Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental investigation of plasma parameters in 13.56 MHz/2 MHz cylindrical inductively coupled plasma

Zhang Gai-Ling Hua Yue Hao Ze-Yu Ren Chun-Sheng

Citation:

Experimental investigation of plasma parameters in 13.56 MHz/2 MHz cylindrical inductively coupled plasma

Zhang Gai-Ling, Hua Yue, Hao Ze-Yu, Ren Chun-Sheng
PDF
HTML
Get Citation
  • Inductively coupled plasmais widely used in semiconductor and display process because of its desirable characteristics such as high plasma density, simple structure and independently controllable ion energy. The driving frequency is a significant parameter that generates and maintains the plasma. However, the effects of different driving frequencies on the radial distribution of the plasma parameters are hardly investigated. So a large area cylindrical inductively coupled plasma source driven separately by 2 MHz and 13.56 MHz is investigated. In order to perform a comprehensive investigation about the effect of driving frequency, the radially resolved measurements of electron density, electron temperature and density of metastable state atoms for the argon discharge are systematically analyzed by Langmuir double probe and optical emission spectroscopy at various power values and gas pressures. It is found that input power values at high frequency (13.56 MHz) and low frequency (2 MHz) have different effects on plasma parameters. When discharge is driven at high frequency, the electron density increases obviously with the increase of power. However, when discharge is driven at low frequency, the electron temperature increases evidently with the increase of power. This can be explained by calculating the skin depths in high and low frequency discharge. When the discharge is driven at high frequency, the induced electromagnetic field is higher than that at low frequency, and the single electron obtains more energy. It is easier to ionize, so the energy is mainly used to increase the electron density. When the discharge is driven at low frequency, the skin layer is thicker, the number of heated electrons is larger, and the average energy of electrons is increased, so the energy is mainly used to raise the electron temperature. At a gas pressure of 10 Pa, the electron density shows a ‘convex’ distribution and increases with the increase of input power for both the high-frequency and low-frequency discharge. While the distributions of electron temperature are obviously different. When the discharge is driven at high frequency, the electron temperature is relatively flat in the center of the chamber and slightly increases on the edge. When the discharge is driven at low frequency, the electron temperature gradually decreases along the radial position. This is due to the one-step ionization in the high-frequency discharge and the two-step ionization in the low-frequency discharge. In order to prove that the low-frequency discharge is dominated by two-step ionization, the spectral intensities of the argon plasma under the same discharge conditions are diagnosed by optical emission spectroscopy. The number density of metastable states is calculated by the branch ratio method. The results are consistent with the analyses. At a gas pressure of 100 Pa, the electron density increases and then decreases with the increase of radial distance, and the overall distribution shows a " saddle shape” for high frequency and also for low frequency discharge. Although the uniformity of electron density improves with the gas pressure, the uniformity at low frequency is better than that at high frequency. The reason can be attributed to the fact that the skin layer of low frequency is thicker and the heating area is wider.
      Corresponding author: Ren Chun-Sheng, rchsh@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11475038).
    [1]

    迈克尔A.力伯曼, 阿伦J.里登伯格 著(蒲以康 译) 2004 等离子体放电原理与材料处理(北京: 科学出版社)第1−19页

    Lieberman M A, Lichtenberg A J(translated by Pu Y K) 2004 Principles of Plasma Discharge and Materials Processing (Beijing: Science Press) pp1−19 (in Chinese)

    [2]

    帕斯卡 夏伯特 著(王友年 译) 2015 射频等离子体物理学(北京: 科学出版社)第1−15页

    Chabert P(translated by Wang Y N) 2015 Physics of Radio-Frequency Plasmas (Beijing: Science Press) pp1−15 (in Chinese)

    [3]

    Xu S, Ostrikov K N, Li Y, Tsakadze E L, Jones I R 2000 Phys. Plasmas 45 20

    [4]

    Saehoon U, Kyong-Ho L, Chang H Y, Chung C W 2004 Phys. Plasmas 11 4830Google Scholar

    [5]

    Kim J H, Hwang H J, Kim D H, Cho J H, Chung C W 2015 J. Appl. Phys. 117 153302Google Scholar

    [6]

    丁振峰, 袁国玉, 高巍, 孙景超 2007 物理学报 57 4304

    Ding Z F, Yuan G Y, Gao W, Sun J C 2007 Acta Phys. Sin. 57 4304

    [7]

    高飞 2011 博士学位论文(大连: 大连理工大学)

    Gao F 2011 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [8]

    赵书霞 2011 博士学位论文(大连: 大连理工大学)

    Zhao S X 2010 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [9]

    Godyak V A, Alexandrovich B M 2004 Phys. Plasmas 11 3553Google Scholar

    [10]

    Lee H C, Chung C W 2015 Phys. Plasmas 22 053505Google Scholar

    [11]

    Lee H C, Chung C W 2013 Phys. Plasmas 20 101607Google Scholar

    [12]

    Jun H S, Chang H Y 2007 Appl. Phys. Lett. 92 041501

    [13]

    Gao F, Zhang Y R, Li H, Liu Y, Wang Y N 2017 Phys. Plasmas 24 073508Google Scholar

    [14]

    Liu F, Ren C S, Wang Y N, Qi X L, Ma T C 2006 Vacuum 81 221Google Scholar

    [15]

    Hua Y, Song J, Hao Z Y 2018 Plasma Sci. Technol. 20 065402Google Scholar

    [16]

    Hua Y, Song J, Hao Z Y, Zhang G L 2018 Plasma Sci. Technol. 20 014005Google Scholar

    [17]

    刘耀泽 2016 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Liu Y Z 2016 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [18]

    张健 2006 硕士学位论文(大连: 大连理工大学)

    Zhang J 2006 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)

    [19]

    齐雪莲 2008 博士学位论文(大连: 大连理工大学)

    Qi X L 2008 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [20]

    Daltrini A M, Moshkalev S A, Monteiro M J R, Besseler E, Kostryukov A 2007 J. Appl. Phys. 101 073309Google Scholar

    [21]

    Moshkalev S A, Steen P G, Gomez S, Graham W G 1999 Appl. Phys. Lett. 75 328Google Scholar

    [22]

    韩雪 2015 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Han X 2015 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [23]

    Daltrini A M, Moshkalev S A,Morgan T J 2008 Appl. Phys. Lett. 92 061504Google Scholar

    [24]

    Zhu X M, Pu Y K 2010 J. Phys. D 43 015204Google Scholar

    [25]

    Czerwiec T,Graves D B 2004 J. Phys. D 37 2827Google Scholar

    [26]

    刘阳 2017 硕士学位论文(大连: 大连理工大学)

    Liu Y 2017 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)

    [27]

    Li H, Liu Y, Zhang Y R, Gao F, Wang Y N 2017 J. Appl. Phys. 121 23302Google Scholar

    [28]

    Lee H C, Seo B H, Kwon D C, Kim J H, Seong D J, Oh S J, Chung C W, You K H, Shin C H 2017 Appl. Phys. Lett. 110 014106Google Scholar

    [29]

    Lee H C 2018 Phys. Plasmas 5 011108Google Scholar

    [30]

    Lee H C, Lee M H, Chung C W 2010 Appl. Phys. Lett. 96 041503Google Scholar

    [31]

    Setsuhara Y, Tsukiyama D, Takenaka K 2008 Surface & Coatings Technology 202 5238

  • 图 1  柱状感性耦合等离子体源的实验装置图

    Figure 1.  A schematic diagram of the cylindrical inductively coupled plasma reactor.

    图 2  频率为13.56 MHz, 气压为10 Pa, 输入功率为400 W, 腔室中心(r = 0 cm)处氩等离子体发射光谱全谱

    Figure 2.  Argon plasma emission spectroscopy at 10 Pa for 13.56 MHz radio-frequency discharge. The radio-frequency power is fixed at 400 W and the measurement plane is r = 0 cm.

    图 3  气压为10 Pa时, 在z = 10 cm, r = 0 cm处, 13.56 MHz/2 MHz放电中等离子体参数随功率的变化 (a)电子密度; (b)电子温度

    Figure 3.  (a) The electron density and (b) electron temperature of 13.56 MHz/2 MHz discharge at different power. The gas pressure is fixed at 10 Pa and the measurement position is z = 10 cm, r = 0 cm.

    图 4  气压为10 Pa时, 13.56 MHz/2 MHz放电中趋肤深度随功率的变化

    Figure 4.  The skin depth versus input power for 13.56 MHz/2 MHz discharge at 10 Pa.

    图 5  气压为10 Pa时, z = 10 cm处, 13.56 MHz/2 MHz放电中电子密度的径向分布 (a)高频13.56 MHz; (b)低频2 MHz

    Figure 5.  The radial distribution profiles of electron density for (a) 13.56 MHz and (b) 2 MHz discharge. The gas pressure is fixed at 10 Pa and the measurement plane is z = 10 cm.

    图 6  气压为10 Pa时, 高低频放电中电子温度的径向分布 (a)高频13.56 MHz; (b)低频2 MHz

    Figure 6.  The radial distribution profiles of electron temperature for (a) 13.56 MHz and (b) 2 MHz discharge. The gas pressure is fixed at 10 Pa and the measurement plane is z = 10 cm.

    图 7  气压为10 Pa时, 高低频放电中亚稳态的径向分布 (a)高频13.56 MHz; (b)低频2 MHz

    Figure 7.  The radial distribution profiles of metastable states for (a) 13.56 MHz and (b) 2 MHz discharge at 10 Pa.

    图 8  气压为100 Pa时高低频放电中电子密度的径向分布 (a)频率为13.56 MHz; (b)频率为2 MHz

    Figure 8.  The radial distribution profiles of electron density (a) 13.56 MHz and (b) 2 MHz discharge. The gas pressure is fixed at 100 Pa and the measurement plane is z = 10 cm.

    图 9  气压为10 Pa和100 Pa时, 在z = 10 cm处, 高低频放电中径向不均匀度随功率的变化

    Figure 9.  Thenonuniformity at different power for 13.56 MHz/2 MHz discharge. The gas pressure is fixed at 10 Pa and 100 Pa, the measurement plane is z = 10 cm.

    图 10  气压为10 Pa和100 Pa时, 13.56 MHz/2 MHz放电中电子能量弛豫长度随功率的变化

    Figure 10.  The electron energy relaxation length versus input power for 13.56 MHz/2 MHz discharge. The gas pressure is fixed at 10 Pa and 100 Pa.

    图 11  气压为100 Pa时高低频放电中电子温度的径向分布 (a)高频13.56 MHz; (b)低频2 MHz

    Figure 11.  The radial distribution profiles of electron temperature (a) 13.56 MHz and (b) 2 MHz discharge. The gas pressure is fixed at 100 Pa and the measurement plane is z = 10 cm.

  • [1]

    迈克尔A.力伯曼, 阿伦J.里登伯格 著(蒲以康 译) 2004 等离子体放电原理与材料处理(北京: 科学出版社)第1−19页

    Lieberman M A, Lichtenberg A J(translated by Pu Y K) 2004 Principles of Plasma Discharge and Materials Processing (Beijing: Science Press) pp1−19 (in Chinese)

    [2]

    帕斯卡 夏伯特 著(王友年 译) 2015 射频等离子体物理学(北京: 科学出版社)第1−15页

    Chabert P(translated by Wang Y N) 2015 Physics of Radio-Frequency Plasmas (Beijing: Science Press) pp1−15 (in Chinese)

    [3]

    Xu S, Ostrikov K N, Li Y, Tsakadze E L, Jones I R 2000 Phys. Plasmas 45 20

    [4]

    Saehoon U, Kyong-Ho L, Chang H Y, Chung C W 2004 Phys. Plasmas 11 4830Google Scholar

    [5]

    Kim J H, Hwang H J, Kim D H, Cho J H, Chung C W 2015 J. Appl. Phys. 117 153302Google Scholar

    [6]

    丁振峰, 袁国玉, 高巍, 孙景超 2007 物理学报 57 4304

    Ding Z F, Yuan G Y, Gao W, Sun J C 2007 Acta Phys. Sin. 57 4304

    [7]

    高飞 2011 博士学位论文(大连: 大连理工大学)

    Gao F 2011 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [8]

    赵书霞 2011 博士学位论文(大连: 大连理工大学)

    Zhao S X 2010 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [9]

    Godyak V A, Alexandrovich B M 2004 Phys. Plasmas 11 3553Google Scholar

    [10]

    Lee H C, Chung C W 2015 Phys. Plasmas 22 053505Google Scholar

    [11]

    Lee H C, Chung C W 2013 Phys. Plasmas 20 101607Google Scholar

    [12]

    Jun H S, Chang H Y 2007 Appl. Phys. Lett. 92 041501

    [13]

    Gao F, Zhang Y R, Li H, Liu Y, Wang Y N 2017 Phys. Plasmas 24 073508Google Scholar

    [14]

    Liu F, Ren C S, Wang Y N, Qi X L, Ma T C 2006 Vacuum 81 221Google Scholar

    [15]

    Hua Y, Song J, Hao Z Y 2018 Plasma Sci. Technol. 20 065402Google Scholar

    [16]

    Hua Y, Song J, Hao Z Y, Zhang G L 2018 Plasma Sci. Technol. 20 014005Google Scholar

    [17]

    刘耀泽 2016 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Liu Y Z 2016 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [18]

    张健 2006 硕士学位论文(大连: 大连理工大学)

    Zhang J 2006 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)

    [19]

    齐雪莲 2008 博士学位论文(大连: 大连理工大学)

    Qi X L 2008 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [20]

    Daltrini A M, Moshkalev S A, Monteiro M J R, Besseler E, Kostryukov A 2007 J. Appl. Phys. 101 073309Google Scholar

    [21]

    Moshkalev S A, Steen P G, Gomez S, Graham W G 1999 Appl. Phys. Lett. 75 328Google Scholar

    [22]

    韩雪 2015 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Han X 2015 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [23]

    Daltrini A M, Moshkalev S A,Morgan T J 2008 Appl. Phys. Lett. 92 061504Google Scholar

    [24]

    Zhu X M, Pu Y K 2010 J. Phys. D 43 015204Google Scholar

    [25]

    Czerwiec T,Graves D B 2004 J. Phys. D 37 2827Google Scholar

    [26]

    刘阳 2017 硕士学位论文(大连: 大连理工大学)

    Liu Y 2017 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)

    [27]

    Li H, Liu Y, Zhang Y R, Gao F, Wang Y N 2017 J. Appl. Phys. 121 23302Google Scholar

    [28]

    Lee H C, Seo B H, Kwon D C, Kim J H, Seong D J, Oh S J, Chung C W, You K H, Shin C H 2017 Appl. Phys. Lett. 110 014106Google Scholar

    [29]

    Lee H C 2018 Phys. Plasmas 5 011108Google Scholar

    [30]

    Lee H C, Lee M H, Chung C W 2010 Appl. Phys. Lett. 96 041503Google Scholar

    [31]

    Setsuhara Y, Tsukiyama D, Takenaka K 2008 Surface & Coatings Technology 202 5238

  • [1] Qi Liang-Wen, Du Man-Qiang, Wen Xiao-Dong, Song Jian, Yan Hui-Jie. Dynamics and impurity spectral characteristics of coaxial gun discharge plasma. Acta Physica Sinica, 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] Tong Lei, Zhao Ming-Liang, Zhang Yu-Ru, Song Yuan-Hong, Wang You-Nian. Hybrid simulation of radio frequency biased inductively coupled Ar/O2/Cl2 plasmas. Acta Physica Sinica, 2024, 73(4): 045201. doi: 10.7498/aps.73.20231369
    [3] Zhao Ming-Liang, Xing Si-Yu, Tang Wen, Zhang Yu-Ru, Gao Fei, Wang You-Nian. Three-dimensional fluid simulation of a planar coil inductively coupled argon plasma source for semiconductor processes. Acta Physica Sinica, 2024, 73(21): 215201. doi: 10.7498/aps.73.20240952
    [4] Zhang Yu-Han, Zhao Xin-Qian, Liang Ying-Shuang, Guo Yuan-Yuan. Numerical simulation of inductively coupled Ar/O2 plasma. Acta Physica Sinica, 2024, 73(13): 135201. doi: 10.7498/aps.73.20240436
    [5] Zhang Xue-Xue, Jia Peng-Ying, Ran Jun-Xia, Li Jin-Mao, Sun Huan-Xia, Li Xue-Chen. Discharge characteristics and parameter diagnosis of brush-shaped air plasma plumes under auxiliary discharge. Acta Physica Sinica, 2024, 73(8): 085201. doi: 10.7498/aps.73.20231946
    [6] Zhu Hai-Long, Shi Yu-Jun, Wang Jia-Wei, Zhang Zhi-Ling, Gao Yi-Ning, Zhang Feng-Bo. Formation and evolution of striation plasma in high-pressure argon glow discharge. Acta Physica Sinica, 2022, 71(14): 145201. doi: 10.7498/aps.71.20212394
    [7] Yang Li-Jun, Song Cai-Hong, Zhao Na, Zhou Shuai, Wu Jia-Cun, Jia Peng-Ying. Discharge characteristics of argon brush plasma plume operated at atmospheric pressure. Acta Physica Sinica, 2021, 70(15): 155201. doi: 10.7498/aps.70.20202091
    [8] Zhang Yu-Ru, Gao Fei, Wang You-Nian. Numerical investigation of low pressure inductively coupled plasma sources: A review. Acta Physica Sinica, 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [9] Du Yong-Quan, Liu Wen-Yao, Zhu Ai-Min, Li Xiao-Song, Zhao Tian-Liang, Liu Yong-Xin, Gao Fei, Xu Yong, Wang You-Nian. Phase resolved optical emission spectroscopy of dual frequency capacitively coupled plasma. Acta Physica Sinica, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [10] Chen Wei, Huang Jun, Li Hui, Lü Guo-Hua, Wang Xing-Quan, Zhang Guo-Ping, Wang Peng-Ye, Yang Si-Ze. Inactivation of A549 cancer cells by a helium-oxygen plasma needle. Acta Physica Sinica, 2012, 61(18): 185203. doi: 10.7498/aps.61.185203
    [11] Gao Zhu-Xiu, Feng Chun-Hua, Yang Xuan-Zong, Huang Jian-Guo, Han Jian-Wei. Research on plasma axial velocity generated by small debris accelerator coaxial gun. Acta Physica Sinica, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [12] Yu Liang, Li Xiao-Dong, Wang Yu, Ni Ming-Jiang, Yan Jian-Hua, Tu Xin. Characterization of atmospheric pressuredc gliding arc plasma. Acta Physica Sinica, 2011, 60(1): 015101. doi: 10.7498/aps.60.015101
    [13] Li Xue-Chen, Yuan Ning, Jia Peng-Ying, Chang Yuan-Yuan, Ji Ya-Fei. Characteristics of atmospheric pressure air uniform discharge generated by a plasma needle. Acta Physica Sinica, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [14] Pu Yu-Dong, Yang Jia-Min, Jin Feng-Tao, Zhang Lu, Ding Yong-Kun. Characteristics of emission spectroscopyof radiatively heated Al plasma. Acta Physica Sinica, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [15] Zhu Zhu-Qing, Wang Xiao-Lei. Experimental study on emission spectra of air plasma induced by femtosecond laser pulses. Acta Physica Sinica, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [16] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [17] Liu Li-Ying, Zhang Jia-Liang, Guo Qing-Chao, Wang De-Zhen. Diagnostics of the atmospheric pressure plasma jets for plasma enhanced chemical vapor deposition of polycrystalline silicon thin film. Acta Physica Sinica, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [18] Yi You-Gen, Tang Jing-Wu, Huang Du-Zhi. Theoretical calculations of X-ray spectra of Au plasma. Acta Physica Sinica, 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [19] Niu Tian-Ye, Cao Jin-Xiang, Liu Lei, Liu Jin-Ying, Wang Yan, Wang Liang, Lü You, Wang Ge, Zhu Ying. The techniques of single probe and emission spectroscopy diagnostics in low temperature argon plasmas. Acta Physica Sinica, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [20] Huang Song, Xin Yu, NingZhao-Yuan. Studies on C22 radical by optical emission spectroscopy in an induc tively-coupled CF44/CH44 plasma. Acta Physica Sinica, 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
Metrics
  • Abstract views:  9141
  • PDF Downloads:  146
  • Cited By: 0
Publishing process
  • Received Date:  14 January 2019
  • Accepted Date:  20 March 2019
  • Available Online:  01 May 2019
  • Published Online:  20 May 2019

/

返回文章
返回