-
Radiative opacity plays an important role in investigations on radiative transfer, radiation hydrodynamics and other related disciplines. In practical applications, these data are mainly obtained by theoretical calculations. The accuracy of the theories is checked by limited experiments. In the theoretical frame of detailed level accounting method, a systematic investigation is carried on spectrally resolved and Rosseland and Planck mean opacities of aluminum, iron, and gold plasmas under conditions in a density range of 0.001-0.1 g/cm3 and a temperature range of 1-300 eV. A data base is built based on these theoretical opacities. A huge number of quantum states are involved in the calculation of opacity, especially for high-Z gold plasmas. This poses a great challenge to obtain accurate opacity of gold plasmas. For such high-Z plasmas, there is a necessity to develop other codes such as unresolved transition array or even average atom model to fast obtain the opacity. Accurate opacity data are lacking very much for such high-Z plasmas and the data presented in this library represent an important reference for other less detailed opacity codes.
For aluminum and iron plasmas, the opacities are compared with one of the most accurate code ATOMIC. It is found that a good agreement is obtained for most cases of plasma conditions. Yet discrepancies are still found at a few cases of plasma densities and temperatures, as demonstrated in Fig. S1 where there is an excellent agreement between the bound-free opacity obtained by our code and the ATOMIC. At photon energy around 850 eV, however, some strong lines of aluminum plasmas are found to be missing in Al plasmas in other codes, which will affect the radiative transfer in x-ray region. In our code, we avoid such issues by including all possible line absorption and photoionization channels. The present dataset should be helpful for the study of inertial confinement fusion, plasma physics and astrophysics.-
Keywords:
- Opacity /
- Aluminum /
- iron /
- and gold plasma
-
[1] Hurricane O A, Patel P K, Betti, R, Froula D H, Regan S P, Slutz S A, Gomez M R, Sweeney M A 2023Rev. Mod. Phys. 95 025005
[2] Davidson S J, Foster J M, Smith C C, Warburton K A, Rose S J 1988Appl. Phys. Lett. 52 847
[3] Perry T S, Davidson S J, Serduke F J D, Bach D R, Smith C C, Foster J M, Doyas R J, Ward R A, Iglesias C A, Rogers F J, Abdallah J Jr, Stewart R E, Kilkenny J D, Lee R W 1991Phys. Rev. Lett. 67 3784
[4] Qiang Y, Ye F, Lu J, Yan X S, Yang R H, Jiang S Q, Ning J M, Zhou L, Chen F X, Yang J L, Wang D M, Xu Z P, You H B, Zhang F Q, Li Z H, Wang G Q, Xiao D L, Wu Z Q, Meng S J, Huang X B, Xu Q, Zhou S T, Zhang D Y, Zhang S Q, Ren X D, Ji C, Li Y, Cai P T, Ren J, Chen S, Zhang H Y 2024Phys. Rev. E 110 065205
[5] Zeng J L, Jin F T, Yuan J M 2001Chin. Phys. Lett. 18 924
[6] Zeng J L, Jin F T, Yuan J M, Lu Q S, 2000Phys. Rev. E 62 7251
[7] Zeng J L, Yuan J L, Lu Q S 2001Phys. Rev. E 64 066412
[8] Zeng J L, Yuan J M 2002Phys. Rev. E. 66 016401
[9] Jin F T, Zeng J L, Yuan J M 2004Phys. Plasmas 11 4318
[10] Winhart G, Eidmann K, Iglesias C A, Bar-Shalom A 1996Phys. Rev. E 53 R1332
[11] Springer PT, Fields D J, Wilson B G, Nash J K, Goldstein W H, Iglesias C A, Rogers F J, Swenson J K, Chen M H, Bar-Shalom A, Stewart R E 1992Phys. Rev. Lett. 69 3735
[12] Bailey J E, Rochau G A, Iglesias C A, Abdallah, J Jr, MacFarlane J J, Golovkin I, Wang P, Mancini R C, Lake P W, Moore T C, Bump M, Garcia O, Mazevet S 2007Phys. Rev. Lett. 99 265002
[13] Zhang J, Li H, Zhao Y, Xiong G, Yuan Z, Zhang H, Yang G, Yang J, Liu S, Jiang S, Ding Y, Zhang B, Zheng Z, Xu Y, Meng X, Yan J 2012Phys. Plasmas 19 113302
[14] Jin F T, Zeng J L, Yuan J M 2003Phys. Rev. E 68 066401
[15] Zeng J L, Jin F T, Zhao G, Yuan J M 2003Chin. Phys. Lett. 20 862
[16] Gao C, Zeng J L 2008Phys. Rev. E 78 046407
[17] Jin F T, Zeng J L, Yuan J M 2004Chin. J. Computation Phys. 21 121(in Chinese) [靳奉涛,曾交龙,袁建民2004计算物理21 121]
[18] Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, Cosse Ph, Faussurier G, Fontes C J, Gilleron F, Golovkin I E, Hansen S B, Iglesias C A, Kilcrease D P, MacFarlane J J, Mancini R C, Nahar S N, Orban C, Pain J-C, Pradhan A K, Sherrill M E, Wilson B G 2015Nature 517 56
[19] Nagayama T, Bailey J E, Loisel G P, Dunham G S, Rochau G A, Blancard C, Colgan J, Cosse Ph, Faussurier G, Fontes C J, Gilleron F, Hansen S B, Iglesias C A, Golovkin I E, Kilcrease D P, MacFarlane J J, Mancini R C, More R M, Orban C, Pain J-C, Sherrill M E, Wilson B G 2019Phys. Rev. Lett. 122 235001
[20] Eidmann K, Bar-Shalom A, Saemann A, Winhart G, 1998Europhys. Lett. 44 459
[21] Zhang J Y, Xu Y, Yang J M, Yang G H, Li H, Yuan Z, Zhao Y, Xiong G, Bao L H, Huang C W, Wu Z Q, Yan J, Ding Y K, Zhang B H, Zheng Z J 2011Phys. Plasmas 18 113301
[22] Zhang J, Yang G, Yang J, Ding Y, Zhang B, Zheng Z, Yan J 2007Phys. Plasmas 14 103301
[23] Zeng J L, Zhao G, Yuan J M, 2006Chin. Phys. Lett. 23 660
[24] Zeng J L, Yuan J M 2006Phys. Rev. E 74 025401R
[25] Zeng J L, Yuan J M 2007Phys. Rev. E 76 026401
[26] Zeng J L 2008J. Phys. B 41 125702
[27] Gao C, Zeng J L, Jin F T, Yuan J M 2013High Energy Density Phys. 9 419
[28] Zeng J L 2005Detailed term accounting investigation on opacity of aluminium plasmas (Changsha: National University of Defense Technology Press) (in Chinese) [曾交龙2005使用细致谱项模型研究铝等离子体的辐射不透明度(长沙:国防科技大学出版社)]
[29] Zeng J L, Jin F T, Yuan J M 2006Front. Phys. China 1 468
[30] Jin F T, Zeng J L, Yuan J M 2005Physics 34 820(in Chinese) [靳奉涛, 曾交龙,袁建民2005物理34 820]
[31] Zeng J L, Yuan J M, Zhao Z X, Lu Q S 2001High power laser and particle 13 60(in Chinese) [曾交龙, 袁建民, 赵增秀, 陆启生2001强激光与粒子束13 60]
[32] Iglesias C A, Rogers F J 1991Astrophys. J. 371 408
[33] Seaton M J, Yan Y, Mihalas D, Pradhan A K 1994Mon. Not. R. Astron. Soc. 266 805
[34] Hansen S B, Bauche J, Bauche-Arnoult C,Gu M F 2007High Energy Density Phys. 3 109
[35] Porcherot Q, Pain J-C, Gilleron F,Blenski T A 2011High Energy Density Phys. 7 234
[36] Blancard C, Cosse P, Faussurier G. 2012Astrophys. J. 745 10
[37] Colgan J, Kilcreasea D P, Magee Jr N H, Armstronga G S J, Abdallah Jr J, Sherrill M E, Fontes C J, Zhang H L, Hakel P 2013High Energy Density Phys. 9 369
[38] Xiong G, Qing B, Zhang Z Y, Jing L F, Zhao Y, Wei M X, Yang Y M, Hou L F, Huang C W, Zhu T, Song T M, Lv M, Zhao Y, Zhang Y X, Yang G H, Wu Z Q, Yan J, Zou Y M, Zhang J Y, Yang J M 2024Matters Radiation Extremes 9 047801
[39] Qing B, Zhang Z, Wei M, Yang Y, Yang Z, Yang G, Zhao Y, Lv M, Xiong G, Hu Z, Zhang J, Yang J, Yan J, 2018Phys. Plasmas 25 023301
[40] Gang X, Yang J M, Zhang J Y, Hu Z M, Zhao Y, Qing B, Yang G H, Wei M X, Yi R Q, Song T M, Li H, Yuan Z, Lv M, Meng X J, Xu Y, Wu Z Q, Yan J 2016Astrophys. J. 816 36
[41] Gao C, Liu Y B, Yan G B, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023Acta Phys. Sin. 72 183101(in Chinese)[高城,刘彦鹏,严冠鹏, 闫杰,陈小棋,侯永,靳奉涛,吴建华,曾交龙,袁建民2023物理学报72 183101]
[42] Li R, Lv H N, Sang J Q, Liu X H, Liang G Y, Wu Y 2024Chinese Phys. B 33 053101
[43] Zeng J L, Li Y J, Hou Y, Yuan J M, 2023Phys. Rev. E 107 L033201
[44] Huang Y H, Liang Z H, Zeng J L, Yuan J M, 2024Phys. Rev. E 109 045210
[45] Liu P F, Gao C, Hou Y, Zeng J L, Yuan J M, 2018Commun. Phys. 1 95
[46] Zeng J L, Li Y J, Yuan J M, 2021J. Quant. Spectrosc. Radiat. Transf. 272 107777
[47] Zeng J L, Jiang X B, Gao C, Wu J H, Yuan J M, 2024Results Phys. 58 107522
[48] Zeng J L, Ye C, Liu P F, Gao C, Li Y J, Yuan J M, 2022Int. J. Mol. Sci. 23 6033
[49] Zeng J L, Gao C, Liu P F, Li Y J, Meng C S, Hou Y, Kang D D, Yuan J M 2022Sci. China-Phys. Mech. Astron. 65 233011
[50] Gao C, Zeng J L, Li Y Q, Jin F T, Yuan J M 2013High Energy Density Phys. 9 583
Metrics
- Abstract views: 7
- PDF Downloads: 2
- Cited By: 0