Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular opacities of $ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $, A2Πu and $ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $ states of nitrogen cation

Chen Chen Zhao Guo-Peng Qi Yue-Ying Wu Yong Wang Jian-Guo

Citation:

Molecular opacities of $ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $, A2Πu and $ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $ states of nitrogen cation

Chen Chen, Zhao Guo-Peng, Qi Yue-Ying, Wu Yong, Wang Jian-Guo
PDF
HTML
Get Citation
  • The potential curves, spectroscopic constants and dipole moments for $ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $, A2Πu and $ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $ state of $ {\text{N}}_{2}^{+} $ are calculated by the internal contraction multi reference configuration interaction (icMRCI) method, with Davidson correction taken into consideration. According to the results of molecular structures, we present the partition function in a temperature range of 100–40000 K and the opacities at different temperatures (295, 500, 1000, 2000, 2500, 5000 and 10000 K) under a fixed pressure of 100 atm. It is found that the populations of excited states increase with temperature increasing, as a result, the wavelength range of opacity also increases and band boundaries for different transitions gradually become obscure. In comparison with the cases of N2 with the same pressure and temperature, significant discrepancies are found in the wavelength ranges and structures of opacity of $ {\text{N}}_{2}^{+} $ for the present work. The influence of temperature on the opacity of $ {\text{N}}_{2}^{+} $ is studied systematically in the present work, which is expected to provide theoretical and data support for astrophysics.
      Corresponding author: Zhao Guo-Peng, guopengzhao@zjxu.edu.cn ; Qi Yue-Ying, yying_qi@zjxu.edu.cn ; Wu Yong, wu_yong@iapcm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403200) and the National Natural Science Foundation of China (Grant No. 12105119).
    [1]

    Cravens T E, Robertson I P, Waite J H, Yelle R V, Kasprzak W T, Keller C N, Ledvina S A, Niemann H B, Luhmann J G, McNutt R L, Ip W H, Haya V D L, Wodarg M, Wahlund J E, Anicich V G, Vuitton V 2006 Geophys. Res. Lett. 33 L07105Google Scholar

    [2]

    Dutuit O, Carrasco N, Thissen R, Vuitton V, Alcaraz C, Pernot P, Lavvas P 2013 Astrophys. J. Suppl. Ser. 204 20Google Scholar

    [3]

    Scherf M, Lammer H, Erkaev N V, Mandt K E, Thaller S E, Marty B 2020 Space Sci. Rev. 216 1Google Scholar

    [4]

    Bruna P J, Grein F 2008 J. Mol. Spectrosc. 250 75Google Scholar

    [5]

    Erkaev N V, Scherf M, Thaller S E, Lammer H, Mezentsev A V, Ivanov V A, Mandt K E 2021 Mon. Not. R. Astron. Soc. 500 2020Google Scholar

    [6]

    Opitom C, Hutsemékers D, Jehin E, Rousselot P, Pozuelos F J, Manfroid J, Moulane Y, Gillon M, Benkhaldoun Z 2019 Astron. Astrophys. 624 A64Google Scholar

    [7]

    Jenniskens P, Laux C O, Schaller E L 2004 Astrobiology 4 109Google Scholar

    [8]

    Abe S, Ebizuka N, Yano H, Watanabe J I, Borovička J 2005 Astrophys. J. 618 L141Google Scholar

    [9]

    Ho W C, Jäger W, Cramb D C, Ozier I, Gerry M C L 1992 J. Mol. Spectrosc. 153 692Google Scholar

    [10]

    Shi D H, Xing W, Sun J F, Zhu Z L, Liu Y F 2011 Comput. Theor. Chem. 966 44Google Scholar

    [11]

    Huffman R E, Larrabee J C, Tanaka Y 1964 Disc. Faraday Soc. 37 159Google Scholar

    [12]

    Bruna P J, Grein F 2004 J. Mol. Spectrosc. 227 67Google Scholar

    [13]

    Sinhal M 2021 Ph. D. Dissertation (Basel: University of Basel)

    [14]

    Fassbender M 1924 Z. Phys. 30 73

    [15]

    Childs W H J 1932 Proc. Roy. Soc. 137 641Google Scholar

    [16]

    Meinel A B 1950 Astrophys. J. 112 562Google Scholar

    [17]

    Dalby F W, Douglas A E 1951 Phys. Rev. 84 843Google Scholar

    [18]

    Lofthus A, Krupenie P H 1977 J. Phys. Chem Ref. Data 6 113Google Scholar

    [19]

    Dick K A, Benesch W, Crosswhite H M, Tilford S G, Gottscho R A, Field R W 1978 J. Mol. Spectrosc. 69 95Google Scholar

    [20]

    Gudeman C S, Saykally R J 1984 Annu. Rev. Phys. Chem. 35 387Google Scholar

    [21]

    Miller T A, Suzuki T, Hirota E 1984 J. Chem. Phys. 80 4671Google Scholar

    [22]

    Wu S H, Chen Y Q, Zhuang H, Yang X H, Bi Z Y, Ma L S, L Y Y 2001 J. Mol. Spectrosc. 209 133Google Scholar

    [23]

    Moon S Y, Choe W 2003 Spectrochim. Acta Part B 58 249Google Scholar

    [24]

    Zhang Y P, Deng L H, Zhang J, Chen Y Q 2015 Chin. J. Chem. Phys. 28 134Google Scholar

    [25]

    Nishiyama T, Taguchi M, Suzuki H, Dalin P, Ogawa Y, Brandstron U, Sakanoi T 2021 Earth Planets Space 73 30Google Scholar

    [26]

    Chauveau S, Perrin M Y, Riviere P, Soufiani A 2002 J. Quant. Spectrosc. Radiat. Transfer 72 503Google Scholar

    [27]

    Yan B, Feng W 2010 Chin. Phys. B 19 033303Google Scholar

    [28]

    Peyrou B, Chemartin L, Lalande P, Chéron B G, Riviere P, Perrin M Y, Soufiani A 2012 J. Phys. D:Appl. Phys. 45 455203Google Scholar

    [29]

    Liu H, Shi D H, Wang S, Sun J F, Zhu Z L 2014 J. Quant. Spectrosc. Radiat. Transfer 147 207Google Scholar

    [30]

    Qin Z, Zhao J M, Liu L H 2017 J. Quant. Spectrosc. Radiat. Transfer 202 2Google Scholar

    [31]

    Liang R H, Liu Y M, Li F Y 2021 Phys. Scr. 96 125402Google Scholar

    [32]

    Liang R H, Liu Y M, Li F Y 2021 Contrib. Plasma Phys. 61 e2021000366Google Scholar

    [33]

    Liang R H, Liu Y M, Li F Y 2021 J. Appl. Phys. 130 063303Google Scholar

    [34]

    马文, 靳奉涛, 袁建民 2007 物理学报 56 5709Google Scholar

    Ma W, Jin F T, Yuan J M 2007 Acta Phys. Sin. 56 5709Google Scholar

    [35]

    Lin X H, Liang G Y, Wang J G, Peng Y G, Shao B, Li R, Wu Y 2019 Chin. Phys. B 28 053101Google Scholar

    [36]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. B 29 023101Google Scholar

    [37]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. Lett. 37 123101Google Scholar

    [38]

    Li R, Liang G Y, Lin X H, Zhu Y H, Zhao S T, Wu Y 2019 Chin. Phys. B 28 043102Google Scholar

    [39]

    Xu X S, Dai A Q, Peng Y G, Wu Y, Wang J G 2018 J. Quant. Spectrosc. Radiat. Transfer 206 172Google Scholar

    [40]

    Slipher V M 1933 Mon. Not. R. Astron. Soc. 93 657Google Scholar

    [41]

    Feldman P D 1973 J. Geophys. Res. 78 2010Google Scholar

    [42]

    Langhoff S R, Bauschlicher C W 1988 J. Chem. Phys. 88 329Google Scholar

    [43]

    Langhoff S R, Bauschlicher C W, Partridge H 1987 J. Chem. Phys. 87 4716Google Scholar

    [44]

    Weck P F, Schweitzer A, Kirby K, Hauschildt P H, Stancil P C 2004 Astrophys J. 613 567Google Scholar

    [45]

    陈晨,赵国鹏,祁月盈,吴勇,王建国 2022 物理学报 71 143102Google Scholar

    Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102Google Scholar

    [46]

    Woon D E, Dunning T H. 1995 J. Chem. Phys. 103 4572Google Scholar

    [47]

    Werner H J and Meyer W 1980 J. Chem. Phys. 73 2342Google Scholar

    [48]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [49]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [50]

    Werner H J, Knowles P J, Manby F R, Schütz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G 2010 MOLPRO: a Package of ab initio Programs

    [51]

    Thulstrup E W, Andersen A 1975 J. Phys. B:Atom. Mol. Phys. 8 965Google Scholar

    [52]

    Zhang Y, Hanson D M 1986 Chem. Phys. Lett. 127 33Google Scholar

    [53]

    Berning A, Werner H J 1994 J. Chem. Phys. 100 1953Google Scholar

    [54]

    Li X Z, Paldus J 2000 Mol. Phys. 98 1185Google Scholar

    [55]

    Spelsberg D, Meyer W 2001 J. Chem. Phys. 115 6438Google Scholar

    [56]

    Bruna P J, Grein F 2008 J. Molecular Spectroscopy 250 75

    [57]

    Li X Z, Paldus J 2009 Phys. Chem. Chem. Phys. 11 5281Google Scholar

    [58]

    Langhoff S R, Bauschlicher Jr C W 1988 J. Chemical Physics 88 329

    [59]

    Bernath P F, Dalgarno A 1996 Phys. Today 49 94

  • 图 1  $ {\rm{N}}_{2}^{+} $$ {{\rm{X}}^{2}}{\Sigma}_{\rm{g}}^{+} $, $ {{\rm{A}}^{2}}{{{\Pi }}_{\rm{u}}} $$ {{\rm{B}}^{2}}{\Sigma}_{\rm{u}}^{+} $态的势能曲线

    Figure 1.  Potential energy curves for the $ {{\rm{X}}^{2}}{\Sigma}_{\rm{g}}^{+} $, $ {{\rm{A}}^{2}}{{{\Pi }}_{\rm{u}}} $ and $ {{\rm{B}}^{2}}{\Sigma}_{\rm{u}}^{+} $ states of $ {\rm{N}}_{2}^{+} $.

    图 2  $ {\text{N}}_{\text{2}}^{\text{ + }} $的偶极跃迁矩阵元随核间距的变化关系

    Figure 2.  Transition dipole moments of $ {\text{N}}_{\text{2}}^{\text{ + }} $ as a function of internuclear distance R.

    图 3  $ {\text{N}}_{\text{2}}^{\text{ + }} $的配分函数

    Figure 3.  The partition functions of $ {\text{N}}_{\text{2}}^{\text{ + }} $.

    图 4  压强为100 atm时, $ {\text{N}}_{\text{2}}^{\text{ + }} $(黑线)和$ {{\text{N}}_2} $(红线)[45] 在不同温度下的不透明度 (a) 295 K, (b) 500 K, (c) 1000 K, (d) 2000 K.

    Figure 4.  Opacities of $ {\text{N}}_{\text{2}}^{\text{ + }} $ (black line) and $ {{\text{N}}_2} $ (red line) [45] at different temperatures under pressure of 100 atm, (a) 295 K, (b) 500 K, (c) 1000 K, (d) 2000 K.

    图 5  压强为100 atm时, $ {\text{N}}_{\text{2}}^{\text{ + }} $(黑线)和$ {{\text{N}}_2} $(红线)[45] 在不同温度下的不透明度 (a) 2500 K, (b) 5000 K, (c) 10000 K.

    Figure 5.  Opacities of $ {\text{N}}_{\text{2}}^{\text{ + }} $ (black line) and $ {{\text{N}}_2} $ (red line) [45] at different temperatures under pressure of 100 atm, (a) 2500 K, (b) 5000 K, (c) 10000 K.

    表 1  $ {\rm{N}}_{{2}}^{{+}} $分子离子$ {{\rm{X}}^{{2}}}{\Sigma}_{\rm{g}}^{{+}} $, $ {{\rm{A}}^{{2}}}{{\Pi}_{\rm{u}}} $$ {{\rm{B}}^{{2}}}{\Sigma}_{\rm{u}}^{{+}} $的振动能级间隔(单位: cm–1).

    Table 1.  Vibration energy level intervals for $ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $, $ {{\text{A}}^{2}}{{\Pi}_{\text{u}}} $ and $ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $ state of $ {\text{N}}_{2}^{+} $ (in cm–1).

    $ \nu $$ {{\rm{X}}^{2}}{\Sigma}_{\rm{g}}^{+} $$ {{\rm{A}}^{2}}{{\Pi}_{\rm{u}}} $$ {{\rm{B}}^{2}}{\Sigma}_{\rm{u}}^{+} $
    This workExperiment[18]This workExperiment[18]This workExperiment[18]
    12160.202186.31860.801873.12350.812371.5
    22127.692131.81830.131843.22296.852318.8
    32095.202118.81800.421813.32236.542260.4
    42062.182054.01770.501783.72169.602196.4
    52028.652057.71740.202095.352122.8
    61994.382003.61710.162008.012041.0
    71960.151977.91680.471904.721951.1
    81926.841940.71650.761790.501838.2
    91893.061903.81621.041671.731726.9
    101856.931870.91591.271553.841596.7
    111818.041835.81561.571441.301479.9
    121776.201800.61531.561339.771371.4
    131733.591764.71501.571251.041276.3
    141693.161733.51471.761175.431196.3
    151657.081684.31442.161111.181126.6
    161625.931655.81412.801053.801067.1
    171597.901616.31383.511002.491015.5
    181570.431576.81354.06955.83966.0
    191541.511537.31324.26913.25922.0
    201510.091497.81294.02873.37882.0
    DownLoad: CSV

    表 2  ${\text{N}}_2^+$的光谱常数.

    Table 2.  Spectroscopic constants of $\rm N_2^+$.

    StateSource ${R_{\rm{e}}}$/Å${T_{\rm{e}}}$/$ {{\rm c}}{{{\rm m}}^{{{ - }}1}} $${\omega _{\rm{e}}}$/$ {{\rm c}}{{{\rm m}}^{{{ - }}1}} $${B_{\rm{e}}}$/$ {{\rm c}}{{{\rm m}}^{{{ - }}1}} $${D_{\rm{e}}}$/eV
    ${ { {\rm X} }^{2} }{{\Sigma}}_{ {\rm g} }^{+}$This work1.119102196.23241.92278.7145
    Expt.[18]1.11602207.001.93198.7128
    Theory[51]1.17020758.4
    Theory[52]1.10601.97
    Theory[53]1.12012193.41.919
    Theory[54]1.120321951.917
    Theory[55]1.11892204.51.924
    Theory[56]1.126102140
    Theory[57]1.122185
    ${ { {\rm A} }^{2} }{ { {\Pi } }_{ {\rm u} } }$This work1.17778911.19351890.34121.73587.6096
    Expt.[18]1.1779016.41903.531.7487.5948
    Theory[51]1.2614517.9716936.7
    Theory[52]1.16590161.773
    Theory[53]1.17811898.01.735
    Theory[54]1.176219181.739
    Theory[55]1.17721900.11.737
    Theory[56]1.18758872.101850
    Theory[57]1.1771911
    ${ { \rm {B} }^{2} }{\Sigma}_{ {\rm u} }^{+}$This work1.077225861.7412398.85912.07525.5273
    Expt.[18]1.07725566.02419.842.0735.5428
    Theory[51]1.1630649.0618054.6
    Theory[52]1.075255662.084
    Theory[58]1.0832258232441.8
    Theory[54]1.077624252.072
     Theory[56]1.083825325.802370
    DownLoad: CSV
  • [1]

    Cravens T E, Robertson I P, Waite J H, Yelle R V, Kasprzak W T, Keller C N, Ledvina S A, Niemann H B, Luhmann J G, McNutt R L, Ip W H, Haya V D L, Wodarg M, Wahlund J E, Anicich V G, Vuitton V 2006 Geophys. Res. Lett. 33 L07105Google Scholar

    [2]

    Dutuit O, Carrasco N, Thissen R, Vuitton V, Alcaraz C, Pernot P, Lavvas P 2013 Astrophys. J. Suppl. Ser. 204 20Google Scholar

    [3]

    Scherf M, Lammer H, Erkaev N V, Mandt K E, Thaller S E, Marty B 2020 Space Sci. Rev. 216 1Google Scholar

    [4]

    Bruna P J, Grein F 2008 J. Mol. Spectrosc. 250 75Google Scholar

    [5]

    Erkaev N V, Scherf M, Thaller S E, Lammer H, Mezentsev A V, Ivanov V A, Mandt K E 2021 Mon. Not. R. Astron. Soc. 500 2020Google Scholar

    [6]

    Opitom C, Hutsemékers D, Jehin E, Rousselot P, Pozuelos F J, Manfroid J, Moulane Y, Gillon M, Benkhaldoun Z 2019 Astron. Astrophys. 624 A64Google Scholar

    [7]

    Jenniskens P, Laux C O, Schaller E L 2004 Astrobiology 4 109Google Scholar

    [8]

    Abe S, Ebizuka N, Yano H, Watanabe J I, Borovička J 2005 Astrophys. J. 618 L141Google Scholar

    [9]

    Ho W C, Jäger W, Cramb D C, Ozier I, Gerry M C L 1992 J. Mol. Spectrosc. 153 692Google Scholar

    [10]

    Shi D H, Xing W, Sun J F, Zhu Z L, Liu Y F 2011 Comput. Theor. Chem. 966 44Google Scholar

    [11]

    Huffman R E, Larrabee J C, Tanaka Y 1964 Disc. Faraday Soc. 37 159Google Scholar

    [12]

    Bruna P J, Grein F 2004 J. Mol. Spectrosc. 227 67Google Scholar

    [13]

    Sinhal M 2021 Ph. D. Dissertation (Basel: University of Basel)

    [14]

    Fassbender M 1924 Z. Phys. 30 73

    [15]

    Childs W H J 1932 Proc. Roy. Soc. 137 641Google Scholar

    [16]

    Meinel A B 1950 Astrophys. J. 112 562Google Scholar

    [17]

    Dalby F W, Douglas A E 1951 Phys. Rev. 84 843Google Scholar

    [18]

    Lofthus A, Krupenie P H 1977 J. Phys. Chem Ref. Data 6 113Google Scholar

    [19]

    Dick K A, Benesch W, Crosswhite H M, Tilford S G, Gottscho R A, Field R W 1978 J. Mol. Spectrosc. 69 95Google Scholar

    [20]

    Gudeman C S, Saykally R J 1984 Annu. Rev. Phys. Chem. 35 387Google Scholar

    [21]

    Miller T A, Suzuki T, Hirota E 1984 J. Chem. Phys. 80 4671Google Scholar

    [22]

    Wu S H, Chen Y Q, Zhuang H, Yang X H, Bi Z Y, Ma L S, L Y Y 2001 J. Mol. Spectrosc. 209 133Google Scholar

    [23]

    Moon S Y, Choe W 2003 Spectrochim. Acta Part B 58 249Google Scholar

    [24]

    Zhang Y P, Deng L H, Zhang J, Chen Y Q 2015 Chin. J. Chem. Phys. 28 134Google Scholar

    [25]

    Nishiyama T, Taguchi M, Suzuki H, Dalin P, Ogawa Y, Brandstron U, Sakanoi T 2021 Earth Planets Space 73 30Google Scholar

    [26]

    Chauveau S, Perrin M Y, Riviere P, Soufiani A 2002 J. Quant. Spectrosc. Radiat. Transfer 72 503Google Scholar

    [27]

    Yan B, Feng W 2010 Chin. Phys. B 19 033303Google Scholar

    [28]

    Peyrou B, Chemartin L, Lalande P, Chéron B G, Riviere P, Perrin M Y, Soufiani A 2012 J. Phys. D:Appl. Phys. 45 455203Google Scholar

    [29]

    Liu H, Shi D H, Wang S, Sun J F, Zhu Z L 2014 J. Quant. Spectrosc. Radiat. Transfer 147 207Google Scholar

    [30]

    Qin Z, Zhao J M, Liu L H 2017 J. Quant. Spectrosc. Radiat. Transfer 202 2Google Scholar

    [31]

    Liang R H, Liu Y M, Li F Y 2021 Phys. Scr. 96 125402Google Scholar

    [32]

    Liang R H, Liu Y M, Li F Y 2021 Contrib. Plasma Phys. 61 e2021000366Google Scholar

    [33]

    Liang R H, Liu Y M, Li F Y 2021 J. Appl. Phys. 130 063303Google Scholar

    [34]

    马文, 靳奉涛, 袁建民 2007 物理学报 56 5709Google Scholar

    Ma W, Jin F T, Yuan J M 2007 Acta Phys. Sin. 56 5709Google Scholar

    [35]

    Lin X H, Liang G Y, Wang J G, Peng Y G, Shao B, Li R, Wu Y 2019 Chin. Phys. B 28 053101Google Scholar

    [36]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. B 29 023101Google Scholar

    [37]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. Lett. 37 123101Google Scholar

    [38]

    Li R, Liang G Y, Lin X H, Zhu Y H, Zhao S T, Wu Y 2019 Chin. Phys. B 28 043102Google Scholar

    [39]

    Xu X S, Dai A Q, Peng Y G, Wu Y, Wang J G 2018 J. Quant. Spectrosc. Radiat. Transfer 206 172Google Scholar

    [40]

    Slipher V M 1933 Mon. Not. R. Astron. Soc. 93 657Google Scholar

    [41]

    Feldman P D 1973 J. Geophys. Res. 78 2010Google Scholar

    [42]

    Langhoff S R, Bauschlicher C W 1988 J. Chem. Phys. 88 329Google Scholar

    [43]

    Langhoff S R, Bauschlicher C W, Partridge H 1987 J. Chem. Phys. 87 4716Google Scholar

    [44]

    Weck P F, Schweitzer A, Kirby K, Hauschildt P H, Stancil P C 2004 Astrophys J. 613 567Google Scholar

    [45]

    陈晨,赵国鹏,祁月盈,吴勇,王建国 2022 物理学报 71 143102Google Scholar

    Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102Google Scholar

    [46]

    Woon D E, Dunning T H. 1995 J. Chem. Phys. 103 4572Google Scholar

    [47]

    Werner H J and Meyer W 1980 J. Chem. Phys. 73 2342Google Scholar

    [48]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [49]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [50]

    Werner H J, Knowles P J, Manby F R, Schütz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G 2010 MOLPRO: a Package of ab initio Programs

    [51]

    Thulstrup E W, Andersen A 1975 J. Phys. B:Atom. Mol. Phys. 8 965Google Scholar

    [52]

    Zhang Y, Hanson D M 1986 Chem. Phys. Lett. 127 33Google Scholar

    [53]

    Berning A, Werner H J 1994 J. Chem. Phys. 100 1953Google Scholar

    [54]

    Li X Z, Paldus J 2000 Mol. Phys. 98 1185Google Scholar

    [55]

    Spelsberg D, Meyer W 2001 J. Chem. Phys. 115 6438Google Scholar

    [56]

    Bruna P J, Grein F 2008 J. Molecular Spectroscopy 250 75

    [57]

    Li X Z, Paldus J 2009 Phys. Chem. Chem. Phys. 11 5281Google Scholar

    [58]

    Langhoff S R, Bauschlicher Jr C W 1988 J. Chemical Physics 88 329

    [59]

    Bernath P F, Dalgarno A 1996 Phys. Today 49 94

  • [1] Guo Rui, Tan Han, Yuan Qin-Yue, Zhang Qing, Wan Ming-Jie. Spectroscopic and transition properties of LiCl anion. Acta Physica Sinica, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [2] Chen Chen, Zhao Guo-Peng, Qi Yue-Ying, Wu Yong, Wang Jian-Guo. Opacities of ${ X}^1\Sigma^+_{\rm g}, a'{}^1\Sigma^-_{\rm u}, a{}^1\Pi_{\rm g} \text{ and } { b}^1\Pi_{\rm u}$ electronic states for nitrogen molecule. Acta Physica Sinica, 2022, 71(14): 143102. doi: 10.7498/aps.71.20220043
    [3] Spectroscopic and transition properties of LiCl- anion. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211688
    [4] Wei Chang-Li,  Liao Hao,  Luo Tai-Sheng,  Ren Yin-Shuan,  Yan Bing. Theoretical study on potential curves and spectroscopic constants of low-lying electronic states of Na2+ cation. Acta Physica Sinica, 2018, 67(24): 243101. doi: 10.7498/aps.67.20181690
    [5] Wang Jie-Min, Wang Xi-Juan, Tao Ya-Ping. Spectroscopic parameters and molecular constants of 75As32S+ and 75As34S+. Acta Physica Sinica, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [6] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic properties of AlC (X4∑-, B4∑-) molecule. Acta Physica Sinica, 2013, 62(11): 113101. doi: 10.7498/aps.62.113101
    [7] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [8] Zhu Zun-Lüe, Lang Jian-Hua, Qiao Hao. Spectroscopic properties and molecular constants of the ground and excited states of SF molecule. Acta Physica Sinica, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [9] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi. Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [10] Wang Jie-Min, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lue, Li Wen-Tao. Theoretical investigation on molecular constants of PH, PD and PT molecules. Acta Physica Sinica, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [11] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [12] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation. Acta Physica Sinica, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [13] Wang Jie-Min, Sun Jin-Feng. Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [14] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [15] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [16] Wang Xin-Qiang, Yang Chuan-Lu, Su Tao, Wang Mei-Shan. Analytical potential energy functions and spectroscopic properties of the ground and excited states of BH molecule. Acta Physica Sinica, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [17] Shi De-Heng, Liu Yu-Fang, Sun Jin-Feng, Zhang Jin-Ping, Zhu Zun-Lüe. Elastic collisions between O and D atoms at low temperature and accurate analytic potential energy function and molecular constants of the OD(X2Π) radical. Acta Physica Sinica, 2009, 58(4): 2369-2375. doi: 10.7498/aps.58.2369
    [18] Shi De-Heng, Zhang Jin-Ping, Sun Jin-Feng, Liu Yu-Fang, Zhu Zun-Lüe. Elastic collision between S and D atoms at low temperatures and accurate analytic interaction potential and molecular constants of the SD(X2Π) radical. Acta Physica Sinica, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [19] Zhang Ji-Yan, Yang Jia-Min, Xu Yan, Yang Guo-Hong, Yan Jun, Meng Guang-Wei, Ding Yao-Nan, Wang Yan. Absorption experiments on radiatively heated Al plasma. Acta Physica Sinica, 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [20] WANG FAN-HOU, CHEN JING-PING, MENG XU-JUN, ZHOU XIAN-MING, LI XI-JUN, SUN YONG-SHENG, JING FU-QIAN. STUDIES ON OPACITY OF SHOCK-GENERATED ARGON PLASMAS. Acta Physica Sinica, 2001, 50(7): 1308-1312. doi: 10.7498/aps.50.1308
Metrics
  • Abstract views:  4475
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2022
  • Accepted Date:  18 May 2022
  • Available Online:  03 October 2022
  • Published Online:  05 October 2022

/

返回文章
返回