-
An inactivation mechanism of A549 cancer cells is studied by using a dielectric barrier discharge (DBD) plasma needle. The influence of oxygen concentration, which is injected into helium plasma afterglow region through a stainless steel tube, is investigated. The neutral red uptake assay provides a qualitative observation of morphological differences between the dead cells and the viable cells after plasma treatment and a quantitative estimation of cell viability under different conditions. In the treatment process at a fixed power of 24 W, the inactivation efficiency of helium-oxygen plasma depends mainly on the exposure time and percentage of added oxygen in helium plasma. Experimental results show that the best parameters of the process are 150 s treatment time, 800 mL/min He with 3% O2 addition and separation of needle-to-sample 3 mm. According to the helium-oxygen emission spectra of the plasma jet, it is concluded that the reactive species (for example, OH and O) in the helium-oxygen plasma play a major role in the cell deactivation.
-
Keywords:
- helium-oxygen plasma needle /
- DBD /
- A549 cancer cells /
- optical emission spectra
[1] Laroussi M 2005 Plasma Process. Polym. 2 391
[2] Fridman G, Brooks A, Galasubramanian M 2007 Plasma Process. Polym. 4 370
[3] Deng X T, Shi J J, Kong M G 2006 IEEE Trans. Plasma Sci. 34 1310
[4] Fridman G, Friedman G, Gutsol A 2008 Plasma Process. Polym. 5 503
[5] Lee H W, Kim G J, Kim J M 2009 Endod J. 35 587
[6] Fridman G, Shereshevsky A, Jost M M 2007 Plasma Chem. Plasma Process. 27 163
[7] Zhang X H, Li M J, Zhou R L 2008 Appl. Phys. Lett. 93 021502
[8] Zhang X H, Huang J, Liu X D 2009 Acta Phys. Sin. 58 1595 (in Chinese) [张先徽, 黄骏, 刘筱娣 2009 物理学报 58 1595]
[9] Guillermo R, Ana D P, Jorge L Z 2008 Nature Protocols 3 1125
[10] Jacob A E, Hobbs S J 1974 J. Bacteriol. 117 360
[11] Andrade F J, Wetzel W C, Chan G C 2006 J. Anal. At. Spectrom. 21 1175
[12] Alvarez R, Quintero M C, Rodero A 2005 J. Phys. D 38 3768
[13] Naidis G V 1997 J. Phys. D 30 1214
[14] Leveille V, Coulombe S 2005 Plasma Sources Sci. Technol. 14 467
[15] Lee Y H, Yi C H, Chung M J 2001 Surf. Coat. Technol. 146-147 474
[16] Seo D C, Chung T H 2001 J. Phys. D 34 2854
[17] Dreher D, Junod A F 1996 Eur. J. Cancer 32A 30
[18] Halliwell B, Aruoma O I 1991 FEBS Lett. 281 9
-
[1] Laroussi M 2005 Plasma Process. Polym. 2 391
[2] Fridman G, Brooks A, Galasubramanian M 2007 Plasma Process. Polym. 4 370
[3] Deng X T, Shi J J, Kong M G 2006 IEEE Trans. Plasma Sci. 34 1310
[4] Fridman G, Friedman G, Gutsol A 2008 Plasma Process. Polym. 5 503
[5] Lee H W, Kim G J, Kim J M 2009 Endod J. 35 587
[6] Fridman G, Shereshevsky A, Jost M M 2007 Plasma Chem. Plasma Process. 27 163
[7] Zhang X H, Li M J, Zhou R L 2008 Appl. Phys. Lett. 93 021502
[8] Zhang X H, Huang J, Liu X D 2009 Acta Phys. Sin. 58 1595 (in Chinese) [张先徽, 黄骏, 刘筱娣 2009 物理学报 58 1595]
[9] Guillermo R, Ana D P, Jorge L Z 2008 Nature Protocols 3 1125
[10] Jacob A E, Hobbs S J 1974 J. Bacteriol. 117 360
[11] Andrade F J, Wetzel W C, Chan G C 2006 J. Anal. At. Spectrom. 21 1175
[12] Alvarez R, Quintero M C, Rodero A 2005 J. Phys. D 38 3768
[13] Naidis G V 1997 J. Phys. D 30 1214
[14] Leveille V, Coulombe S 2005 Plasma Sources Sci. Technol. 14 467
[15] Lee Y H, Yi C H, Chung M J 2001 Surf. Coat. Technol. 146-147 474
[16] Seo D C, Chung T H 2001 J. Phys. D 34 2854
[17] Dreher D, Junod A F 1996 Eur. J. Cancer 32A 30
[18] Halliwell B, Aruoma O I 1991 FEBS Lett. 281 9
Catalog
Metrics
- Abstract views: 8585
- PDF Downloads: 475
- Cited By: 0