-
In the inductively coupled plasma (ICP) discharge, surface processes, such as reflection, de-excitation, and recombination, can occur when active species arrive at material surfaces, which accordingly influences the plasma properties. In this work, a fluid model is used to study the Ar/O2 plasma generated by ICP reactors made of different materials. In simulation, sticking coefficient is employed to estimate the surface reactions on different materials. As the reactor material changes from stainless steel to anodized aluminum to Cu, the sticking coefficient of surface reaction O→1/2O2 decreases accordingly. It is found that the reactor material has a great effect on species density. In the stainless steel reactor, the density of O atoms at grounded state and excited state are much lower because more O2 molecules are generated from the surface reaction, yielding a much higher density of
$ {\text{O}}_2^ + $ molecular ions which are mainly created from the ionization process of O2 molecules. Similarly, the high density of O2 molecules also enhances the production of${{{\mathrm{O}}} _2}\left( {{{\mathrm{a}}^1}{\Delta _{\mathrm{g}}}} \right)$ molecules through the excitation process and O– ions through the dissociation attachment reaction. On the contrary, more electrons are consumed via the collisions between electrons and O2 molecules or$ {\text{O}}_2^ + $ molecular ions. Therefore, the electron density obtained in the Cu reactor is highest. The density of Ar+ ions and Arm atoms also increase with sticking coefficient decreasing. The density of O+ ions and$ {\text{O}}_2^ + $ molecular ions peak below the coil in the stainless steel reactor, whereas the radial uniformities are improved in the Cu reactor. In the three reactors, the electrons distribute evenly at the reactor center region. The O density and${{{\mathrm{O}}} _2}\left( {{{\mathrm{a}}^1}{\Delta _{\mathrm{g}}}} \right)$ density significantly peak at the reactor center, while the maximum value of Ar+ density and Arm density are below the coil. As for O(1D), the maximum density below the coil region moves toward the reactor center as the reactor material changes from stainless steel to Cu. Finally, the effect of sticking coefficient of O→1/2O2 is studied. The results show that the O atom density decreases with the sticking coefficient increasing, but the opposite trend is observed in O2 molecular density. It is noticed that the sticking coefficient has little effect on species density when it is higher than 0.5.-
Keywords:
- inductively coupled plasma /
- Ar/O2 plasma /
- reactor material /
- fluid simulation
[1] Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H, Wang Y N 2022 Chin. Phys. B 31 085202Google Scholar
[2] Tiyyagura H R, Puliyalil H, Filipič G, et al. 2020 Surf. Coat. Technol. 385 125434Google Scholar
[3] Zhang Z Y, Ye Z B, Wang Z J, et al. 2019 Appl. Surf. Sci. 475 143Google Scholar
[4] Farias C E, Bianchi J C, Oliveira P R, et al. 2014 Mater. Res. 17 1251Google Scholar
[5] Cao F, Wang Y D, Li L, Guo B J, An Y P 2009 Scripta Mater. 61 231Google Scholar
[6] Ono T, Akagi T, Ichiki T 2009 J. Appl. Phys. 105 013314Google Scholar
[7] 范惠泽, 刘凯, 黄永清, 蔡世伟, 任晓敏, 段晓峰, 王琦, 刘昊, 吴瑶 2017 真空科学与技术学报 37 286Google Scholar
Fan H Z, Liu K, Huang Y Q, Cai S W, Ren X M, Duan X F, Wang Q, Liu H, Wu Y 2017 Chin. J. Vac. Sci. Technol. 37 286Google Scholar
[8] Hoffman A, Gu Y, Tokash J, Tokash J, Woodward J, Rack P D 2020 ACS Appl. Mater. Interfaces 12 7345Google Scholar
[9] Chung T H, Kang H R, Bae M K 2012 Phys. Plasmas 19 113502Google Scholar
[10] Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar
[11] Du P C, Gao F, Wang X K, Liu Y X, Wang Y N 2021 Chin. Phys. B 30 035202Google Scholar
[12] Han X, Wei X, Xu H, Zhang W, Li Y, Li Y, Yang Z 2019 Vacuum 168 108821Google Scholar
[13] 王彦洁 2018 硕士学位论文(大连: 大连理工大学)
Wang Y J 2018 M. S. Dissertation (Dalian: Dalian University of Technology
[14] Chen J L, Xu H J, Wei X L, Lü H Y, Song Z S, Chen Z H 2017 Vacuum 145 77Google Scholar
[15] Wan Y H, Liu W, Zhang Y R, Wang Y N 2015 Chin. Phys. B 24 095203Google Scholar
[16] Wen D Q, Zhang Y R, Lieberman M A, Wang Y N 2017 Plasma Process. Polym. 14 e1600100Google Scholar
[17] 佟磊, 赵明亮, 张钰如, 宋远红, 王友年 2024 物理学报 73 045201Google Scholar
Tong L, Zhao M L, Zhang Y R, Song Y H, Wang Y N 2024 Acta Phys. Sin. 73 045201Google Scholar
[18] Xue C, Gao F, Wen D Q, Wang Y N 2019 J. Appl. Phys. 125 023303Google Scholar
[19] Liu W, Xue C, Gao F, Liu Y X, Wang Y N, Zhao Y T 2021 Chin. Phys. B 30 065202Google Scholar
[20] 孙晓艳 2017 博士学位论文(大连: 大连理工大学)
Sun X Y 2017 Ph. D. Dissertation (Dalian: Dalian University of Technology
[21] Shibata M, Nakano N, Makabe T 1996 J. Appl. Phys. 80 6142Google Scholar
[22] Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 495203Google Scholar
[23] Zhao X Q, Liang Y S, Guo Y Y 2022 Phys. Plasmas 29 113511Google Scholar
[24] Zhang Y R, Gao F, Li X C, Bogaerts A, Wang Y N 2015 J. Vac. Sci. Technol. A 33 061303Google Scholar
[25] Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Source Sci. Technol. 27 055003Google Scholar
[26] Sun X Y, Zhang Y R, Li X C, Wang Y N 2017 Chin. Phys. B 26 015201Google Scholar
[27] Liang Y S, Liu Y X, Zhang Y R, Wang Y N 2020 J Appl. Phys. 127 133301Google Scholar
[28] Liang Y S, Xue C, Zhang Y R, Wang Y N 2021 Phys. Plasmas 28 013510Google Scholar
[29] Bogaerts A 2009 Spectrochim. Acta B 64 126Google Scholar
[30] Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar
[31] Gomez S, Stern P G, Graham W G 2002 Appl. Phys. Lett. 81 19Google Scholar
[32] Singh H, Coburn J W, Graves D B 2000 J. Appl. Phys. 88 3748Google Scholar
[33] Matsushita J, Sasaki K, Kadota K 1997 Jpn. J. Appl. Phys. 36 4747Google Scholar
[34] Mozetič M, Zalar A 2000 Appl. Surf. Sci. 158 263Google Scholar
[35] Booth J P, Sadeghi N 1991 J. Appl. Phys. 70 611Google Scholar
[36] Lee C, Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368Google Scholar
[37] Guha J, Kurunczi P, Stafford L, Donnelly V M, Pu Y K 2008 J. Phys. Chem. C 112 8963Google Scholar
[38] Kitajima T, Nakano T, Makabe T 2006 Appl. Phys. Lett. 88 091501Google Scholar
[39] Sharpless R L, Slanger T G 1989 J. Chem. Phys. 91 7947Google Scholar
[40] O'Brien Jr R J, Myers G H 1970 J. Chem. Phys. 53 3832Google Scholar
[41] Vidaud P H, Wayne R P, Yaron M 1976 Chem. Phys. Lett. 38 306Google Scholar
[42] Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 055008Google Scholar
[43] Gudmundsson J, Kimura T, Lieberman M 1999 Plasma Sources Sci. Technol. 8 22Google Scholar
[44] Kiehlbauch M W, Graves D B 2003 J. Vacuum Sci. Technol. A 21 660Google Scholar
[45] Liu W, Wen D Q, Zhao S X, Gao F, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025035Google Scholar
[46] Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 325202Google Scholar
-
表 1 模型中考虑的表面反应
Table 1. Surface reactions considered in the model.
序号 表面反应 黏附系数 不锈钢 阳极Al2O3 Cu S1 Arr → Ar 1.0 S2 Arm → Ar 1.0 S3 Ar(4p) → Ar 1.0 S4 O → 1/2O2 0.156 0.06 0.015 S5 O(D) → 1/2O2 S6 O2(a) → O2 0.007 0.007 0.014 S7 O2(b) → O2 0.1 表 2 不同材质腔室下电子功率沉积密度最大值
Table 2. Maximum of electron deposition power density generated by different reactors.
腔室材料 电子沉积功率密度/(W·m–3) R向 Z向 角向 不锈钢 3.01×104 1.95×105 6.14×105 阳极Al2O3 3.33×104 2.06×105 6.12×105 Cu 4.86×104 2.52×105 6.15×105 -
[1] Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H, Wang Y N 2022 Chin. Phys. B 31 085202Google Scholar
[2] Tiyyagura H R, Puliyalil H, Filipič G, et al. 2020 Surf. Coat. Technol. 385 125434Google Scholar
[3] Zhang Z Y, Ye Z B, Wang Z J, et al. 2019 Appl. Surf. Sci. 475 143Google Scholar
[4] Farias C E, Bianchi J C, Oliveira P R, et al. 2014 Mater. Res. 17 1251Google Scholar
[5] Cao F, Wang Y D, Li L, Guo B J, An Y P 2009 Scripta Mater. 61 231Google Scholar
[6] Ono T, Akagi T, Ichiki T 2009 J. Appl. Phys. 105 013314Google Scholar
[7] 范惠泽, 刘凯, 黄永清, 蔡世伟, 任晓敏, 段晓峰, 王琦, 刘昊, 吴瑶 2017 真空科学与技术学报 37 286Google Scholar
Fan H Z, Liu K, Huang Y Q, Cai S W, Ren X M, Duan X F, Wang Q, Liu H, Wu Y 2017 Chin. J. Vac. Sci. Technol. 37 286Google Scholar
[8] Hoffman A, Gu Y, Tokash J, Tokash J, Woodward J, Rack P D 2020 ACS Appl. Mater. Interfaces 12 7345Google Scholar
[9] Chung T H, Kang H R, Bae M K 2012 Phys. Plasmas 19 113502Google Scholar
[10] Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar
[11] Du P C, Gao F, Wang X K, Liu Y X, Wang Y N 2021 Chin. Phys. B 30 035202Google Scholar
[12] Han X, Wei X, Xu H, Zhang W, Li Y, Li Y, Yang Z 2019 Vacuum 168 108821Google Scholar
[13] 王彦洁 2018 硕士学位论文(大连: 大连理工大学)
Wang Y J 2018 M. S. Dissertation (Dalian: Dalian University of Technology
[14] Chen J L, Xu H J, Wei X L, Lü H Y, Song Z S, Chen Z H 2017 Vacuum 145 77Google Scholar
[15] Wan Y H, Liu W, Zhang Y R, Wang Y N 2015 Chin. Phys. B 24 095203Google Scholar
[16] Wen D Q, Zhang Y R, Lieberman M A, Wang Y N 2017 Plasma Process. Polym. 14 e1600100Google Scholar
[17] 佟磊, 赵明亮, 张钰如, 宋远红, 王友年 2024 物理学报 73 045201Google Scholar
Tong L, Zhao M L, Zhang Y R, Song Y H, Wang Y N 2024 Acta Phys. Sin. 73 045201Google Scholar
[18] Xue C, Gao F, Wen D Q, Wang Y N 2019 J. Appl. Phys. 125 023303Google Scholar
[19] Liu W, Xue C, Gao F, Liu Y X, Wang Y N, Zhao Y T 2021 Chin. Phys. B 30 065202Google Scholar
[20] 孙晓艳 2017 博士学位论文(大连: 大连理工大学)
Sun X Y 2017 Ph. D. Dissertation (Dalian: Dalian University of Technology
[21] Shibata M, Nakano N, Makabe T 1996 J. Appl. Phys. 80 6142Google Scholar
[22] Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 495203Google Scholar
[23] Zhao X Q, Liang Y S, Guo Y Y 2022 Phys. Plasmas 29 113511Google Scholar
[24] Zhang Y R, Gao F, Li X C, Bogaerts A, Wang Y N 2015 J. Vac. Sci. Technol. A 33 061303Google Scholar
[25] Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Source Sci. Technol. 27 055003Google Scholar
[26] Sun X Y, Zhang Y R, Li X C, Wang Y N 2017 Chin. Phys. B 26 015201Google Scholar
[27] Liang Y S, Liu Y X, Zhang Y R, Wang Y N 2020 J Appl. Phys. 127 133301Google Scholar
[28] Liang Y S, Xue C, Zhang Y R, Wang Y N 2021 Phys. Plasmas 28 013510Google Scholar
[29] Bogaerts A 2009 Spectrochim. Acta B 64 126Google Scholar
[30] Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar
[31] Gomez S, Stern P G, Graham W G 2002 Appl. Phys. Lett. 81 19Google Scholar
[32] Singh H, Coburn J W, Graves D B 2000 J. Appl. Phys. 88 3748Google Scholar
[33] Matsushita J, Sasaki K, Kadota K 1997 Jpn. J. Appl. Phys. 36 4747Google Scholar
[34] Mozetič M, Zalar A 2000 Appl. Surf. Sci. 158 263Google Scholar
[35] Booth J P, Sadeghi N 1991 J. Appl. Phys. 70 611Google Scholar
[36] Lee C, Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368Google Scholar
[37] Guha J, Kurunczi P, Stafford L, Donnelly V M, Pu Y K 2008 J. Phys. Chem. C 112 8963Google Scholar
[38] Kitajima T, Nakano T, Makabe T 2006 Appl. Phys. Lett. 88 091501Google Scholar
[39] Sharpless R L, Slanger T G 1989 J. Chem. Phys. 91 7947Google Scholar
[40] O'Brien Jr R J, Myers G H 1970 J. Chem. Phys. 53 3832Google Scholar
[41] Vidaud P H, Wayne R P, Yaron M 1976 Chem. Phys. Lett. 38 306Google Scholar
[42] Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 055008Google Scholar
[43] Gudmundsson J, Kimura T, Lieberman M 1999 Plasma Sources Sci. Technol. 8 22Google Scholar
[44] Kiehlbauch M W, Graves D B 2003 J. Vacuum Sci. Technol. A 21 660Google Scholar
[45] Liu W, Wen D Q, Zhao S X, Gao F, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025035Google Scholar
[46] Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 325202Google Scholar
Catalog
Metrics
- Abstract views: 1865
- PDF Downloads: 80
- Cited By: 0