-
To gain deeper insight into the relationship between correlated states and the superconducting pairing mechanism in twisted bilayer graphene, as well as the influence of the twist angle on superconductivity, we employ a large-scale, unbiased constrained-path quantum Monte Carlo method to systematically simulate the effective two-orbital Hubbard model for twisted bilayer graphene. Initially, we investigate the modulation of superconductivity by nearest-neighbor attractive Coulomb interactions, demonstrating that electron-phonon coupling plays a significant role in the system. Our numerical results reveal that the superconducting state is dominated by chiral NN–d + id superconducting electron pairing symmetry, and that such nearest-neighbor attractive Coulomb interactions significantly enhance the effective long-range pairing correlation function of chiral NN–d + id wave. From this perspective, it is evident that electronphonon coupling positively contributes to the superconductivity of the system.
Subsequently, we explore how the twist angle affects the superconducting state. The flat-band structure conducted by hopping anisotropy reflects the different twist angles of the system. Our results show that as the twist angle deviates downward from 1.08°, the effective pairing correlation function of the chiral NN–d + id wave increases substantially. Conversely, as the twist angle exceeds 1.08°, the effective correlation function of the chiral NN–d + id wave exhibits a tendency of decline. These results suggest that further reduction in the twist angle may lead to higher superconducting transition temperatures in twisted bilayer graphene system.
Ultimately, we analyze how nearest-neighbor attractive Coulomb interactions and flat-band structures influence superconductivity from the standpoint of magnetic properties. The observed enhancement of the spin structure factor near the Γ point in the Brillouin zone indicates that enhanced antiferromagnetic correlations are essential for enhancing the superconducting transition temperature and for stabilizing chiral NN–d + id wave. Through this series of investigations, our numerical findings not only contribute to a more comprehensive understanding of strongly correlated systems such as twisted bilayer graphene, but also offer guidance for identifying twist-angle systems with potentially higher superconducting transition temperatures.-
Keywords:
- Chiral d + id superconducting state /
- Constrained Path Quantum Monte Carlo (CPQMC) method /
- Twisted Bilayer Graphene /
- Magnetism
-
[1] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 55643
[2] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 55680
[3] Oh M, Nuckolls K P, Wong D, Lee R L, Liu X, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600240
[4] Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574653
[5] Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T, Jarillo-Herrero P 2020 Phys. Rev. Lett. 124076801
[6] Jaoui A, Das I, Di Battista G, Díez-Mérida J, Lu X, Watanabe K, Taniguchi T, Ishizuka H, Levitov L, Efetov D K 2022 Nature Physics 18633
[7] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367900
[8] Tilak N, Lai X, Wu S, Zhang Z, Xu M, Ribeiro R d A, Canfield P C, Andrei E Y 2021 Nature Communications 124180
[9] Lisi S, Lu X, Benschop T, de Jong T A, Stepanov P, Duran J R, Margot F, Cucchi I, Cappelli E, Hunter A, Tamai A, Kandyba V, Giampietri A, Barinov A, Jobst J, Stalman V, Leeuwenhoek M, Watanabe K, Taniguchi T, Rademaker L, van der Molen S J, Allan M P, Efetov D K, Baumberger F 2021 Nature Physics 17189
[10] Haddadi F, Wu Q, Kruchkov A J, Yazyev O V 2020 Nano Letters 202410
[11] Cao Y, Rodan-Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, Jarillo-Herrero P 2021 Science 372264
[12] Hasegawa Y, Kohmoto M 2013 Phys. Rev. B 88125426
[13] Liu J P, Dai X 2020 Acta Physica Sinica. 69147301.(刘健鹏,戴希2020物理学报72147301)
[14] Lucignano P, Alfè D, Cataudella V, Ninno D, Cantele G 2019 Phys. Rev. B 99195419
[15] Yuan N F Q, Fu L 2018 Phys. Rev. B 98045103
[16] Yuan N F Q, Fu L 2018 Phys. Rev. B 98079901
[17] Po H C, Zou L, Vishwanath A, Senthil T 2018 Phys. Rev. X 8031089
[18] Kennes D M, Lischner J, Karrasch C 2018 Phys. Rev. B 98241407
[19] Huang T, Zhang L, Ma T 2019 Science Bulletin 64310
[20] Guo H, Zhu X, Feng S, Scalettar R T 2018 Phys. Rev. B 97235453
[21] Gu X, Chen C, Leaw J N, Laksono E, Pereira V M, Vignale G, Adam S 2020 Phys. Rev. B 101180506
[22] Van Loon S, Sá de Melo C A R 2025 Phys. Rev. B 111064515
[23] Ray S, Jung J, Das T 2019 Phys. Rev. B 99134515
[24] Roy B, Juričić V 2019 Phys. Rev. B 99121407
[25] Peltonen T J, Ojajärvi R, Heikkilä T T 2018 Phys. Rev. B 98220504
[26] Pahlevanzadeh B, Sahebsara P, Sénéchal D 2021 SciPost Phys. 11017
[27] Pangburn E, Alvarado M, Awoga O A, Pépin C, Bena C 2024 Phys. Rev. B 110184515
[28] Wagner G, Kwan Y H, Bultinck N, Simon S H, Parameswaran S A 2024 Phys. Rev. B 110214517
[29] Wang Y, Kang J, Fernandes R M 2021 Phys. Rev. B 103024506
[30] Chen C, Nuckolls K P, Ding S, Miao W, Wong D, Oh M, Lee R L, He S, Peng C, Pei D, Li Y, Hao C, Yan H, Xiao H, Gao H, Li Q, Zhang S, Liu J, He L, Watanabe K, Taniguchi T, Jozwiak C, Bostwick A, Rotenberg E, Li C, Han X, Pan D, Liu Z, Dai X, Liu C, Bernevig B A, Wang Y, Yazdani A, Chen Y 2024 Nature 636342
[31] Lian B, Wang Z, Bernevig B A 2019 Phys. Rev. Lett. 122257002
[32] Wu F, MacDonald A H, Martin I 2018 Phys. Rev. Lett. 121257001
[33] Liu C X, Chen Y, Yazdani A, Bernevig B A 2024 Phys. Rev. B 110045133
[34] Girotto N, Linhart L, Libisch F 2023 Phys. Rev. B 108155415
[35] Choi Y W, Choi H J 2018 Phys. Rev. B 98241412
[36] Das Sarma S, Wu F 2020 Annals of Physics 417168193
[37] Gao S, Zhou J J, Luo Y, Bernardi M 2024 Phys. Rev. Mater. 8 L051001
[38] Nam N N T, Koshino M 2017 Phys. Rev. B 96075311
[39] Trotter H F 1959 Proceedings of the American Mathematical Society 10545
[40] Suzuki M 1976 Communications in Mathematical Physics 51183
[41] Hirsch J E 1983 Phys. Rev. B 284059
[42] Zhang S, Carlson J, Gubernatis J E 1997 Phys. Rev. B 557464
[43] Shi H, Zhang S 2013 Phys. Rev. B 88125132
[44] Shi H, Jiménez-Hoyos C A, Rodríguez-Guzmán R, Scuseria G E, Zhang S 2014 Phys. Rev. B 89125129
[45] Vitali E, Shi H, Qin M, Zhang S 2016 Phys. Rev. B 94085140
[46] Xu X Y, Wessel S, Meng Z Y 2016 Phys. Rev. B 94115105
[47] Ying T, Wessel S 2018 Phys. Rev. B 97075127
[48] Fang S C, Liu G K, Lin H Q, Huang Z B 2019 Phys. Rev. B 100115135
[49] Fang S C, Zheng X J, Lin H Q, Huang Z B 2020 Journal of Physics:Condensed Matter 33025601
[50] Chen Z, Wang Y, Rebec S N, Jia T, Hashimoto M, Lu D, Moritz B, Moore R G, Devereaux T P, Shen Z X 2021 Science 3731235
[51] Wang Y, Chen Z, Shi T, Moritz B, Shen Z X, Devereaux T P 2021 Phys. Rev. Lett. 127197003
[52] Cheng K, Fang S C, Huang Z B 2024 Phys. Rev. B 109014519
[53] Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75473
[54] Halboth C J, Metzner W 2000 Phys. Rev. Lett. 855162
[55] Headings N S, Hayden S M, Coldea R, Perring T G 2010 Phys. Rev. Lett. 105247001
[56] Sun Z, Lin H Q 2024 Phys. Rev. B 109035107
[57] Dai P 2015 Rev. Mod. Phys. 87855
[58] Johnston D C 2010 Advances in Physics 59803
[59] Mebratie G, Abera B, Mekuye B, Bekele T 2024 Results in Physics 57107446
[60] Gong Z, Zou J, Xu G 2024 Phys. Rev. B 110085128
[61] Tilak N, Lai X, Wu S, Zhang Z, Xu M, Ribeiro R d A, Canfield P C, Andrei E Y 2021 Nature communications 124180
[62] Li Q, Zhang H, Wang Y, Chen W, Bao C, Liu Q, Lin T, Zhang S, Zhang H, Watanabe K, Taniguchi T, Avila J, Dudin P, Li Q, Yu P, Duan W, Song Z, Zhou S 2024 Nature Materials 231070
[63] Tarnopolsky G, Kruchkov A J, Vishwanath A 2019 Phys. Rev. Lett. 122106405
[64] Chou Y Z, Tan Y, Wu F, Das Sarma S 2024 Phys. Rev. B 110 L041108
[65] Yu G, Wang Y, Katsnelson M I, Yuan S 2023 Phys. Rev. B 108045138
Metrics
- Abstract views: 81
- PDF Downloads: 3
- Cited By: 0