Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum Monte Carlo Study of Magnetism and Chiral d + id-Wave Superconducivity in Twisted Bilayer Graphene

FANG Shichao LIAO Xinyi

Citation:

Quantum Monte Carlo Study of Magnetism and Chiral d + id-Wave Superconducivity in Twisted Bilayer Graphene

FANG Shichao, LIAO Xinyi
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • To gain deeper insight into the relationship between correlated states and the superconducting pairing mechanism in twisted bilayer graphene, as well as the influence of the twist angle on superconductivity, we employ a large-scale, unbiased constrained-path quantum Monte Carlo method to systematically simulate the effective two-orbital Hubbard model for twisted bilayer graphene. Initially, we investigate the modulation of superconductivity by nearest-neighbor attractive Coulomb interactions, demonstrating that electron-phonon coupling plays a significant role in the system. Our numerical results reveal that the superconducting state is dominated by chiral NNd + id superconducting electron pairing symmetry, and that such nearest-neighbor attractive Coulomb interactions significantly enhance the effective long-range pairing correlation function of chiral NNd + id wave. From this perspective, it is evident that electronphonon coupling positively contributes to the superconductivity of the system.
    Subsequently, we explore how the twist angle affects the superconducting state. The flat-band structure conducted by hopping anisotropy reflects the different twist angles of the system. Our results show that as the twist angle deviates downward from 1.08°, the effective pairing correlation function of the chiral NNd + id wave increases substantially. Conversely, as the twist angle exceeds 1.08°, the effective correlation function of the chiral NNd + id wave exhibits a tendency of decline. These results suggest that further reduction in the twist angle may lead to higher superconducting transition temperatures in twisted bilayer graphene system.
    Ultimately, we analyze how nearest-neighbor attractive Coulomb interactions and flat-band structures influence superconductivity from the standpoint of magnetic properties. The observed enhancement of the spin structure factor near the Γ point in the Brillouin zone indicates that enhanced antiferromagnetic correlations are essential for enhancing the superconducting transition temperature and for stabilizing chiral NNd + id wave. Through this series of investigations, our numerical findings not only contribute to a more comprehensive understanding of strongly correlated systems such as twisted bilayer graphene, but also offer guidance for identifying twist-angle systems with potentially higher superconducting transition temperatures.
  • [1]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 55643

    [2]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 55680

    [3]

    Oh M, Nuckolls K P, Wong D, Lee R L, Liu X, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600240

    [4]

    Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574653

    [5]

    Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T, Jarillo-Herrero P 2020 Phys. Rev. Lett. 124076801

    [6]

    Jaoui A, Das I, Di Battista G, Díez-Mérida J, Lu X, Watanabe K, Taniguchi T, Ishizuka H, Levitov L, Efetov D K 2022 Nature Physics 18633

    [7]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367900

    [8]

    Tilak N, Lai X, Wu S, Zhang Z, Xu M, Ribeiro R d A, Canfield P C, Andrei E Y 2021 Nature Communications 124180

    [9]

    Lisi S, Lu X, Benschop T, de Jong T A, Stepanov P, Duran J R, Margot F, Cucchi I, Cappelli E, Hunter A, Tamai A, Kandyba V, Giampietri A, Barinov A, Jobst J, Stalman V, Leeuwenhoek M, Watanabe K, Taniguchi T, Rademaker L, van der Molen S J, Allan M P, Efetov D K, Baumberger F 2021 Nature Physics 17189

    [10]

    Haddadi F, Wu Q, Kruchkov A J, Yazyev O V 2020 Nano Letters 202410

    [11]

    Cao Y, Rodan-Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, Jarillo-Herrero P 2021 Science 372264

    [12]

    Hasegawa Y, Kohmoto M 2013 Phys. Rev. B 88125426

    [13]

    Liu J P, Dai X 2020 Acta Physica Sinica. 69147301.(刘健鹏,戴希2020物理学报72147301)

    [14]

    Lucignano P, Alfè D, Cataudella V, Ninno D, Cantele G 2019 Phys. Rev. B 99195419

    [15]

    Yuan N F Q, Fu L 2018 Phys. Rev. B 98045103

    [16]

    Yuan N F Q, Fu L 2018 Phys. Rev. B 98079901

    [17]

    Po H C, Zou L, Vishwanath A, Senthil T 2018 Phys. Rev. X 8031089

    [18]

    Kennes D M, Lischner J, Karrasch C 2018 Phys. Rev. B 98241407

    [19]

    Huang T, Zhang L, Ma T 2019 Science Bulletin 64310

    [20]

    Guo H, Zhu X, Feng S, Scalettar R T 2018 Phys. Rev. B 97235453

    [21]

    Gu X, Chen C, Leaw J N, Laksono E, Pereira V M, Vignale G, Adam S 2020 Phys. Rev. B 101180506

    [22]

    Van Loon S, Sá de Melo C A R 2025 Phys. Rev. B 111064515

    [23]

    Ray S, Jung J, Das T 2019 Phys. Rev. B 99134515

    [24]

    Roy B, Juričić V 2019 Phys. Rev. B 99121407

    [25]

    Peltonen T J, Ojajärvi R, Heikkilä T T 2018 Phys. Rev. B 98220504

    [26]

    Pahlevanzadeh B, Sahebsara P, Sénéchal D 2021 SciPost Phys. 11017

    [27]

    Pangburn E, Alvarado M, Awoga O A, Pépin C, Bena C 2024 Phys. Rev. B 110184515

    [28]

    Wagner G, Kwan Y H, Bultinck N, Simon S H, Parameswaran S A 2024 Phys. Rev. B 110214517

    [29]

    Wang Y, Kang J, Fernandes R M 2021 Phys. Rev. B 103024506

    [30]

    Chen C, Nuckolls K P, Ding S, Miao W, Wong D, Oh M, Lee R L, He S, Peng C, Pei D, Li Y, Hao C, Yan H, Xiao H, Gao H, Li Q, Zhang S, Liu J, He L, Watanabe K, Taniguchi T, Jozwiak C, Bostwick A, Rotenberg E, Li C, Han X, Pan D, Liu Z, Dai X, Liu C, Bernevig B A, Wang Y, Yazdani A, Chen Y 2024 Nature 636342

    [31]

    Lian B, Wang Z, Bernevig B A 2019 Phys. Rev. Lett. 122257002

    [32]

    Wu F, MacDonald A H, Martin I 2018 Phys. Rev. Lett. 121257001

    [33]

    Liu C X, Chen Y, Yazdani A, Bernevig B A 2024 Phys. Rev. B 110045133

    [34]

    Girotto N, Linhart L, Libisch F 2023 Phys. Rev. B 108155415

    [35]

    Choi Y W, Choi H J 2018 Phys. Rev. B 98241412

    [36]

    Das Sarma S, Wu F 2020 Annals of Physics 417168193

    [37]

    Gao S, Zhou J J, Luo Y, Bernardi M 2024 Phys. Rev. Mater. 8 L051001

    [38]

    Nam N N T, Koshino M 2017 Phys. Rev. B 96075311

    [39]

    Trotter H F 1959 Proceedings of the American Mathematical Society 10545

    [40]

    Suzuki M 1976 Communications in Mathematical Physics 51183

    [41]

    Hirsch J E 1983 Phys. Rev. B 284059

    [42]

    Zhang S, Carlson J, Gubernatis J E 1997 Phys. Rev. B 557464

    [43]

    Shi H, Zhang S 2013 Phys. Rev. B 88125132

    [44]

    Shi H, Jiménez-Hoyos C A, Rodríguez-Guzmán R, Scuseria G E, Zhang S 2014 Phys. Rev. B 89125129

    [45]

    Vitali E, Shi H, Qin M, Zhang S 2016 Phys. Rev. B 94085140

    [46]

    Xu X Y, Wessel S, Meng Z Y 2016 Phys. Rev. B 94115105

    [47]

    Ying T, Wessel S 2018 Phys. Rev. B 97075127

    [48]

    Fang S C, Liu G K, Lin H Q, Huang Z B 2019 Phys. Rev. B 100115135

    [49]

    Fang S C, Zheng X J, Lin H Q, Huang Z B 2020 Journal of Physics:Condensed Matter 33025601

    [50]

    Chen Z, Wang Y, Rebec S N, Jia T, Hashimoto M, Lu D, Moritz B, Moore R G, Devereaux T P, Shen Z X 2021 Science 3731235

    [51]

    Wang Y, Chen Z, Shi T, Moritz B, Shen Z X, Devereaux T P 2021 Phys. Rev. Lett. 127197003

    [52]

    Cheng K, Fang S C, Huang Z B 2024 Phys. Rev. B 109014519

    [53]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75473

    [54]

    Halboth C J, Metzner W 2000 Phys. Rev. Lett. 855162

    [55]

    Headings N S, Hayden S M, Coldea R, Perring T G 2010 Phys. Rev. Lett. 105247001

    [56]

    Sun Z, Lin H Q 2024 Phys. Rev. B 109035107

    [57]

    Dai P 2015 Rev. Mod. Phys. 87855

    [58]

    Johnston D C 2010 Advances in Physics 59803

    [59]

    Mebratie G, Abera B, Mekuye B, Bekele T 2024 Results in Physics 57107446

    [60]

    Gong Z, Zou J, Xu G 2024 Phys. Rev. B 110085128

    [61]

    Tilak N, Lai X, Wu S, Zhang Z, Xu M, Ribeiro R d A, Canfield P C, Andrei E Y 2021 Nature communications 124180

    [62]

    Li Q, Zhang H, Wang Y, Chen W, Bao C, Liu Q, Lin T, Zhang S, Zhang H, Watanabe K, Taniguchi T, Avila J, Dudin P, Li Q, Yu P, Duan W, Song Z, Zhou S 2024 Nature Materials 231070

    [63]

    Tarnopolsky G, Kruchkov A J, Vishwanath A 2019 Phys. Rev. Lett. 122106405

    [64]

    Chou Y Z, Tan Y, Wu F, Das Sarma S 2024 Phys. Rev. B 110 L041108

    [65]

    Yu G, Wang Y, Katsnelson M I, Yuan S 2023 Phys. Rev. B 108045138

  • [1] Ji Yi-Ru, Chu Yan-Bang, Xian Le-De, Yang Wei, Zhang Guang-Yu. From magic angle twisted bilayer graphene to moiré superlattice quantum simulator. Acta Physica Sinica, doi: 10.7498/aps.70.20210476
    [2] Wang Shao-Xia, Zhao Xu-Cai, Pan Duo-Qiao, Pang Guo-Wang, Liu Chen-Xi, Shi Lei-Qian, Liu Gui-An, Lei Bo-Cheng, Huang Yi-Neng, Zhang Li-Li. First principle study of influence of transition metal (Cr, Mn, Fe, Co) doping on magnetism of TiO2. Acta Physica Sinica, doi: 10.7498/aps.69.20200644
    [3] Yin Min, Zhang Min, Lü Jin, Wu Hai-Shun. First-principles study of magnetism of TM@Cu12N12 nanoclusters. Acta Physica Sinica, doi: 10.7498/aps.68.20190737
    [4] Wang Xin, Li Hua, Dong Zheng-Chao, Zhong Chong-Gui. Magnetism and electronic properties of LiFeAs superconducting thin filma under two-dimensional strains effect. Acta Physica Sinica, doi: 10.7498/aps.68.20180957
    [5] Hou Qing-Yu, Li Yong, Zhao Chun-Wang. First-principles study of Al-doped and vacancy on the magnetism of ZnO. Acta Physica Sinica, doi: 10.7498/aps.66.067202
    [6] Yao Zhong-Yu, Sun Li, Pan Meng-Mei, Sun Shu-Juan. First-principle studies of half-metallicities and magnetisms of the semi-Heusler alloys CoCrTe and CoCrSb. Acta Physica Sinica, doi: 10.7498/aps.65.127501
    [7] Jiang En-Hai, Zhu Xing-Feng, Chen Ling-Fu. First-principles study of the electronic structure, magnetism, and spin-polarization in Heusler alloy Co2MnAl(100) surface. Acta Physica Sinica, doi: 10.7498/aps.64.147301
    [8] Wan Su-Lei, He Li-Min, Xiang Jun-You, Wang Zhi-Guo, Xing Ru, Zhang Xue-Feng, Lu Yi, Zhao Jian-Jun. Magnetic and transport properties of bilayered perovskite manganites (La0.8Eu0.2)4/3Sr5/3Mn2O7. Acta Physica Sinica, doi: 10.7498/aps.63.237501
    [9] He Li-Min, Ji Yu, Lu Yi, Wu Hong-Ye, Zhang Xue-Feng, Zhao Jian-Jun. Magnetic and transport properties of layered perovskite manganites (La1-xEu x)4/3Sr5/3Mn2O7(x=0, 0.15). Acta Physica Sinica, doi: 10.7498/aps.63.147503
    [10] Li Cheng-Di, Zhao Jing-Long, Zhong Chong-Gui, Dong Zheng-Chao, Fang Jing-Huai. First-principles study of magnetic ground state of quantum paraelectric EuTiO3 material. Acta Physica Sinica, doi: 10.7498/aps.63.087502
    [11] Wei Zhe, Yuan Jian-Mei, Li Shun-Hui, Liao Jian, Mao Yu-Liang. Density functional study on the electronic and magnetic properties of two-dimensional hexagonal boron nitride containing vacancy. Acta Physica Sinica, doi: 10.7498/aps.62.203101
    [12] Wang Dong-Dong, Gao Hui. Synthesis and magnetic properties of three-dimensional self-assembly Eu3+-graphene composite material. Acta Physica Sinica, doi: 10.7498/aps.62.188102
    [13] Zhao Kun, Zhang Kun, Wang Jia-Jia, Yu Jin, Wu San-Xie. A first principles study on tetragonal distortion, magnetic property and elastic constants of Pd2 CrAl Heusler alloy. Acta Physica Sinica, doi: 10.7498/aps.60.127101
    [14] Wang Yu-Mei, Pei Hui-Xia, Ding Jun, Wen Li-Wei. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, doi: 10.7498/aps.60.047110
    [15] Gao Tan-Hua, Lu Dao-Ming, Wu Shun-Qing, Zhu Zi-Zhong. First-principles calculations of magnetism of Fe atomic sheet. Acta Physica Sinica, doi: 10.7498/aps.60.047502
    [16] Gao Shuang-Hong, Ren Zhao-Yu, Guo Ping, Zheng Ji-Ming, Du Gong-He, Wan Li-Juan, Zheng Lin-Lin. Magnetic properties and excited states of thegraphene quantum dots. Acta Physica Sinica, doi: 10.7498/aps.60.047105
    [17] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, doi: 10.7498/aps.59.6443
    [18] Chen Shan, Wu Qing-Yun, Chen Zhi-Gao, Xu Gui-Gui, Huang Zhi-Gao. Ferromagnetism of C doped ZnO: first-principles calculation and Monte Carlo simulation. Acta Physica Sinica, doi: 10.7498/aps.58.2011
    [19] Ma Rong, Zhang Jia-Hong, Du Jin-Li, Liu Su, Liu Mei. Virtual-crystal doping study in novel superconductor MgCNi3. Acta Physica Sinica, doi: 10.7498/aps.55.6580
    [20] Zhang Jia-Hong, Ma Rong, Liu Su, Liu Mei. First-principles calculations on the superconductivity and magnetism of doping MgCNi3. Acta Physica Sinica, doi: 10.7498/aps.55.4816
Metrics
  • Abstract views:  81
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  24 April 2025

/

返回文章
返回