelers G, Wählisch F, van Setten E, Varenkamp W, Ricken K, de Winter L, Mcnamara J, Bayraktar M 2020 Journal of Micro/Nanolithography, MEMS, and MOEMS San Jose, California, United States, September 22, 2020 p033801
[4] Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar
[5] Behnke L, Schupp R, Bouza Z, Bayraktar M, Mazzotta Z, Meijer R, Sheil J, Witte S, Ubachs W, Hoekstra R, Versolato O O 2021 Opt. Express 29 4475Google Scholar
[6] Freeman J R, Harilal S S, Verhoff B, Hassanein A, Rice B 2012 Plasma Sources Sci. T. 21 055003Google Scholar
[7] Harilal S S, Coons R W, Hough P, Hassanein A 2009 Appl. Phys. Lett. 95 221501Google Scholar
[8] Higashiguchi T, Rajyaguru C, Kubodera S, Sasaki W, Yugami N, Kikuchi T, Kavata S, Andreev A 2005 Appl. Phys. Lett. 86 231502Google Scholar
[9] Higashiguchi T, Kawasaki K, Sasaki W, Kubodera S 2006 Appl. Phys. Lett. 88 161502Google Scholar
[10] 谢卓, 温智琳, 司明奇, 窦银萍, 宋晓伟, 林景全 2022 物理学报 71 035202Google Scholar
Xie Z, Wen Z L, Si M Q, Dou Y P, Song X W, Lin J Q 2022 Acta. Phys. Sin. 71 035202Google Scholar
[11] 李镇广, 窦银萍, 谢卓, 王海建, 宋晓伟, 林景全 2021 中国激光 48 1601005Google Scholar
Li Z G, Dou Y P, Xie Z, Wang H J, Song X W, Lin J Q 2021 Chin. J. Lasers. 48 1601005Google Scholar
[12] Okuno T, Fujiokaa S, Nishimura H, Tao Y, Nagai K, Gu Q, Ued N a, Ando T, Nishihara K, Norimatsu T, Miyanaga N, Izawa Y, Mima K 2006 Appl. Phys. Lett. 88 161501Google Scholar
[13] Harilal S S, Tillack M S, Tao Y, O'Shay B, Paguio R, Nikroo A. 2006 Opt. Lett. 31 1549Google Scholar
[14] O'Sullivan, G D, Faulkner R 1994 Opt. Eng. 33 3978Google Scholar
[15] Fujioka S, Nishimura H, Okuno T, Tao Y, Ueda N, Ando T, Kurayama H, Yasuda Y, Uchida S, Shimada Y, Yamaura M, Gu Q, Nagai K, Norimatsu T, Furukawa H, Sunahara A, Kang Y G, Murakami M, Nishihara K, Miyanaga N, Izawa Y 2005 Emerging Lithographic Technologies IX San Jose, California, United States, May 6, 2005 p578
[16] Torretti F, Schupp R, Kurilovich D, Bayerle A, Scheers J, Ubachs W, Hoekstra R, Versolato O O 2018 J. Phys. B: At., Mol. Opt. Phys. 51 045005Google Scholar
[17] Stuik R, Scholze F, Tümmler J, Bijkerk F 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 492 305Google Scholar
[18] Louis E, van de Kruijs R W E, Yakshin A E, Alonso van der Westen S, Bijkerk F, van Herpen M M J W, Klunder D J W, Bakker L, Enkisch H, Müllender S, Richter M, Banine V 2006 In Emerging Lithographic Technologies X San Jose, California, United States, March 24, 2006 p887
[19] Parchamy H, Szilagyi J, Masnavi M, Richardson M 2017 J. Appl. Phys. 122 173303Google Scholar
[20] Namba S, Fujioka S, Sakaguchi H, Nishimura H, Yasuda Y, Nagai K, Miyanaga N, Izawa Y, Mima K, Sato K, Takiyama K 2008 J. Appl. Phys. 104 013305Google Scholar
[21] Sakaguchi H, Fujioka S, Namba S, Tanuma H, Ohashi H, Suda S, Shimomura M, Nakai Y, Kimura Y, Yasuda Y, Nishimura H, Norimatsu T, Sunahara A, Nishihara K, Miyanaga N, Izawa Y, Mima K 2008 Appl. Phys. Lett. 92 111503Google Scholar
[22] Mbanaso C, Antohe A O, Bull H, Denbeaux G, Goodwin F, Hershcovitch A 2012 J. Micro/Nanolithgr. MEMS. MOEMS. 11 021116Google Scholar
[23] 宋晓林, 宋晓伟, 窦银萍, 田勇, 谢卓, 高勋, 林景全 2016 光谱学与光谱分析 36 3114Google Scholar
Song X L, Song X W, Dou Y P, Tian Y, Xie Z, Gao X, Lin J Q 2016 Spectrosc. Spect. Anal. 36 3114Google Scholar
[24] Morris O, Hayden P, O’Reilly F, Murphy N, Dunne P, Bakshi V 2007 Appl. Phys. Lett. 91 081506Google Scholar
[25] Tomie T 2012 J. Micro-nanolith. Mem. 11 021109Google Scholar
[26] O'Sullivan G 1983 J. Phys. B At. Mol. Phys. 16 3291Google Scholar
[27] Cummings A, O'Sullivan G, Dunne P, Sokell E, Murphy N, White, Hayden J P, Sheridan P, Lysaght M, O'Reilly F 2006 J. Phys. D: Appl. Phys. 39 73Google Scholar
Catalog
Metrics
- Abstract views: 4662
- PDF Downloads: 91
- Cited By: 0