Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of inductively coupled Ar/O2 plasma

Zhang Yu-Han Zhao Xin-Qian Liang Ying-Shuang Guo Yuan-Yuan

Citation:

Numerical simulation of inductively coupled Ar/O2 plasma

Zhang Yu-Han, Zhao Xin-Qian, Liang Ying-Shuang, Guo Yuan-Yuan
PDF
HTML
Get Citation
  • In the inductively coupled plasma (ICP) discharge, surface processes, such as reflection, de-excitation, and recombination, can occur when active species arrive at material surfaces, which accordingly influences the plasma properties. In this work, a fluid model is used to study the Ar/O2 plasma generated by ICP reactors made of different materials. In simulation, sticking coefficient is employed to estimate the surface reactions on different materials. As the reactor material changes from stainless steel to anodized aluminum to Cu, the sticking coefficient of surface reaction O→1/2O2 decreases accordingly. It is found that the reactor material has a great effect on species density. In the stainless steel reactor, the density of O atoms at grounded state and excited state are much lower because more O2 molecules are generated from the surface reaction, yielding a much higher density of $ {\text{O}}_2^ + $ molecular ions which are mainly created from the ionization process of O2 molecules. Similarly, the high density of O2 molecules also enhances the production of ${{{\mathrm{O}}} _2}\left( {{{\mathrm{a}}^1}{\Delta _{\mathrm{g}}}} \right)$ molecules through the excitation process and O ions through the dissociation attachment reaction. On the contrary, more electrons are consumed via the collisions between electrons and O2 molecules or $ {\text{O}}_2^ + $ molecular ions. Therefore, the electron density obtained in the Cu reactor is highest. The density of Ar+ ions and Arm atoms also increase with sticking coefficient decreasing. The density of O+ ions and $ {\text{O}}_2^ + $ molecular ions peak below the coil in the stainless steel reactor, whereas the radial uniformities are improved in the Cu reactor. In the three reactors, the electrons distribute evenly at the reactor center region. The O density and ${{{\mathrm{O}}} _2}\left( {{{\mathrm{a}}^1}{\Delta _{\mathrm{g}}}} \right)$ density significantly peak at the reactor center, while the maximum value of Ar+ density and Arm density are below the coil. As for O(1D), the maximum density below the coil region moves toward the reactor center as the reactor material changes from stainless steel to Cu. Finally, the effect of sticking coefficient of O→1/2O2 is studied. The results show that the O atom density decreases with the sticking coefficient increasing, but the opposite trend is observed in O2 molecular density. It is noticed that the sticking coefficient has little effect on species density when it is higher than 0.5.
      Corresponding author: Liang Ying-Shuang, ysliang@ustl.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11805089), the Fundamental Research of the Education Department of Liaoning Province, China (Grant No. LJKMZ20220657), and the College Students’ Innovative Entrepreneurial Training Plan Program of University of Science and Technology Liaoning, China.
    [1]

    Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H, Wang Y N 2022 Chin. Phys. B 31 085202Google Scholar

    [2]

    Tiyyagura H R, Puliyalil H, Filipič G, et al. 2020 Surf. Coat. Technol. 385 125434Google Scholar

    [3]

    Zhang Z Y, Ye Z B, Wang Z J, et al. 2019 Appl. Surf. Sci. 475 143Google Scholar

    [4]

    Farias C E, Bianchi J C, Oliveira P R, et al. 2014 Mater. Res. 17 1251Google Scholar

    [5]

    Cao F, Wang Y D, Li L, Guo B J, An Y P 2009 Scripta Mater. 61 231Google Scholar

    [6]

    Ono T, Akagi T, Ichiki T 2009 J. Appl. Phys. 105 013314Google Scholar

    [7]

    范惠泽, 刘凯, 黄永清, 蔡世伟, 任晓敏, 段晓峰, 王琦, 刘昊, 吴瑶 2017 真空科学与技术学报 37 286Google Scholar

    Fan H Z, Liu K, Huang Y Q, Cai S W, Ren X M, Duan X F, Wang Q, Liu H, Wu Y 2017 Chin. J. Vac. Sci. Technol. 37 286Google Scholar

    [8]

    Hoffman A, Gu Y, Tokash J, Tokash J, Woodward J, Rack P D 2020 ACS Appl. Mater. Interfaces 12 7345Google Scholar

    [9]

    Chung T H, Kang H R, Bae M K 2012 Phys. Plasmas 19 113502Google Scholar

    [10]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [11]

    Du P C, Gao F, Wang X K, Liu Y X, Wang Y N 2021 Chin. Phys. B 30 035202Google Scholar

    [12]

    Han X, Wei X, Xu H, Zhang W, Li Y, Li Y, Yang Z 2019 Vacuum 168 108821Google Scholar

    [13]

    王彦洁 2018 硕士学位论文(大连: 大连理工大学)

    Wang Y J 2018 M. S. Dissertation (Dalian: Dalian University of Technology

    [14]

    Chen J L, Xu H J, Wei X L, Lü H Y, Song Z S, Chen Z H 2017 Vacuum 145 77Google Scholar

    [15]

    Wan Y H, Liu W, Zhang Y R, Wang Y N 2015 Chin. Phys. B 24 095203Google Scholar

    [16]

    Wen D Q, Zhang Y R, Lieberman M A, Wang Y N 2017 Plasma Process. Polym. 14 e1600100Google Scholar

    [17]

    佟磊, 赵明亮, 张钰如, 宋远红, 王友年 2024 物理学报 73 045201Google Scholar

    Tong L, Zhao M L, Zhang Y R, Song Y H, Wang Y N 2024 Acta Phys. Sin. 73 045201Google Scholar

    [18]

    Xue C, Gao F, Wen D Q, Wang Y N 2019 J. Appl. Phys. 125 023303Google Scholar

    [19]

    Liu W, Xue C, Gao F, Liu Y X, Wang Y N, Zhao Y T 2021 Chin. Phys. B 30 065202Google Scholar

    [20]

    孙晓艳 2017 博士学位论文(大连: 大连理工大学)

    Sun X Y 2017 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [21]

    Shibata M, Nakano N, Makabe T 1996 J. Appl. Phys. 80 6142Google Scholar

    [22]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 495203Google Scholar

    [23]

    Zhao X Q, Liang Y S, Guo Y Y 2022 Phys. Plasmas 29 113511Google Scholar

    [24]

    Zhang Y R, Gao F, Li X C, Bogaerts A, Wang Y N 2015 J. Vac. Sci. Technol. A 33 061303Google Scholar

    [25]

    Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Source Sci. Technol. 27 055003Google Scholar

    [26]

    Sun X Y, Zhang Y R, Li X C, Wang Y N 2017 Chin. Phys. B 26 015201Google Scholar

    [27]

    Liang Y S, Liu Y X, Zhang Y R, Wang Y N 2020 J Appl. Phys. 127 133301Google Scholar

    [28]

    Liang Y S, Xue C, Zhang Y R, Wang Y N 2021 Phys. Plasmas 28 013510Google Scholar

    [29]

    Bogaerts A 2009 Spectrochim. Acta B 64 126Google Scholar

    [30]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [31]

    Gomez S, Stern P G, Graham W G 2002 Appl. Phys. Lett. 81 19Google Scholar

    [32]

    Singh H, Coburn J W, Graves D B 2000 J. Appl. Phys. 88 3748Google Scholar

    [33]

    Matsushita J, Sasaki K, Kadota K 1997 Jpn. J. Appl. Phys. 36 4747Google Scholar

    [34]

    Mozetič M, Zalar A 2000 Appl. Surf. Sci. 158 263Google Scholar

    [35]

    Booth J P, Sadeghi N 1991 J. Appl. Phys. 70 611Google Scholar

    [36]

    Lee C, Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368Google Scholar

    [37]

    Guha J, Kurunczi P, Stafford L, Donnelly V M, Pu Y K 2008 J. Phys. Chem. C 112 8963Google Scholar

    [38]

    Kitajima T, Nakano T, Makabe T 2006 Appl. Phys. Lett. 88 091501Google Scholar

    [39]

    Sharpless R L, Slanger T G 1989 J. Chem. Phys. 91 7947Google Scholar

    [40]

    O'Brien Jr R J, Myers G H 1970 J. Chem. Phys. 53 3832Google Scholar

    [41]

    Vidaud P H, Wayne R P, Yaron M 1976 Chem. Phys. Lett. 38 306Google Scholar

    [42]

    Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 055008Google Scholar

    [43]

    Gudmundsson J, Kimura T, Lieberman M 1999 Plasma Sources Sci. Technol. 8 22Google Scholar

    [44]

    Kiehlbauch M W, Graves D B 2003 J. Vacuum Sci. Technol. A 21 660Google Scholar

    [45]

    Liu W, Wen D Q, Zhao S X, Gao F, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025035Google Scholar

    [46]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 325202Google Scholar

  • 图 1  (a)电子密度和(b)电子温度随Ar含量变化

    Figure 1.  (a) Electron density and (b) electron temperature as a function of Ar fraction.

    图 2  ICP腔室结构示意图

    Figure 2.  Schematic diagram of the ICP reactor.

    图 3  不同材质腔室放电中电子密度径向分布(Z = 6 cm)

    Figure 3.  Radial distributions of electron density at Z = 6 cm by different reactors.

    图 4  采用不锈钢腔室放电时, 不同方向的电子沉积功率密度空间分布 (a) R方向; (b) Z方向; (c) 角向

    Figure 4.  Spatial distributions of electron deposition power density from different direction in a stainless steel reactor: (a) R-direction; (b) Z-direction; (c) azimuthal direction.

    图 5  不同材质腔室中$ {\text{O}}_2^ + $密度空间分布 (a) 不锈钢; (b) 阳极Al2O3; (c) Cu

    Figure 5.  Spatial distributions of $ {\text{O}}_2^ + $ density generated by different reactors: (a) Stainless steel; (b) anodized Al2O3; (c) Cu.

    图 6  不同材质腔室中O+密度空间分布 (a) 不锈钢; (b) 阳极Al2O3; (c) Cu

    Figure 6.  Spatial distributions of O+ density generated by different reactors: (a) Stainless steel; (b) anodized Al2O3; (c) Cu.

    图 7  不同材质腔室放电中Ar+密度径向分布(Z = 6 cm)

    Figure 7.  Radial distributions of Ar+ density by different reactors at Z = 6 cm.

    图 8  不同材质腔室中O密度空间分布 (a) 不锈钢; (b) 阳极Al2O3; (c) Cu

    Figure 8.  Spatial distributions of O density generated by different reactors: (a) Stainless steel; (b) anodized Al2O3; (c) Cu.

    图 9  不同材质腔室中O密度空间分布 (a) 不锈钢; (b) 阳极Al2O3; (c) Cu

    Figure 9.  Spatial distributions of O density generated by different reactors: (a) Stainless steel; (b) anodized Al2O3; (c) Cu.

    图 10  不同材质腔室中O(D)密度空间分布 (a) 不锈钢; (b) 阳极Al2O3; (c) Cu

    Figure 10.  Spatial distributions of O(D) density generated by different reactors: (a) Stainless steel; (b) anodized Al2O3; (c) Cu.

    图 11  不同材质腔室放电中, 中性粒子密度径向分布(Z = 6 cm) (a) O2; (b) O2(a)

    Figure 11.  Radial distribution of neutral species density by different reactors at Z = 6 cm: (a) O2; (b) O2(a).

    图 12  不同材质腔室放电中Arm密度径向分布(Z = 6 cm)

    Figure 12.  Radial distribution of Arm density by different reactors at Z = 6 cm.

    图 13  S4 O → 1/2O2任意黏附系数下不同粒子密度分布(a) O; (b) O2 (Z = 6 cm)

    Figure 13.  Effect of sticking coefficient of reaction S4 O → 1/2O2 on neutral species density: (a) O; (b) O2 (Z = 6 cm)

    表 1  模型中考虑的表面反应

    Table 1.  Surface reactions considered in the model.

    序号 表面反应 黏附系数
    不锈钢 阳极Al2O3 Cu
    S1 Arr → Ar 1.0
    S2 Arm → Ar 1.0
    S3 Ar(4p) → Ar 1.0
    S4 O → 1/2O2 0.156 0.06 0.015
    S5 O(D) → 1/2O2
    S6 O2(a) → O2 0.007 0.007 0.014
    S7 O2(b) → O2 0.1
    DownLoad: CSV

    表 2  不同材质腔室下电子功率沉积密度最大值

    Table 2.  Maximum of electron deposition power density generated by different reactors.

    腔室材料电子沉积功率密度/(W·m–3)
    RZ角向
    不锈钢3.01×1041.95×1056.14×105
    阳极Al2O33.33×1042.06×1056.12×105
    Cu4.86×1042.52×1056.15×105
    DownLoad: CSV
  • [1]

    Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H, Wang Y N 2022 Chin. Phys. B 31 085202Google Scholar

    [2]

    Tiyyagura H R, Puliyalil H, Filipič G, et al. 2020 Surf. Coat. Technol. 385 125434Google Scholar

    [3]

    Zhang Z Y, Ye Z B, Wang Z J, et al. 2019 Appl. Surf. Sci. 475 143Google Scholar

    [4]

    Farias C E, Bianchi J C, Oliveira P R, et al. 2014 Mater. Res. 17 1251Google Scholar

    [5]

    Cao F, Wang Y D, Li L, Guo B J, An Y P 2009 Scripta Mater. 61 231Google Scholar

    [6]

    Ono T, Akagi T, Ichiki T 2009 J. Appl. Phys. 105 013314Google Scholar

    [7]

    范惠泽, 刘凯, 黄永清, 蔡世伟, 任晓敏, 段晓峰, 王琦, 刘昊, 吴瑶 2017 真空科学与技术学报 37 286Google Scholar

    Fan H Z, Liu K, Huang Y Q, Cai S W, Ren X M, Duan X F, Wang Q, Liu H, Wu Y 2017 Chin. J. Vac. Sci. Technol. 37 286Google Scholar

    [8]

    Hoffman A, Gu Y, Tokash J, Tokash J, Woodward J, Rack P D 2020 ACS Appl. Mater. Interfaces 12 7345Google Scholar

    [9]

    Chung T H, Kang H R, Bae M K 2012 Phys. Plasmas 19 113502Google Scholar

    [10]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [11]

    Du P C, Gao F, Wang X K, Liu Y X, Wang Y N 2021 Chin. Phys. B 30 035202Google Scholar

    [12]

    Han X, Wei X, Xu H, Zhang W, Li Y, Li Y, Yang Z 2019 Vacuum 168 108821Google Scholar

    [13]

    王彦洁 2018 硕士学位论文(大连: 大连理工大学)

    Wang Y J 2018 M. S. Dissertation (Dalian: Dalian University of Technology

    [14]

    Chen J L, Xu H J, Wei X L, Lü H Y, Song Z S, Chen Z H 2017 Vacuum 145 77Google Scholar

    [15]

    Wan Y H, Liu W, Zhang Y R, Wang Y N 2015 Chin. Phys. B 24 095203Google Scholar

    [16]

    Wen D Q, Zhang Y R, Lieberman M A, Wang Y N 2017 Plasma Process. Polym. 14 e1600100Google Scholar

    [17]

    佟磊, 赵明亮, 张钰如, 宋远红, 王友年 2024 物理学报 73 045201Google Scholar

    Tong L, Zhao M L, Zhang Y R, Song Y H, Wang Y N 2024 Acta Phys. Sin. 73 045201Google Scholar

    [18]

    Xue C, Gao F, Wen D Q, Wang Y N 2019 J. Appl. Phys. 125 023303Google Scholar

    [19]

    Liu W, Xue C, Gao F, Liu Y X, Wang Y N, Zhao Y T 2021 Chin. Phys. B 30 065202Google Scholar

    [20]

    孙晓艳 2017 博士学位论文(大连: 大连理工大学)

    Sun X Y 2017 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [21]

    Shibata M, Nakano N, Makabe T 1996 J. Appl. Phys. 80 6142Google Scholar

    [22]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 495203Google Scholar

    [23]

    Zhao X Q, Liang Y S, Guo Y Y 2022 Phys. Plasmas 29 113511Google Scholar

    [24]

    Zhang Y R, Gao F, Li X C, Bogaerts A, Wang Y N 2015 J. Vac. Sci. Technol. A 33 061303Google Scholar

    [25]

    Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Source Sci. Technol. 27 055003Google Scholar

    [26]

    Sun X Y, Zhang Y R, Li X C, Wang Y N 2017 Chin. Phys. B 26 015201Google Scholar

    [27]

    Liang Y S, Liu Y X, Zhang Y R, Wang Y N 2020 J Appl. Phys. 127 133301Google Scholar

    [28]

    Liang Y S, Xue C, Zhang Y R, Wang Y N 2021 Phys. Plasmas 28 013510Google Scholar

    [29]

    Bogaerts A 2009 Spectrochim. Acta B 64 126Google Scholar

    [30]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [31]

    Gomez S, Stern P G, Graham W G 2002 Appl. Phys. Lett. 81 19Google Scholar

    [32]

    Singh H, Coburn J W, Graves D B 2000 J. Appl. Phys. 88 3748Google Scholar

    [33]

    Matsushita J, Sasaki K, Kadota K 1997 Jpn. J. Appl. Phys. 36 4747Google Scholar

    [34]

    Mozetič M, Zalar A 2000 Appl. Surf. Sci. 158 263Google Scholar

    [35]

    Booth J P, Sadeghi N 1991 J. Appl. Phys. 70 611Google Scholar

    [36]

    Lee C, Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368Google Scholar

    [37]

    Guha J, Kurunczi P, Stafford L, Donnelly V M, Pu Y K 2008 J. Phys. Chem. C 112 8963Google Scholar

    [38]

    Kitajima T, Nakano T, Makabe T 2006 Appl. Phys. Lett. 88 091501Google Scholar

    [39]

    Sharpless R L, Slanger T G 1989 J. Chem. Phys. 91 7947Google Scholar

    [40]

    O'Brien Jr R J, Myers G H 1970 J. Chem. Phys. 53 3832Google Scholar

    [41]

    Vidaud P H, Wayne R P, Yaron M 1976 Chem. Phys. Lett. 38 306Google Scholar

    [42]

    Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 055008Google Scholar

    [43]

    Gudmundsson J, Kimura T, Lieberman M 1999 Plasma Sources Sci. Technol. 8 22Google Scholar

    [44]

    Kiehlbauch M W, Graves D B 2003 J. Vacuum Sci. Technol. A 21 660Google Scholar

    [45]

    Liu W, Wen D Q, Zhao S X, Gao F, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025035Google Scholar

    [46]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 325202Google Scholar

  • [1] Zhao Ming-Liang, Xing Si-Yu, Tang Wen, Zhang Yu-Ru, Gao Fei, Wang You-Nian. Three-dimensional fluid simulation of a planar coil inductively coupled argon plasma source for semiconductor processes. Acta Physica Sinica, 2024, 73(21): 215201. doi: 10.7498/aps.73.20240952
    [2] Tong Lei, Zhao Ming-Liang, Zhang Yu-Ru, Song Yuan-Hong, Wang You-Nian. Hybrid simulation of radio frequency biased inductively coupled Ar/O2/Cl2 plasmas. Acta Physica Sinica, 2024, 73(4): 045201. doi: 10.7498/aps.73.20231369
    [3] Duan Meng-Yue, Jia Wen-Zhu, Zhang Ying-Ying, Zhang Yi-Fan, Song Yuan-Hong. Two-dimensional fluid simulation of spatial distribution of dust particles in a capacitively coupled silane plasma. Acta Physica Sinica, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [4] Cao Li-Yang, Ma Xiao-Ping, Deng Li-Li, Lu Man-Ting, Xin Yu. Axial diagnosis of radio-frequency capacitively coupled Ar/O2 plasma. Acta Physica Sinica, 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [5] Zhang Yu-Ru, Gao Fei, Wang You-Nian. Numerical investigation of low pressure inductively coupled plasma sources: A review. Acta Physica Sinica, 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [6] Zhang Gai-Ling, Hua Yue, Hao Ze-Yu, Ren Chun-Sheng. Experimental investigation of plasma parameters in 13.56 MHz/2 MHz cylindrical inductively coupled plasma. Acta Physica Sinica, 2019, 68(10): 105202. doi: 10.7498/aps.68.20190071
    [7] Li Hang,  Yang Dong,  Li San-Wei,  Kuang Long-Yu,  Li Li-Ling,  Yuan Zheng,  Zhang Hai-Ying,  Yu Rui-Zhen,  Yang Zhi-Wen,  Chen Tao,  Cao Zhu-Rong,  Pu Yu-Dong,  Miao Wen-Yong,  Wang Feng,  Yang Jia-Min,  Jiang Shao-En,  Ding Yong-Kun,  Hu Guang-Yue,  Zheng Jian. Observation of hydrodynamic phenomena of plasma interaction in hohlraums. Acta Physica Sinica, 2018, 67(23): 235201. doi: 10.7498/aps.67.20181391
    [8] Yang Yu, Tang Cheng-Shuang, Zhao Yi-Fan, Yu Yi-Qing, Xin Yu. Electronegativity of capacitively coupled Ar+O2 plasma excited at very high frequency. Acta Physica Sinica, 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [9] Yuan Xiao-Xia, Zhong Jia-Yong. Simulations for two colliding plasma bubbles embedded into an external magnetic field. Acta Physica Sinica, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [10] Yang Zheng-Quan, Li Cheng, Lei Yi-An. Magnetohydrodynamic simulation of conical plasma compression. Acta Physica Sinica, 2016, 65(20): 205201. doi: 10.7498/aps.65.205201
    [11] Wei Xiao-Long, Xu Hao-Jun, Li Jian-Hai, Lin Min, Song Hui-Min. Experimental investigation and parameter diagnosis of air high-pressure ring-shaped inductively coupled plasma. Acta Physica Sinica, 2015, 64(17): 175201. doi: 10.7498/aps.64.175201
    [12] Sun Zhen-Yue, Sang Chao-Feng, Hu Wan-Peng, Wang De-Zhen. Simulation of erosion of the tungsten wall by impurities in the divertor plasma. Acta Physica Sinica, 2014, 63(14): 145204. doi: 10.7498/aps.63.145204
    [13] Zhang Hong-Wei, Chen Gai-Rong, Zhang Li-Wei, Lu Jing-Xiao, Wen Shu-Tang. A kinetic model for silicon film growth by silane/hydrogen glow discharge. Acta Physica Sinica, 2010, 59(7): 4901-4910. doi: 10.7498/aps.59.4901
    [14] Yang Juan, Shi Feng, Yang Tie-Lian, Meng Zhi-Qiang. Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [15] Meng Li-Min, Teng Ai-Ping, Li Ying-Jun, Cheng Tao, Zhang Jie. Two-dimensional plasma hydrodynamic of X-ray laser based on self-similarity model. Acta Physica Sinica, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [16] Hong Xiao-Gang, Xu Wen-Dong, Li Xiao-Gang, Zhao Cheng-Qiang, Tang Xiao-Dong. Numerical simulation of probe induced surface plasmon resonance coupling nanolithography. Acta Physica Sinica, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [17] Ding Zhen-Feng, Yuan Guo-Yu, Gao Wei, Sun Jing-Chao. Experimental studies on the properties of the discharge modes in a cylindrical radio frequency inductively coupled plasma. Acta Physica Sinica, 2008, 57(7): 4304-4315. doi: 10.7498/aps.57.4304
    [18] Dispersion analysis of a coupled-cavity slow wave structure filled with plasma. Acta Physica Sinica, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [19] Cang Yu, Lu Xin, Wu Hui-Chun, Zhang Jie. Effects of ponderomotive forces and space-charge field on laser plasma hydrodynamics. Acta Physica Sinica, 2005, 54(2): 812-817. doi: 10.7498/aps.54.812
    [20] YANG WEI-HONG, HU XI-WEI. MAGNETOHYDRODYNAMICS WAVES IN A NONHOMEG-ENEOUS CURRENT-CARRYING CYLINDRICAL PLASMA. Acta Physica Sinica, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
Metrics
  • Abstract views:  1342
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2024
  • Accepted Date:  30 April 2024
  • Available Online:  25 May 2024
  • Published Online:  05 July 2024

/

返回文章
返回