Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrical and thermal conductivity of Mg and typical Mg-Al alloys at high temperature and pressure

CHEN Hao XU Yuanji XIAN Jiawei GAO Xingyu TIAN Fuyang SONG Haifeng

Citation:

Electrical and thermal conductivity of Mg and typical Mg-Al alloys at high temperature and pressure

CHEN Hao, XU Yuanji, XIAN Jiawei, GAO Xingyu, TIAN Fuyang, SONG Haifeng
cstr: 32037.14.aps.74.20250352
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Metallic materials are widely used in the industrial field due to their excellent electrical transport properties and superior thermal dissipation performance. However, experimental measurements of electrical and thermal conductivity under high-temperature and high-pressure conditions are challenging and costly. This makes numerical simulation an efficient alternative solution. In this study, we develop a computational software named TREX (TRansport at EXtremes). It is based on the Kubo-Greenwood (KG) formula combined with first-principles molecular dynamics. This software is used to calculate electrical conductivity and electronic thermal conductivity. Using magnesium and magnesium-aluminum alloy AZ31B as research subjects, we systematically investigate their electrical and thermal transport properties. The temperature and pressure are in a range of 300−1200 K and 0−50 GPa, respectively. The method involves using first-principles molecular dynamics simulations to obtain equilibrium configurations of high-temperature disordered structures. Electrical conductivity and electronic thermal conductivity are calculated using the KG formula. Lattice thermal conductivity is determined by the Slack equation. To validate the reliability of our approach, we perform comparative calculations by using the Boltzmann transport equation. The research results are cross-verified with experimental data from Sichuan University and the Aerospace Materials Test and Analysis Center. The findings demonstrate that the maximum relative error between computational and experimental results is within 20%. This confirms the accuracy of our method. Additionally, we elucidate the variation patterns of electrical and thermal conductivity in magnesium and AZ31B alloy with temperature and pressure. These patterns include the reduction in electrical conductivity due to aluminum doping, the significant enhancement of conductivity under high pressure, and the unique temperature-induced thermal conductivity enhancement in AZ31B alloy. The TREX program developed in this study and the established performance dataset provide essential tools and data support. They are useful for research on electrical and thermal transport mechanisms in metallic materials under extreme conditions, and also for engineering applications. All the data presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00128.
      Corresponding author: XIAN Jiawei, xian_jiawei@iapcm.ac.cn ; TIAN Fuyang, fuyang@ustb.edu.cn
    • Funds: Project supported by the Funding of National Key Laboratory of Computational Physics and the National Natural Science Foundation of China (Grant Nos. 52371174, 12204033).
    [1]

    王奥, 盛宇飞, 鲍华 2024 物理学报 73 037201Google Scholar

    Wang A, Shen Y F, Bao H 2024 Acta Phys. Sin. 73 037201Google Scholar

    [2]

    Ventura G, Perfetti M 2014 Electrical and Thermal Conductivity (Dordrecht: Springer Netherlands) pp131–168

    [3]

    Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D 2016 Prog. Polym. Sci. 61 1Google Scholar

    [4]

    Reif-Acherman S 2011 Revista Brasileira de Ensino de Física 33 4602Google Scholar

    [5]

    Demyanov G S, Knyazev D V, Levashov P R 2022 Phys. Rev. E 105 035307Google Scholar

    [6]

    Vlček V, De Koker N, Steinle-Neumann G 2012 Phys. Rev. B 85 184201Google Scholar

    [7]

    Naumov I I, Hemley R J 2015 Phys. Rev. Lett. 114 156403Google Scholar

    [8]

    Matsuoka T, Shimizu K 2009 Nature 458 186Google Scholar

    [9]

    Kietzmann A, Redmer R, Desjarlais M P, Mattsson T R 2008 Phys. Rev. Lett. 101 070401Google Scholar

    [10]

    崔洋, 李寿航, 应韬, 鲍华, 曾小勤 2021 金属学报 57 375Google Scholar

    Yang C, Li S H, Ying T, Bao H, Zeng X Q 2021 Acta Metallurgica Sinica 57 375Google Scholar

    [11]

    Reif F 2009 Fundamentals of Statistical and Thermal Physics (New York: McGraw-Hill) pp483–522

    [12]

    Bulusu A, Walker D 2008 Superlattices Microstruct. 44 1Google Scholar

    [13]

    Migdal K, Zhakhovsky V, Yanilkin A, Petrov Y V, Inogamov N 2019 Appl. Surf. Sci. 478 818Google Scholar

    [14]

    Calderín L, Karasiev V, Trickey S 2017 Comput. Phys. Commun. 221 118Google Scholar

    [15]

    French M, Mattsson T R 2014 Phys. Rev. B 90 165113Google Scholar

    [16]

    Kramer D A 2010 Springer Handbook of Materials Data (Cham: Springer International Publishing) pp151–159

    [17]

    Zhang Q, Fu J, Zhou J, Qi L, Li H 2024 Chem. Eng. J. 496 154023Google Scholar

    [18]

    Xin W, Wang S, Yan Z 2025 Mater. Today Commun. 43 111584Google Scholar

    [19]

    Madsen G K, Carrete J, Verstraete M J 2018 Comput. Phys. Commun. 231 140Google Scholar

    [20]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

    [21]

    Moseley L, Lukes T 1978 Am. J. Phys 46 676Google Scholar

    [22]

    Knyazev D V, Levashov P R 2019 Contrib. Plasma Phys. 59 345Google Scholar

    [23]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [24]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Blöchl P 1994 Phys. Rev. B 50 17953Google Scholar

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Kubo R, Yokota M, Nakajima S 1957 J. Phys. Soc. Jpn. 12 1203Google Scholar

    [30]

    Tian F, Lin D Y, Gao X, Zhao Y F, Song H F 2020 J. Chem. Phys. 153 034101Google Scholar

    [31]

    Desjarlais M, Kress J, Collins L 2002 Phys. Rev. E 66 025401Google Scholar

    [32]

    Choi G, Kim H S, Lee K, Park S H, Cha J, Chung I, Lee W B 2017 J. Alloys Compd. 727 1237Google Scholar

    [33]

    Ahmad S, Mahanti S D 2010 Phys. Rev. B 81 165203Google Scholar

    [34]

    Lang H N D, van Kempen H, Wyder P 1978 J. Phys. F: Met. Phys. 8 L39Google Scholar

    [35]

    Iida T, Guthrie R I L 1988 The Physical Properties of Liquid Metals (New York: Oxford Clarendon Press) pp266–253

    [36]

    Pan H, Pan F, Wang X, Peng J, Gou J, She J, Tang A 2013 Int. J. Thermophys. 34 1336Google Scholar

    [37]

    Chen F, Huang Q, Jiang Z, Zhao J, Sun B, Li Y 2015 Vacuum 115 80Google Scholar

    [38]

    Motta C, El-Mellouhi F, Sanvito S 2015 Sci. Rep. 5 12746Google Scholar

    [39]

    Madsen G K, Singh D J 2006 Comput. Phys. Commun. 175 67Google Scholar

    [40]

    Yue S Y, Zhang X, Stackhouse S, Qin G, Di Napoli E, Hu M 2016 Phys. Rev. B 94 075149Google Scholar

    [41]

    Blakemore J S 1985 Solid State Physics (Cambridge: Cambridge University Press) pp149–292

    [42]

    Ho C Y, Powell R W, Liley P E 1972 J. Phys. Chem. Ref. Data 1 279Google Scholar

    [43]

    Ying T, Zheng M, Li Z, Qiao X 2014 J. Alloys Compd. 608 19Google Scholar

  • 图 2  512个原子的AZ31B合金超胞结构示意图(蓝色原子表示镁, 红色原子表示铝)

    Figure 2.  Schematic diagram of the supercell structure of AZ31B alloy with 512 atoms. Blue atoms represent magnesium, and red atoms represent aluminum.

    图 1  TREX程序(基于KG公式与AIMD模拟) 计算电导率和电子热导率的流程示意图. 红色虚线框表示TREX程序的核心功能(包括平衡构型提取、电子输运性质计算等); 蓝色框表示与第一性原理计算软件相关的计算内容(如第一性原理分子动力学、电子结构、跃迁矩阵等)

    Figure 1.  Schematic diagram of the workflow for calculating electrical conductivity and electronic thermal conductivity using the TREX code (based on the Kubo-Greenwood formula and AIMD simulations). The red dashed box indicates the core functions of the TREX code (including equilibrium configuration extraction, electronic transport property calculations, etc.). The blue boxes represent calculations related to first-principles software (such as ab initio molecular dynamics, electronic structure, and transition matrices).

    图 3  (a)镁单质电导率计算结果与实验值对比图, 竖点线表示镁在常压条件下的熔化温度; (b) AZ31B合金电导率计算结果与实验值对比图, 黑色(红色、蓝色) 图例表示0 GPa (40, 50 GPa)的实验和计算结果

    Figure 3.  (a) Comparison between the calculated electrical conductivity of magnesium single crystal and the experimental values, with the vertical dotted line indicating the melting temperature of magnesium under ambient pressure; (b) the comparison between the calculated electrical conductivity of AZ31B alloy and the experimental values, where the black (red, blue) legend represents the experimental and calculated results at 0 GPa (40, 50 GPa).

    图 4  (a)镁的热导率各分项贡献的组成; (b) AZ31B合金的热导率各分项贡献的组成, 实线和实心(虚线和空心) 图例表示0 GPa (40 GPa) 的计算结果. ETC表示电子热导率, LTC表示晶格热导率, TTC表示总热导率

    Figure 4.  (a) Composition of various contributions to the thermal conductivity of magnesium; (b) the composition of different contributions to the thermal conductivity of AZ31B alloy, where solid lines and solid symbols (dashed lines and hollow symbols) represent the calculated results at 0 GPa (40 GPa). Here, ETC denotes the electronic thermal conductivity, LTC represents the lattice thermal conductivity, and TTC stands for the total thermal conductivity.

    图 5  (a)镁单质热导率计算结果与实验值对比图, 竖点线表示镁在常压条件下的熔化温度; (b) AZ31B合金热导率计算结果与实验值对比图, 黑色(红色) 图例表示0 GPa (40 GPa) 的实验和计算结果, 红色虚线表示对40 GPa实验结果的线性拟合

    Figure 5.  (a) A comparison between the calculated and experimental values of thermal conductivity for pure magnesium, with the vertical dotted line indicating the melting temperature of magnesium under ambient pressure; (b) a comparison between the calculated and experimental values of thermal conductivity for AZ31B alloy, where black (red) symbols represent the experimental and computational results at 0 GPa (40 GPa), and the red dashed line denotes the linear fit to the experimental data at 40 GPa.

    表 1  电子弛豫时间τ (单位: 10–14 s) 随温度T变化的拟合公式$ \tau=AT^{-r} $

    Table 1.  Fitting formula for the electron relaxation time τ (unit: 10–14 s) as a function of temperature T is given by $ \tau = A T^{-r} $.

    材料 压强/GPa 参数A 参数r R2
    Mg 0 1306.36 1.12 0.9999
    AZ31B 0 52.54 0.58 0.9976
    AZ31B 40 230.74 0.76 0.9953
    AZ31B 50 182.05 0.73 0.9993
    DownLoad: CSV
  • [1]

    王奥, 盛宇飞, 鲍华 2024 物理学报 73 037201Google Scholar

    Wang A, Shen Y F, Bao H 2024 Acta Phys. Sin. 73 037201Google Scholar

    [2]

    Ventura G, Perfetti M 2014 Electrical and Thermal Conductivity (Dordrecht: Springer Netherlands) pp131–168

    [3]

    Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D 2016 Prog. Polym. Sci. 61 1Google Scholar

    [4]

    Reif-Acherman S 2011 Revista Brasileira de Ensino de Física 33 4602Google Scholar

    [5]

    Demyanov G S, Knyazev D V, Levashov P R 2022 Phys. Rev. E 105 035307Google Scholar

    [6]

    Vlček V, De Koker N, Steinle-Neumann G 2012 Phys. Rev. B 85 184201Google Scholar

    [7]

    Naumov I I, Hemley R J 2015 Phys. Rev. Lett. 114 156403Google Scholar

    [8]

    Matsuoka T, Shimizu K 2009 Nature 458 186Google Scholar

    [9]

    Kietzmann A, Redmer R, Desjarlais M P, Mattsson T R 2008 Phys. Rev. Lett. 101 070401Google Scholar

    [10]

    崔洋, 李寿航, 应韬, 鲍华, 曾小勤 2021 金属学报 57 375Google Scholar

    Yang C, Li S H, Ying T, Bao H, Zeng X Q 2021 Acta Metallurgica Sinica 57 375Google Scholar

    [11]

    Reif F 2009 Fundamentals of Statistical and Thermal Physics (New York: McGraw-Hill) pp483–522

    [12]

    Bulusu A, Walker D 2008 Superlattices Microstruct. 44 1Google Scholar

    [13]

    Migdal K, Zhakhovsky V, Yanilkin A, Petrov Y V, Inogamov N 2019 Appl. Surf. Sci. 478 818Google Scholar

    [14]

    Calderín L, Karasiev V, Trickey S 2017 Comput. Phys. Commun. 221 118Google Scholar

    [15]

    French M, Mattsson T R 2014 Phys. Rev. B 90 165113Google Scholar

    [16]

    Kramer D A 2010 Springer Handbook of Materials Data (Cham: Springer International Publishing) pp151–159

    [17]

    Zhang Q, Fu J, Zhou J, Qi L, Li H 2024 Chem. Eng. J. 496 154023Google Scholar

    [18]

    Xin W, Wang S, Yan Z 2025 Mater. Today Commun. 43 111584Google Scholar

    [19]

    Madsen G K, Carrete J, Verstraete M J 2018 Comput. Phys. Commun. 231 140Google Scholar

    [20]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

    [21]

    Moseley L, Lukes T 1978 Am. J. Phys 46 676Google Scholar

    [22]

    Knyazev D V, Levashov P R 2019 Contrib. Plasma Phys. 59 345Google Scholar

    [23]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [24]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Blöchl P 1994 Phys. Rev. B 50 17953Google Scholar

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Kubo R, Yokota M, Nakajima S 1957 J. Phys. Soc. Jpn. 12 1203Google Scholar

    [30]

    Tian F, Lin D Y, Gao X, Zhao Y F, Song H F 2020 J. Chem. Phys. 153 034101Google Scholar

    [31]

    Desjarlais M, Kress J, Collins L 2002 Phys. Rev. E 66 025401Google Scholar

    [32]

    Choi G, Kim H S, Lee K, Park S H, Cha J, Chung I, Lee W B 2017 J. Alloys Compd. 727 1237Google Scholar

    [33]

    Ahmad S, Mahanti S D 2010 Phys. Rev. B 81 165203Google Scholar

    [34]

    Lang H N D, van Kempen H, Wyder P 1978 J. Phys. F: Met. Phys. 8 L39Google Scholar

    [35]

    Iida T, Guthrie R I L 1988 The Physical Properties of Liquid Metals (New York: Oxford Clarendon Press) pp266–253

    [36]

    Pan H, Pan F, Wang X, Peng J, Gou J, She J, Tang A 2013 Int. J. Thermophys. 34 1336Google Scholar

    [37]

    Chen F, Huang Q, Jiang Z, Zhao J, Sun B, Li Y 2015 Vacuum 115 80Google Scholar

    [38]

    Motta C, El-Mellouhi F, Sanvito S 2015 Sci. Rep. 5 12746Google Scholar

    [39]

    Madsen G K, Singh D J 2006 Comput. Phys. Commun. 175 67Google Scholar

    [40]

    Yue S Y, Zhang X, Stackhouse S, Qin G, Di Napoli E, Hu M 2016 Phys. Rev. B 94 075149Google Scholar

    [41]

    Blakemore J S 1985 Solid State Physics (Cambridge: Cambridge University Press) pp149–292

    [42]

    Ho C Y, Powell R W, Liley P E 1972 J. Phys. Chem. Ref. Data 1 279Google Scholar

    [43]

    Ying T, Zheng M, Li Z, Qiao X 2014 J. Alloys Compd. 608 19Google Scholar

  • [1] Li Gao-Fang, Yin Wen, Huang Jing-Guo, Cui Hao-Yang, Ye Han-Jing, Gao Yan-Qing, Huang Zhi-Ming, Chu Jun-Hao. Conductivity in sulfur doped gallium selenide crystals measured by terahertz time-domain spectroscopy. Acta Physica Sinica, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [2] Zheng Jian-Jun, Zhang Li-Ping. Thermoelectric properties of monolayer Cu2X. Acta Physica Sinica, 2023, 72(8): 086301. doi: 10.7498/aps.72.20222015
    [3] Zheng Jian-Jun, Zhang Li-Ping. Monolayer Cu2X (X=S, Se): excellent thermoelectric material with low lattice thermal conductivity. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [4] Tang Dao-Sheng, Hua Yu-Chao, Zhou Yan-Guang, Cao Bing-Yang. Thermal conductivity modeling of GaN films. Acta Physica Sinica, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [5] Du Yi-Shuai, Kang Wei, Zheng Rui-Lun. Variations of the electrical conductivity and the Fermi velocity of epitaxial graphene with temperature. Acta Physica Sinica, 2017, 66(1): 014701. doi: 10.7498/aps.66.014701
    [6] Fu Zhi-Jian, Jia Li-Jun, Xia Ji-Hong, Tang Ke, Li Zhao-Hong, Quan Wei-Long, Chen Qi-Feng. A simple and effective simulation for electrical conductivity of warm dense titanium. Acta Physica Sinica, 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [7] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [8] Li Yi-Tong, Shen Liang-Ping, Wang Hao, Wang Han-Bin. Investigation on the thermal and electrical conductivity of water based zinc oxide nanofluids. Acta Physica Sinica, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [9] Zhang Xin, Ma Xu-Yi, Zhang Fei-Peng, Wu Peng-Xu, Lu Qing-Mei, Liu Yan-Qin, Zhang Jiu-Xing. Synthesis and thermoelectric properties of nanostructured bismuth telluride alloys. Acta Physica Sinica, 2012, 61(4): 047201. doi: 10.7498/aps.61.047201
    [10] Chen Yun-Yun, Zheng Gai-Ge, Gu Fang, Li Zhen-Hua. Effect of dust particle potential on plasma conductivity. Acta Physica Sinica, 2012, 61(15): 154202. doi: 10.7498/aps.61.154202
    [11] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [12] Li Shi-Bin, Wu Zhi-Ming, Yuan Kai, Liao Nai-Man, Li Wei, Jiang Ya-Dong. Study on thermal conductivity of hydrogenated amorphous silicon films. Acta Physica Sinica, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [13] Jiang Ji-Hao, Wang Gui-Ji, Yang Yu. A new method to measure the electrical conductivity of metals in electric exploding. Acta Physica Sinica, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [14] He Guo-Rong, Zheng Wan-Hua, Qu Hong-Wei, Yang Guo-Hua, Wang Qing, Cao Yu-Lian, Chen Liang-Hui. Influence of fused interface on the optical and thermal characteristics of vertical cavity lasers. Acta Physica Sinica, 2008, 57(3): 1840-1845. doi: 10.7498/aps.57.1840
    [15] Yang Feng-Xia, Zhang Duan-Ming, Deng Zong-Wei, Jiang Sheng-Lin, Xu Jie, Li Shu-Dan. The influence of the matrix electrical conductivity on the dc poling behaviors and the loss of 0-3 ferroelectric composites. Acta Physica Sinica, 2008, 57(6): 3840-3845. doi: 10.7498/aps.57.3840
    [16] Quan Rong-Hui, Han Jian-Wei, Huang Jian-Guo, Zhang Zhen-Long. Modeling analysis of radiation induced conductivity in electrical insulator. Acta Physica Sinica, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [17] Xu Ren-Xin, Chen Wen, Zhou Jing. Effect of polymer conductance on polarization properties of 0-3 piezoelectric composite. Acta Physica Sinica, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
    [18] Shi Yan-Xiang, Ge De-Biao, Wu Jian. Influence of charge and discharge processes of dust particles on the dust plasma conductivity. Acta Physica Sinica, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [19] Luo Pai-Feng, Tang Xin-Feng, Li Han, Liu Tao-Xiang. The synthesis and thermoelectric properties of double-atom-filled BamCenFeCo3Sb12 compounds. Acta Physica Sinica, 2004, 53(9): 3234-3238. doi: 10.7498/aps.53.3234
    [20] Yang Hong-Shun, Li Peng-Cheng, Cai Yi-Sheng, Yu Min, Li Zhi-Quan, Yang Dong-Sheng, Zhang Liang, Wang Yu-Hong, Li Ming-De, Cao Lie-Zhao, Long Yun-Zhe, Chen Zhao-Jia. . Acta Physica Sinica, 2002, 51(3): 679-684. doi: 10.7498/aps.51.679
Metrics
  • Abstract views:  205
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  17 March 2025
  • Accepted Date:  18 May 2025
  • Available Online:  04 June 2025
  • Published Online:  20 June 2025

/

返回文章
返回