Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Data base for opacity of Alumnium, iron and gold plasmas

Zeng Jiaolong Gao Cheng Yuan Jianmin

Citation:

Data base for opacity of Alumnium, iron and gold plasmas

Zeng Jiaolong, Gao Cheng, Yuan Jianmin
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Radiative opacity plays an important role in investigations on radiative transfer, radiation hydrodynamics and other related disciplines. In practical applications, these data are mainly obtained by theoretical calculations. The accuracy of the theories is checked by limited experiments. In the theoretical frame of detailed level accounting method, a systematic investigation is carried on spectrally resolved and Rosseland and Planck mean opacities of aluminum, iron, and gold plasmas under conditions in a density range of 0.001-0.1 g/cm3 and a temperature range of 1-300 eV. A data base is built based on these theoretical opacities. A huge number of quantum states are involved in the calculation of opacity, especially for high-Z gold plasmas. This poses a great challenge to obtain accurate opacity of gold plasmas. For such high-Z plasmas, there is a necessity to develop other codes such as unresolved transition array or even average atom model to fast obtain the opacity. Accurate opacity data are lacking very much for such high-Z plasmas and the data presented in this library represent an important reference for other less detailed opacity codes.
    For aluminum and iron plasmas, the opacities are compared with one of the most accurate code ATOMIC. It is found that a good agreement is obtained for most cases of plasma conditions. Yet discrepancies are still found at a few cases of plasma densities and temperatures, as demonstrated in Fig. S1 where there is an excellent agreement between the bound-free opacity obtained by our code and the ATOMIC. At photon energy around 850 eV, however, some strong lines of aluminum plasmas are found to be missing in Al plasmas in other codes, which will affect the radiative transfer in x-ray region. In our code, we avoid such issues by including all possible line absorption and photoionization channels. The present dataset should be helpful for the study of inertial confinement fusion, plasma physics and astrophysics.
  • [1]

    Hurricane O A, Patel P K, Betti, R, Froula D H, Regan S P, Slutz S A, Gomez M R, Sweeney M A 2023Rev. Mod. Phys. 95 025005

    [2]

    Davidson S J, Foster J M, Smith C C, Warburton K A, Rose S J 1988Appl. Phys. Lett. 52 847

    [3]

    Perry T S, Davidson S J, Serduke F J D, Bach D R, Smith C C, Foster J M, Doyas R J, Ward R A, Iglesias C A, Rogers F J, Abdallah J Jr, Stewart R E, Kilkenny J D, Lee R W 1991Phys. Rev. Lett. 67 3784

    [4]

    Qiang Y, Ye F, Lu J, Yan X S, Yang R H, Jiang S Q, Ning J M, Zhou L, Chen F X, Yang J L, Wang D M, Xu Z P, You H B, Zhang F Q, Li Z H, Wang G Q, Xiao D L, Wu Z Q, Meng S J, Huang X B, Xu Q, Zhou S T, Zhang D Y, Zhang S Q, Ren X D, Ji C, Li Y, Cai P T, Ren J, Chen S, Zhang H Y 2024Phys. Rev. E 110 065205

    [5]

    Zeng J L, Jin F T, Yuan J M 2001Chin. Phys. Lett. 18 924

    [6]

    Zeng J L, Jin F T, Yuan J M, Lu Q S, 2000Phys. Rev. E 62 7251

    [7]

    Zeng J L, Yuan J L, Lu Q S 2001Phys. Rev. E 64 066412

    [8]

    Zeng J L, Yuan J M 2002Phys. Rev. E. 66 016401

    [9]

    Jin F T, Zeng J L, Yuan J M 2004Phys. Plasmas 11 4318

    [10]

    Winhart G, Eidmann K, Iglesias C A, Bar-Shalom A 1996Phys. Rev. E 53 R1332

    [11]

    Springer PT, Fields D J, Wilson B G, Nash J K, Goldstein W H, Iglesias C A, Rogers F J, Swenson J K, Chen M H, Bar-Shalom A, Stewart R E 1992Phys. Rev. Lett. 69 3735

    [12]

    Bailey J E, Rochau G A, Iglesias C A, Abdallah, J Jr, MacFarlane J J, Golovkin I, Wang P, Mancini R C, Lake P W, Moore T C, Bump M, Garcia O, Mazevet S 2007Phys. Rev. Lett. 99 265002

    [13]

    Zhang J, Li H, Zhao Y, Xiong G, Yuan Z, Zhang H, Yang G, Yang J, Liu S, Jiang S, Ding Y, Zhang B, Zheng Z, Xu Y, Meng X, Yan J 2012Phys. Plasmas 19 113302

    [14]

    Jin F T, Zeng J L, Yuan J M 2003Phys. Rev. E 68 066401

    [15]

    Zeng J L, Jin F T, Zhao G, Yuan J M 2003Chin. Phys. Lett. 20 862

    [16]

    Gao C, Zeng J L 2008Phys. Rev. E 78 046407

    [17]

    Jin F T, Zeng J L, Yuan J M 2004Chin. J. Computation Phys. 21 121(in Chinese) [靳奉涛,曾交龙,袁建民2004计算物理21 121]

    [18]

    Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, Cosse Ph, Faussurier G, Fontes C J, Gilleron F, Golovkin I E, Hansen S B, Iglesias C A, Kilcrease D P, MacFarlane J J, Mancini R C, Nahar S N, Orban C, Pain J-C, Pradhan A K, Sherrill M E, Wilson B G 2015Nature 517 56

    [19]

    Nagayama T, Bailey J E, Loisel G P, Dunham G S, Rochau G A, Blancard C, Colgan J, Cosse Ph, Faussurier G, Fontes C J, Gilleron F, Hansen S B, Iglesias C A, Golovkin I E, Kilcrease D P, MacFarlane J J, Mancini R C, More R M, Orban C, Pain J-C, Sherrill M E, Wilson B G 2019Phys. Rev. Lett. 122 235001

    [20]

    Eidmann K, Bar-Shalom A, Saemann A, Winhart G, 1998Europhys. Lett. 44 459

    [21]

    Zhang J Y, Xu Y, Yang J M, Yang G H, Li H, Yuan Z, Zhao Y, Xiong G, Bao L H, Huang C W, Wu Z Q, Yan J, Ding Y K, Zhang B H, Zheng Z J 2011Phys. Plasmas 18 113301

    [22]

    Zhang J, Yang G, Yang J, Ding Y, Zhang B, Zheng Z, Yan J 2007Phys. Plasmas 14 103301

    [23]

    Zeng J L, Zhao G, Yuan J M, 2006Chin. Phys. Lett. 23 660

    [24]

    Zeng J L, Yuan J M 2006Phys. Rev. E 74 025401R

    [25]

    Zeng J L, Yuan J M 2007Phys. Rev. E 76 026401

    [26]

    Zeng J L 2008J. Phys. B 41 125702

    [27]

    Gao C, Zeng J L, Jin F T, Yuan J M 2013High Energy Density Phys. 9 419

    [28]

    Zeng J L 2005Detailed term accounting investigation on opacity of aluminium plasmas (Changsha: National University of Defense Technology Press) (in Chinese) [曾交龙2005使用细致谱项模型研究铝等离子体的辐射不透明度(长沙:国防科技大学出版社)]

    [29]

    Zeng J L, Jin F T, Yuan J M 2006Front. Phys. China 1 468

    [30]

    Jin F T, Zeng J L, Yuan J M 2005Physics 34 820(in Chinese) [靳奉涛, 曾交龙,袁建民2005物理34 820]

    [31]

    Zeng J L, Yuan J M, Zhao Z X, Lu Q S 2001High power laser and particle 13 60(in Chinese) [曾交龙, 袁建民, 赵增秀, 陆启生2001强激光与粒子束13 60]

    [32]

    Iglesias C A, Rogers F J 1991Astrophys. J. 371 408

    [33]

    Seaton M J, Yan Y, Mihalas D, Pradhan A K 1994Mon. Not. R. Astron. Soc. 266 805

    [34]

    Hansen S B, Bauche J, Bauche-Arnoult C,Gu M F 2007High Energy Density Phys. 3 109

    [35]

    Porcherot Q, Pain J-C, Gilleron F,Blenski T A 2011High Energy Density Phys. 7 234

    [36]

    Blancard C, Cosse P, Faussurier G. 2012Astrophys. J. 745 10

    [37]

    Colgan J, Kilcreasea D P, Magee Jr N H, Armstronga G S J, Abdallah Jr J, Sherrill M E, Fontes C J, Zhang H L, Hakel P 2013High Energy Density Phys. 9 369

    [38]

    Xiong G, Qing B, Zhang Z Y, Jing L F, Zhao Y, Wei M X, Yang Y M, Hou L F, Huang C W, Zhu T, Song T M, Lv M, Zhao Y, Zhang Y X, Yang G H, Wu Z Q, Yan J, Zou Y M, Zhang J Y, Yang J M 2024Matters Radiation Extremes 9 047801

    [39]

    Qing B, Zhang Z, Wei M, Yang Y, Yang Z, Yang G, Zhao Y, Lv M, Xiong G, Hu Z, Zhang J, Yang J, Yan J, 2018Phys. Plasmas 25 023301

    [40]

    Gang X, Yang J M, Zhang J Y, Hu Z M, Zhao Y, Qing B, Yang G H, Wei M X, Yi R Q, Song T M, Li H, Yuan Z, Lv M, Meng X J, Xu Y, Wu Z Q, Yan J 2016Astrophys. J. 816 36

    [41]

    Gao C, Liu Y B, Yan G B, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023Acta Phys. Sin. 72 183101(in Chinese)[高城,刘彦鹏,严冠鹏, 闫杰,陈小棋,侯永,靳奉涛,吴建华,曾交龙,袁建民2023物理学报72 183101]

    [42]

    Li R, Lv H N, Sang J Q, Liu X H, Liang G Y, Wu Y 2024Chinese Phys. B 33 053101

    [43]

    Zeng J L, Li Y J, Hou Y, Yuan J M, 2023Phys. Rev. E 107 L033201

    [44]

    Huang Y H, Liang Z H, Zeng J L, Yuan J M, 2024Phys. Rev. E 109 045210

    [45]

    Liu P F, Gao C, Hou Y, Zeng J L, Yuan J M, 2018Commun. Phys. 1 95

    [46]

    Zeng J L, Li Y J, Yuan J M, 2021J. Quant. Spectrosc. Radiat. Transf. 272 107777

    [47]

    Zeng J L, Jiang X B, Gao C, Wu J H, Yuan J M, 2024Results Phys. 58 107522

    [48]

    Zeng J L, Ye C, Liu P F, Gao C, Li Y J, Yuan J M, 2022Int. J. Mol. Sci. 23 6033

    [49]

    Zeng J L, Gao C, Liu P F, Li Y J, Meng C S, Hou Y, Kang D D, Yuan J M 2022Sci. China-Phys. Mech. Astron. 65 233011

    [50]

    Gao C, Zeng J L, Li Y Q, Jin F T, Yuan J M 2013High Energy Density Phys. 9 583

  • [1] Siyaolitu An, Tong Wang, Lidan Xiao, Di Liu, Xia Zhang, Bing Yan. Molecule opacities of X2Σ+, A2Π, and B2Σ+ states of CO+. Acta Physica Sinica, doi: 10.7498/aps.74.20250380
    [2] Gao Cheng, Liu Yan-Peng, Yan Guan-Peng, Yan Jie, Chen Xiao-Qi, Hou Yong, Jin Feng-Tao, Wu Jian-Hua, Zeng Jiao-Long, Yuan Jian-Min. Theoretical investigation on extreme ultraviolet radiative opacity and emissivity of Sn plasmas at local-thermodynamic equilibrium. Acta Physica Sinica, doi: 10.7498/aps.72.20230455
    [3] Chen Chen, Zhao Guo-Peng, Qi Yue-Ying, Wu Yong, Wang Jian-Guo. Opacities of ${ X}^1\Sigma^+_{\rm g}, a'{}^1\Sigma^-_{\rm u}, a{}^1\Pi_{\rm g} \text{ and } { b}^1\Pi_{\rm u}$ electronic states for nitrogen molecule. Acta Physica Sinica, doi: 10.7498/aps.71.20220043
    [4] Chen Chen, Zhao Guo-Peng, Qi Yue-Ying, Wu Yong, Wang Jian-Guo. Molecular opacities of $ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $, A2Πu and $ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $ states of nitrogen cation. Acta Physica Sinica, doi: 10.7498/aps.71.20220734
    [5] Yu Geng-Hua, Yan Hui, Gao Dang-Li, Zhao Peng-Yi, Liu Hong, Zhu Xiao-Ling, Yang Wei. Calculationof isotope shift of Mg+ ion by using the relativistic multi-configuration interaction method. Acta Physica Sinica, doi: 10.7498/aps.67.20171817
    [6] Zhou Rui, Li Chuan-Liang, He Xiao-Hu, Qiu Xuan-Bing, Meng Hui-Yan, Li Ya-Chao, Lai Yun-Zhong, Wei Ji-Lin, Deng Lun-Hua. Spectroscopic properties of low-lying excited electronic states for CF- anion based on ab initio calculation. Acta Physica Sinica, doi: 10.7498/aps.66.023101
    [7] Xiong Zhuang, Wang Zhen-Xin, Naoum C. Bacalis. Accuracy study for excited atoms (ions):A new variational method. Acta Physica Sinica, doi: 10.7498/aps.63.053104
    [8] Gao Xue-Yan, You Kai, Zhang Xiao-Mei, Liu Yan-Lei, Liu Yu-Fang. Multi-reference calculations on the potential energy curves and spectroscopic properties of the low-lying excited states of BS+. Acta Physica Sinica, doi: 10.7498/aps.62.233302
    [9] Zhang Ji-Yan, Yang Jia-Min, Yang Guo-Hong, Ding Yao-Nan, Li Jun, Yan Jun, Wu Ze-Qing, Ding Yong-Kun, Zhang Bao-Han, Zheng Zhi-Jian. Investigations on radiative opacity measurement by the method of direct laser-heating and self-backlighting. Acta Physica Sinica, doi: 10.7498/aps.62.195201
    [10] Wang Rui-Rong, Wang Wei, Fang Zhi-Heng, An Hong-Hai, Jia Guo, Xie Zhi-Yong, Meng Xiang-Fu. Experimental studies on the opacity of dense aluminum compressed by a laser-driven shock waves. Acta Physica Sinica, doi: 10.7498/aps.62.125202
    [11] Dong Fu-Tong, Wang Fei-Lu, Zhong Jia-Yong, Zhao Gang. Research on the opacity of Fe M-shell unresolved transition array. Acta Physica Sinica, doi: 10.7498/aps.61.163201
    [12] Li Zun-Mao, Xiong Zhuang, Dai Li-Li. Calculation of geometrically active atomic state. Acta Physica Sinica, doi: 10.7498/aps.59.7824
    [13] Yuan Wei-Guo, Dai Chang-Jian, Jin Song, Zhao Hong-Ying, Guan Feng. Study of Ba 6pnd(J=1, 3)autoionizing states. Acta Physica Sinica, doi: 10.7498/aps.57.4076
    [14] Zhang Ji-Yan, Yang Jia-Min, Xu Yan, Yang Guo-Hong, Yan Jun, Meng Guang-Wei, Ding Yao-Nan, Wang Yan. Absorption experiments on radiatively heated Al plasma. Acta Physica Sinica, doi: 10.7498/aps.57.985
    [15] Ma Wen, Jin Feng-Tao, Yuan Jian-Min. Effect of line shift on the calculated radiative opacity using average atom approach. Acta Physica Sinica, doi: 10.7498/aps.56.5709
    [16] Wan Jian-Jie, Xie Lu-You, Dong Chen-Zhong, Jiang Jun, Yan Jun. Theoretical study of forbidden M1, M2, E2 transitions for highly charged Ni-like ions. Acta Physica Sinica, doi: 10.7498/aps.56.152
    [17] Jiang Min-Hao, Meng Xu-Jun. A Hartree-Fock-Slater-Boltzmann-Saha method for detailed atomic structure and equation of state of plasmas. Acta Physica Sinica, doi: 10.7498/aps.54.587
    [18] QI JING-BO, CHEN CHONG-YANG, WANG YAN-SEN. ELECTRON IMPACT IONIZATION CROSS SECTIONS FOR THE Na-LIKE IONS. Acta Physica Sinica, doi: 10.7498/aps.50.1475
    [19] WANG FAN-HOU, CHEN JING-PING, MENG XU-JUN, ZHOU XIAN-MING, LI XI-JUN, SUN YONG-SHENG, JING FU-QIAN. STUDIES ON OPACITY OF SHOCK-GENERATED ARGON PLASMAS. Acta Physica Sinica, doi: 10.7498/aps.50.1308
    [20] TENG HUA-GUO, SHEN BAI-FEI, ZHANG WEN-QI, XU ZHI-ZHAN. EFFECT OF CONFIGURATION INTERACTION ON THE AUTOIONIZATION RATES AND BRANCH RATIOS OF Na LIKE Cu ION. Acta Physica Sinica, doi: 10.7498/aps.43.205
Metrics
  • Abstract views:  7
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  17 May 2025

/

返回文章
返回