Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Intensity-dependent electron correlation in nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields

Su Jie Liu Zi-Chao Liao Jian-Ying Li Ying-Bin Huang Cheng

Citation:

Intensity-dependent electron correlation in nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields

Su Jie, Liu Zi-Chao, Liao Jian-Ying, Li Ying-Bin, Huang Cheng
PDF
HTML
Get Citation
  • Electron correlation behaviors and recollision dynamics in nonsequential double ionization (NSDI) of Ar atoms in a counter-rotating two-color elliptically polarized (TCEP) field are investigated by using a three-dimensional classical ensemble model. The numerical results show that the correlated momentum distribution of electron pairs in the x-axis direction evolves from a V-shaped structure in the first quadrant at the low intensity, to an arc-shaped structure mainly located in the second and fourth quadrants at moderate intensity, finally to a distribution near the origin located in the first quadrant in the high intensity. With the laser intensity increasing, the dominant correlation behavior evolves from correlation to anti-correlation and finally reverts back to correlation. The combined electric field traces out a trefoil pattern, i.e. the waveform in a period shows three leaves in different directions. Each leaf is called a lobe. The electric field recursively evolves from lobe 1 to lobe 2 and to lobe 3. Unlike the counter-rotating two-color circularly polarized fields, the combined fields from two elliptical fields do not have the spatial symmetry. Amplitudes of the three field lobes and the angles between them are different. Furthermore, the back analysis of NSDI trajectories shows that the single ionization in NSDI events mainly occurs in lobe 1 and lobe 3, and the contribution from lobe 1 increases and that from lobe 3 decreases with the increase of the intensity. Correspondingly, the free electrons mainly return to the parent ion from 20° and 175°. With the laser intensity increasing, the electrons returning from 20° gradually increase and those returning from 175° gradually decrease. In order to further understand the correlation behaviors of electron pairs in the x-axis direction, the NSDI events triggered off by single ionization from different lobes are separately discussed. With the increase of laser intensity the correlation behavior of NSDI events triggered off by single ionization from field lobe 1 evolves from anti-correlation behavior to correlation behavior, but the correlation behavior of NSDI events induced by single ionization from field lobe 3 evolves from correlation behavior to anti-correlation behavior. With the laser intensity increasing, the NSDI events induced by single ionization from field lobe 1 increase gradually, but those from field lobe 3 decrease. This results in that the total dominant correlation behavior evolves from correlation to anti-correlation and finally reverts back to correlation as the laser intensity increases.
      Corresponding author: Li Ying-Bin, liyingbin2008@163.com ; Huang Cheng, huangcheng@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504302, 12074329, 12004323, 12104389), Southwest University Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. X202210635104), and Nanhu Scholars Program for Young Scholars of Xinyang Normal University.
    [1]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett 69 2642Google Scholar

    [2]

    Corkum P B 1993 Phys. Rev. Lett 71 1994Google Scholar

    [3]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett 87 043003Google Scholar

    [4]

    Chen Y B, Zhou Y M, Li Y, Li M, Lan P F, Lu P X 2018 Phys. Rev. A 97 013428Google Scholar

    [5]

    Liu Y Q, Fu L B, Ye D F, Liu J, Li M, Wu C Y, Gong Q H, Moshammer R, Ullrich J 2014 Phys. Rev. Lett 112 013003Google Scholar

    [6]

    Huang C, Guo W L, Zhou Y M, Wu Z M 2016 Phys. Rev. A 93 013416Google Scholar

    [7]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [8]

    Ye D F, Li M, Fu L, Liu J, Gong Q H, Liu Y Q, Ullrich J 2015 Phys. Rev. Lett 115 123001Google Scholar

    [9]

    Weber Th, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658Google Scholar

    [10]

    Wang Y L, Xu S P, Quan W, Gong C, Lai X Y, Hu S L, Liu M Q, Chen J, Liu X J 2016 Phys. Rev. A 94 053412Google Scholar

    [11]

    Figueira de Morisson Faria C, Liu X 2011 J. Mod. Opt 58 1076Google Scholar

    [12]

    Becker W, Liu X, Jo Ho P, Eberly J H 2012 Rev. Mod. Phys 84 1011Google Scholar

    [13]

    Li H, Chen J, Jiang H, Liu J, Fu P, Gong Q, Yan Z, Wang B 2009 J. Phys. B 42 125601Google Scholar

    [14]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412Google Scholar

    [15]

    Wang X, Eberly J H 2010 Phys. Rev. Lett 105 083001Google Scholar

    [16]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett 112 073002Google Scholar

    [17]

    Chen Z J, Liang Y Q, Lin C D 2010 Phys. Rev. Lett 104 253201Google Scholar

    [18]

    Huang C, Zhong M, Wu Z 2019 Opt. Express 27 7616Google Scholar

    [19]

    Li Y, Yu B H, Tang Q, Wang X, Hua D, Tong A, Jiang C, Ge G, Li Y, Wan J 2016 Opt. Express 24 6469Google Scholar

    [20]

    Zhou Y M, Huang C, Tong A, Liao Q, Lu P X 2011 Opt. Express 19 2301Google Scholar

    [21]

    Li M, Jiang W C, Xie H, Luo S Q, Zhou Y M, Lu P X 2018 Phys. Rev. A 97 023415Google Scholar

    [22]

    Chaloupka J L, Hickstein D D 2016 Phys. Rev. Lett 116 143005Google Scholar

    [23]

    Mancuso C A, Dorney K M, Hickstein D D, Chaloupka J L, Ellis J L, Dollar F J, Knut R, Grychtol P, Zusin D, Gentry C, Gopalakrishnan M, Kapteyn H C, Murnane M M 2016 Phys. Rev. Lett 117 133201Google Scholar

    [24]

    Eckart S, Richter M, Kunitski M, Hartung A, Rist J, Henrichs K, Schlott N, Kang H, Bauer T, Sann H, Schmidt L P H, Schoffler M, Jahnke T, Dorner R 2016 Phys. Rev. Lett 117 133202Google Scholar

    [25]

    Lin K, Jia X, Yu Z, He F, Ma J, Li H, Gong X, Song Q, Ji Q, Zhang W, Li H, Lu P X, Zeng H, Chen J, Wu J 2017 Phys. Rev. Lett 119 203202Google Scholar

    [26]

    Li B, Yang X, Ren X, Zhang J 2019 Opt. Express 27 32700Google Scholar

    [27]

    Huang C, Zhong M, Wu Z 2018 Opt. Express 26 26045Google Scholar

    [28]

    Xu T, Zhu Q, Chen J, Ben S, Zhang J, Liu X 2018 Opt. Express 26 1645Google Scholar

    [29]

    Huang C, Pang H L, Huang X F, Zhong M, Wu Z 2020 Opt. Express 28 10505Google Scholar

    [30]

    Peng M, Bai L, Guo Z 2021 Commun. Theor. Phys 73 075501Google Scholar

    [31]

    Ma X, Zhou Y M, Chen Y, Li M, Li Y, Zhang Q, Lu P X 2019 Opt. Express 27 1825Google Scholar

    [32]

    Chen Z, Su J, Zeng X, Huang X F, Li Y B, Huang C 2021 Opt. Express 29 29576Google Scholar

    [33]

    Peng M, Bai L H 2020 Chin. Opt. Lett 18 110201Google Scholar

    [34]

    Busuladžić M, Čerkić A, Gazibegović-Busuladžić A, Hasović E, Milošević D B 2018 Phys. Rev. A 98 013413Google Scholar

    [35]

    黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚 2022 物理学报 71 093202Google Scholar

    Huang X F, Su J, Liao J Y, Li Y B, Huang C 2022 Acta Phys. Sin. 71 093202Google Scholar

    [36]

    Xu T T, Chen J H, Pan X, Zhang H, Ben S, Liu X 2018 Chin. Phys. B 27 093201Google Scholar

    [37]

    Chen J H, Xu T T, Han T, Sun Y, Xu Q, Liu X 2020 Chin. Phys. B 29 013203Google Scholar

    [38]

    Chen J, Nam C H 2002 Phys. Rev. A 66 053415Google Scholar

    [39]

    Panli R, Eberly J H, Haan S L 2001 Opt. Express 8 431Google Scholar

    [40]

    Pang H, Huang X, Huang C 2020 Int. J. Mod. Phys. B 34 2050304Google Scholar

    [41]

    Su J, Liu Z, Liao J, Huang X, Li Y, Huang C 2022 Opt. Express 30 24898Google Scholar

    [42]

    Li Y, Wang X, Yu B, Tang B, Wang G, Wan J 2016 Sci. Rep 6 37413Google Scholar

    [43]

    Li Y, Xu J, Chen H, Li Y, He J, Qin L, Shi L, Zhao Y, Tang Q, Zhai C, Yu B 2021 Opt. Commun 493 127019Google Scholar

    [44]

    曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚 2021 物理学报 70 243201Google Scholar

    Zeng X, Su J, Huang X, Pang H L, Huang C 2021 Acta Phys. Sin. 70 243201Google Scholar

  • 图 1  反向旋转TCEP复合激光电场 E(t) (虚线) 和相应的负矢势 –A(t) (实线) , 箭头表示时间演化方向, 激光强度为 2 × 1013 W/cm2

    Figure 1.  Combined laser electric field E(t) (dashed curve) and corresponding negative vector potential –A (t) (solid curve) at an intensity of 2 × 1013 W/cm2, arrows indicate the direction of time evolution.

    图 2  反向旋转 TCEP场中Ar原子双电离概率的强度依赖

    Figure 2.  Double ionization probability of Ar atoms in the counter-rotating TCEP laser field as a function of laser intensity.

    图 3  不同强度下 x 方向上的相关电子动量谱 (a) 2 × 1013 W/cm2; (b) 4 × 1013 W/cm2 ; (c) 6 × 1013 W/cm2; (d) 8 × 1013 W/cm2

    Figure 3.  Correlated electron momentum distributions in the x direction for different intensities: (a) 2 × 1013 W/cm2; (b) 4 × 1013 W/cm2; (c) 6 × 1013 W/cm2; (d) 8 × 1013 W/cm2

    图 4  单电离时间(第1列) 、碰撞时间(第2列) 、碰撞后第1个(第3列)和第2个电子(第4列)的最终电离时间的统计分布. 为了更清楚显示碰撞和电离时刻的激光相位, 将碰撞时间和电离时间转换到一个激光周期, 其中彩色虚线给出了复合电场幅值的时间演化. 激光强度分别 2 × 1013 W/cm2 (第1行)、4 × 1013 W/cm2 (第2行) 、 6 × 1013 W/cm2 (第3行) 和8 × 1013 W/cm2 (第4行)

    Figure 4.  Distributions of single ionization time (the first column), recollision time (the second column) and final ionization times of the first (the third column) and second electron (the fourth column) after recollision for the intenstiies of 2 × 1013 W/cm2 (the first row), 4 × 1013 W/cm2 (the second row), 6 × 1013 W/cm2 (the third row) and 8 × 1013 W/cm2 (the fourth row). To more clearly show the laser phases of the recollision and ionization instants, the recollision and ionization times are transfered to one laser cycle. The dashed curve shows the combined electric field.

    图 5  波瓣1 (第1行)和波瓣3 (第2行)处单电离诱导的NSDI事件在x方向的相关电子动量谱

    Figure 5.  Correlated electron momentum distributions in x direction for NSDI events induced by single ionizations at field lobe 1 (the first row) and field lobe 3 (the second row) for four different intensities.

    图 6  波瓣1处单电离诱导的NSDI事件的单电离时间(第1列) 、碰撞时间(第2列) 、碰撞后第1个(第3列)和第2个电子(第4列)的最终电离时间的统计分布, 其他参数与图4相同

    Figure 6.  Distributions of single ionization time (the first column), recollision time (the second column) and final ionization times of the first (the third column) and second electron (the fourth column) after recollision for those NSDI events induced by single ionization at field lobe 1. Other parameters are the same as Fig. 4.

    图 7  波瓣3处单电离诱导的NSDI事件的单电离时间(第1列) 、碰撞时间(第2列) 、碰撞后第1个(第3列)和第2个电子(第4列)的最终电离时间的统计分布, 其他参数与图4相同

    Figure 7.  Distributions of single ionization time (the first column), recollision time (the second column) and final ionization times of the first (the third column) and second electron (the fourth column) after recollision for those NSDI events induced by single ionization at field lobe 3, other parameters are the same as Fig. 4.

    图 8  不同强度下电离电子返回方向的统计分布

    Figure 8.  Statistical distribution of return directions of ionized electrons for four intensities.

  • [1]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett 69 2642Google Scholar

    [2]

    Corkum P B 1993 Phys. Rev. Lett 71 1994Google Scholar

    [3]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett 87 043003Google Scholar

    [4]

    Chen Y B, Zhou Y M, Li Y, Li M, Lan P F, Lu P X 2018 Phys. Rev. A 97 013428Google Scholar

    [5]

    Liu Y Q, Fu L B, Ye D F, Liu J, Li M, Wu C Y, Gong Q H, Moshammer R, Ullrich J 2014 Phys. Rev. Lett 112 013003Google Scholar

    [6]

    Huang C, Guo W L, Zhou Y M, Wu Z M 2016 Phys. Rev. A 93 013416Google Scholar

    [7]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [8]

    Ye D F, Li M, Fu L, Liu J, Gong Q H, Liu Y Q, Ullrich J 2015 Phys. Rev. Lett 115 123001Google Scholar

    [9]

    Weber Th, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658Google Scholar

    [10]

    Wang Y L, Xu S P, Quan W, Gong C, Lai X Y, Hu S L, Liu M Q, Chen J, Liu X J 2016 Phys. Rev. A 94 053412Google Scholar

    [11]

    Figueira de Morisson Faria C, Liu X 2011 J. Mod. Opt 58 1076Google Scholar

    [12]

    Becker W, Liu X, Jo Ho P, Eberly J H 2012 Rev. Mod. Phys 84 1011Google Scholar

    [13]

    Li H, Chen J, Jiang H, Liu J, Fu P, Gong Q, Yan Z, Wang B 2009 J. Phys. B 42 125601Google Scholar

    [14]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412Google Scholar

    [15]

    Wang X, Eberly J H 2010 Phys. Rev. Lett 105 083001Google Scholar

    [16]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett 112 073002Google Scholar

    [17]

    Chen Z J, Liang Y Q, Lin C D 2010 Phys. Rev. Lett 104 253201Google Scholar

    [18]

    Huang C, Zhong M, Wu Z 2019 Opt. Express 27 7616Google Scholar

    [19]

    Li Y, Yu B H, Tang Q, Wang X, Hua D, Tong A, Jiang C, Ge G, Li Y, Wan J 2016 Opt. Express 24 6469Google Scholar

    [20]

    Zhou Y M, Huang C, Tong A, Liao Q, Lu P X 2011 Opt. Express 19 2301Google Scholar

    [21]

    Li M, Jiang W C, Xie H, Luo S Q, Zhou Y M, Lu P X 2018 Phys. Rev. A 97 023415Google Scholar

    [22]

    Chaloupka J L, Hickstein D D 2016 Phys. Rev. Lett 116 143005Google Scholar

    [23]

    Mancuso C A, Dorney K M, Hickstein D D, Chaloupka J L, Ellis J L, Dollar F J, Knut R, Grychtol P, Zusin D, Gentry C, Gopalakrishnan M, Kapteyn H C, Murnane M M 2016 Phys. Rev. Lett 117 133201Google Scholar

    [24]

    Eckart S, Richter M, Kunitski M, Hartung A, Rist J, Henrichs K, Schlott N, Kang H, Bauer T, Sann H, Schmidt L P H, Schoffler M, Jahnke T, Dorner R 2016 Phys. Rev. Lett 117 133202Google Scholar

    [25]

    Lin K, Jia X, Yu Z, He F, Ma J, Li H, Gong X, Song Q, Ji Q, Zhang W, Li H, Lu P X, Zeng H, Chen J, Wu J 2017 Phys. Rev. Lett 119 203202Google Scholar

    [26]

    Li B, Yang X, Ren X, Zhang J 2019 Opt. Express 27 32700Google Scholar

    [27]

    Huang C, Zhong M, Wu Z 2018 Opt. Express 26 26045Google Scholar

    [28]

    Xu T, Zhu Q, Chen J, Ben S, Zhang J, Liu X 2018 Opt. Express 26 1645Google Scholar

    [29]

    Huang C, Pang H L, Huang X F, Zhong M, Wu Z 2020 Opt. Express 28 10505Google Scholar

    [30]

    Peng M, Bai L, Guo Z 2021 Commun. Theor. Phys 73 075501Google Scholar

    [31]

    Ma X, Zhou Y M, Chen Y, Li M, Li Y, Zhang Q, Lu P X 2019 Opt. Express 27 1825Google Scholar

    [32]

    Chen Z, Su J, Zeng X, Huang X F, Li Y B, Huang C 2021 Opt. Express 29 29576Google Scholar

    [33]

    Peng M, Bai L H 2020 Chin. Opt. Lett 18 110201Google Scholar

    [34]

    Busuladžić M, Čerkić A, Gazibegović-Busuladžić A, Hasović E, Milošević D B 2018 Phys. Rev. A 98 013413Google Scholar

    [35]

    黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚 2022 物理学报 71 093202Google Scholar

    Huang X F, Su J, Liao J Y, Li Y B, Huang C 2022 Acta Phys. Sin. 71 093202Google Scholar

    [36]

    Xu T T, Chen J H, Pan X, Zhang H, Ben S, Liu X 2018 Chin. Phys. B 27 093201Google Scholar

    [37]

    Chen J H, Xu T T, Han T, Sun Y, Xu Q, Liu X 2020 Chin. Phys. B 29 013203Google Scholar

    [38]

    Chen J, Nam C H 2002 Phys. Rev. A 66 053415Google Scholar

    [39]

    Panli R, Eberly J H, Haan S L 2001 Opt. Express 8 431Google Scholar

    [40]

    Pang H, Huang X, Huang C 2020 Int. J. Mod. Phys. B 34 2050304Google Scholar

    [41]

    Su J, Liu Z, Liao J, Huang X, Li Y, Huang C 2022 Opt. Express 30 24898Google Scholar

    [42]

    Li Y, Wang X, Yu B, Tang B, Wang G, Wan J 2016 Sci. Rep 6 37413Google Scholar

    [43]

    Li Y, Xu J, Chen H, Li Y, He J, Qin L, Shi L, Zhao Y, Tang Q, Zhai C, Yu B 2021 Opt. Commun 493 127019Google Scholar

    [44]

    曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚 2021 物理学报 70 243201Google Scholar

    Zeng X, Su J, Huang X, Pang H L, Huang C 2021 Acta Phys. Sin. 70 243201Google Scholar

  • [1] Ge Zhen-Jie, Su Xu, Bai Li-Hua. Nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields. Acta Physica Sinica, 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [2] He Tong-Tong, Liu Zi-Chao, Li Ying-Bin, Huang Cheng. Manipulating nonsequential double ionization of atoms by parallel polarized three-color laser fields. Acta Physica Sinica, 2024, 73(16): 163201. doi: 10.7498/aps.73.20240737
    [3] Liao Jian-Ying, He Tong-Tong, Su Jie, Liu Zi-Chao, Li Ying-Bin, Yu Ben-Hai, Huang Cheng. Ion momentum distributions from sequential double ionization of Ar in elliptically polarized laser fields. Acta Physica Sinica, 2023, 72(19): 193202. doi: 10.7498/aps.72.20230683
    [4] Liu Yi-Jun, Chen Yi-Wei, Zhu Yu-Jian, Huang Yan, An Dong-Dong, Li Qing-Xin, Gan Qi-Kang, Zhu Wang, Song Jun-Wei, Wang Kai-Yuan, Wei Ling-Nan, Zong Qi-Jun, Liu Shuo-Han, Li Shi-Wei, Liu Zhi, Zhang Qi, Xu Ying-Hai, Cao Xin-Yu, Yang Ao, Wang Hao-Lin, Yang Bing, Andy Shen, Yu Ge-Liang, Wang Lei. Isospin polarized Chern insulator state of C = 4 in twisted double bilayer graphene. Acta Physica Sinica, 2023, 72(14): 147303. doi: 10.7498/aps.72.20230497
    [5] Zhong Guo-Hua, Lin Hai-Qing. Aromatic superconductors: Electron-phonon coupling and electronic correlations. Acta Physica Sinica, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [6] Li Ying-Bin, Zhang Ke, Chen Hong-Mei, Kang Shuai-Jie, Li Zheng-Fa, Cheng Jian-Guo, Wu Yin-Meng, Zhai Chun-Yang, Tang Qing-Bin, Xu Jing-Kun, Yu Ben-Hai. Nonsequential double ionization of atoms driven by spatially inhomogeneous laser fields. Acta Physica Sinica, 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [7] Huang Xue-Fei, Su Jie, Liao Jian-Ying, Li Ying-Bin, Huang Cheng. Photoelectron holography in tunneling ionization of atoms by counter-rotating two-color elliptically polarized laser field. Acta Physica Sinica, 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [8] Zeng Xue, Su Jie, Huang Xue-Fei, Pang Hui-Ling, Huang Cheng. Frequency-ratio-dependent ultrafast dynamics in nonsequential double ionization by co-rotating two-color circularly polarized laser fields. Acta Physica Sinica, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [9] Huang Cheng, Zhong Ming-Min, Wu Zheng-Mao. Intensity-dependent recollision dynamics in strong-field nonsequential double ionization. Acta Physica Sinica, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [10] Lin Tong, Hu Die, Shi Li-Yu, Zhang Si-Jie, Liu Yan-Qi, Lv Jia-Lin, Dong Tao, Zhao Jun, Wang Nan-Lin. Infrared spectroscopy study of ironbased superconductor Li0.8Fe0.2 ODFeSe. Acta Physica Sinica, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [11] Zhang Bin, Zhao Jian, Zhao Zeng-Xiu. Multiconfiguration time-dependent Hartree-Fock treatment of electron correlation in strong-field ionization of H2 molecules. Acta Physica Sinica, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [12] Huang Cheng, Zhong Ming-Min, Wu Zheng-Mao. Nonsequential double ionization of aligned molecules by few-cycle laser pulses at low intensity. Acta Physica Sinica, 2016, 65(8): 083301. doi: 10.7498/aps.65.083301
    [13] Wu Shao-Quan, Fang Dong-Kai, Zhao Guo-Ping. Effect of electronic correlations on magnetotransport through a parallel double quantum dot. Acta Physica Sinica, 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [14] Tong Ai-Hong, Feng Guo-Qiang, Deng Yong-Ju. Dependence of nonsequential double ionization of He on intensity ratio of orthogonal two-color field. Acta Physica Sinica, 2012, 61(9): 093303. doi: 10.7498/aps.61.093303
    [15] Yu Ben-Hai, Li Ying-Bin. Laser intensity dependence of nonsequential double ionization of argon atoms by elliptically polarized laser pulses. Acta Physica Sinica, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [16] Yu Ben-Hai, Li Ying-Bin, Tang Qing-Bin. The nonsequential double ionization of argon atoms with elliptically polarized laser pulse. Acta Physica Sinica, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [17] Tong Ai-Hong, Liao Qing, Zhou Yue-Ming, Lu Pei-Xiang. Internuclear-distance dependence of nonsequential double ionization of H2 in different alignments. Acta Physica Sinica, 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [18] Zhang Dong-Ling, Tang Qing-Bin, Yu Ben-Hai, Chen Dong. Nonsequential double ionization of argon atom below the recollision threshold. Acta Physica Sinica, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [19] Tang Qing-Bin, Zhang Dong-Ling, Yu Ben-Hai, Chen Dong. Three-dimensional classical micro-canonical simulation of nonsequential double ionization with a few-cycle laser pulse. Acta Physica Sinica, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [20] Wang Wei, Sun Jia-Fa, Liu Mei, Liu Su. First-principles calculations on the electronic band structure of β-Pyrochlore superconductors AOs2O6 (A=K,Rb,Cs). Acta Physica Sinica, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
Metrics
  • Abstract views:  3859
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2022
  • Accepted Date:  13 July 2022
  • Available Online:  21 September 2022
  • Published Online:  05 October 2022

/

返回文章
返回