Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The electron emission characteristics of GaAs photocathode with vacuum-channel structure

Hao Guang-Hui Han Pan-Yang Li Xing-Hui Li Ze-Peng Gao Yu-Juan

Citation:

The electron emission characteristics of GaAs photocathode with vacuum-channel structure

Hao Guang-Hui, Han Pan-Yang, Li Xing-Hui, Li Ze-Peng, Gao Yu-Juan
PDF
HTML
Get Citation
  • The photocathode was an ideal electronic source with fast response, centralized distribution of electronic capabilities, and many other advantages. But for its low emission current density and short lifetime at ion bombardment environment, it will not be used in power devices and large scientific devices. Although the emission current of the photocathode can be increased with the aid of electric filed, it was not reach the milliamperelevel. In the field emission cathode, the strong electric field can effectively reduce the surface barrier of the emitter, so that the cathode produces electron emission. Based on the photoelectric conversion mechanism of photocathode and the electron emission theory of field emission cathode, a vacuum channel structure photocathode module is designed. The cathode modules with GaAs substrate were fabricated by the peritoneal and etching process. The parameters of vacuum channel were 3 μm × 700 μm, and its array structure was 1 × 100. The deep of the vacuum channels were 400 nm. It can be seen from the test result, the emission current of the photocathode was 26.12 mA with the laser beam power 5 W, and its emission current density was 5.33 A/cm2. During cathode operation, the laser beam and emission will cause the temperature of the photocathode material to rise, and this could icreasing the conductivity of the GaAs, the efficiency of electron supplement from negative electrode to electron emission area of the GaAs will also be improving. Its emission current could reach 89.69 mA at 400 ℃. Because there is no active atom on the photocathode surface, its lifetime was longer than the traditional photocathode that astivated by Cs/O. The life test of the photocathode modules was carried out, its emission current was 4.5 mA ± 0.3 mA within the 144 h, and its performance was not attenuate significantly. The vacuum channel was the main area of the photocatode electron emission, and the shape of electron beam can be easily obtained by adjusting the structure of the vacuum channel parameters. This advantage can improve the applicability of high current density photocathode in vacuum electronic devices and equipment.
      Corresponding author: Hao Guang-Hui, hghhgh@126.com
    [1]

    Han J W, Oh J S, Meyyappan M 2012 Appl. Phys. Lett. 100 213505Google Scholar

    [2]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [3]

    Feng J J, Ren D P, Li H Y, Tang Y, Xing J Y 2011 Terahertz Sci. Technol. 4 164

    [4]

    Stepanov A G, Hebling J, Kuhl J 2003 Appl. Phys. Lett. 83 3000Google Scholar

    [5]

    Liu J F, Zhou Q L, Zhang C L 2013 Appl. Phys. Lett. 103 241911Google Scholar

    [6]

    Kim J, Kim J, Oh H, Meyyappan M, Han J W, Lee J S 2016 J. Vac. Sci. Technol. B 34 042201Google Scholar

    [7]

    Miao J S, Zhang S M, Cai L, Scherr M, Wang C 2015 Nano 9 9236

    [8]

    Kim M, Kim H K 2015 J. Appl. Phys. 118 104504Google Scholar

    [9]

    Gilad D, Er ez, Le eo 2008 Appl. Phys. Lett. 92 262903Google Scholar

    [10]

    Zhao J, Chang B K, XiongY J, Zhang JJ, Zhang Y J 2012 Opt. Commun. 285 589Google Scholar

    [11]

    张益军, 牛军, 赵静, 邹继军, 常本康 2011 物理学报 60 067301Google Scholar

    Zhang Y J, Niu J, Zhao J, Zou J J, Chang B K 2011 Acta Phys. Sin. 60 067301Google Scholar

    [12]

    Wang X H, Chang B K, Ren L, Gao P 2011 Appl. Phys. Lett. 98 082109Google Scholar

    [13]

    Zhang Y J, Zou J J, Niu J, Zhao J, Chang B K 2011 J. Appl. Phys. 110 063113Google Scholar

    [14]

    Hao G H, Yang M Z, Chang B K, Chen X L, Zhang J J, Fu X Q 2013 Appl. Opt. 52 5671Google Scholar

    [15]

    邹继军, 张益军, 杨智, 常本康 2011 物理学报 60 017902Google Scholar

    Zou J J, Zhang Y J, Yang Z, Chang B K 2011 Acta Phys. Sin. 60 017902Google Scholar

    [16]

    Takuya H, Lothar M, Andreas L, Peter D, Peter H 2015 Appl. Phys. Lett. 106 051109Google Scholar

    [17]

    Gys T 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 787 254Google Scholar

    [18]

    Chao Y C, Hu M C, Tsai W W, Zan H W, Meng H F, Tsai H K, Horng S F 2010 Appl. Phys. Lett. 97 223307Google Scholar

    [19]

    刘维浩, 张雅鑫, 胡旻, 周俊, 刘盛纲 2012 物理学报 61 127901Google Scholar

    Liu W H, Zhang Y X, Hu M, Zhou J, Liu S G 2012 Acta Phys. Sin. 61 127901Google Scholar

    [20]

    Hsu S H, Kang W P, Wisitsora-at A, Davidson J L 2012 Diamond Relat. Mater. 22 142Google Scholar

    [21]

    Hsu S H, Kang W P, Raina S, Howell M 2017 J. Vac. Sci. Technol. B 35 032201Google Scholar

  • 图 1  真空沟道结构光电阴极组件工作原理(1为负极, 2为阴极, 3为绝缘层, 4为栅极, 5为真空沟道)

    Figure 1.  Working principle of photocathode with vacuum channel. Symbol 1, 2, 3, 4 and 5 are negative electrode, photocathode material, insulation, grid electrode and vacuum channel, respectively.

    图 2  真空沟道结构显微形貌, 1为阴极, 2为栅极

    Figure 2.  Surface microtopography of vacuum channel structure. Symbol 1 and 2 are photocathode material grid electrode, respectively.

    图 3  不同功率的激光光束照射下光电阴极组件的直流发射特性

    Figure 3.  DC emission characteristics of photocathode module with different laser bean power.

    图 4  不同温度条件下光电阴极组件的直流发射特性

    Figure 4.  DC emission characteristics of photocathode module with different temperature.

    图 5  光电阴极组件寿命测试曲线

    Figure 5.  The lifetime test curve of photocathode module.

    图 6  长方形真空沟道结构光电阴极仿真模型, 1为阴极材料, 2为绝缘层, 3为栅极, 4为阳极

    Figure 6.  Simulation model of photocathode module with rectangular vacuum channel. Symbol 1, 2, 3 and 4 are photocathode material, insulation, grid electrode and positive electrode, respectively.

    图 7  长方形真空沟道结构阴极组件电子束中横向截面电子分布

    Figure 7.  Electronic distribution of lateral interface of photocathode module electron beam with rectangular vacuum channel.

    图 8  圆形真空沟道结构阴极组件电子发射特性仿真(a)结构模型; (b)横向截面中电子分布, 1为阴极材料, 2为绝缘层, 3为栅极

    Figure 8.  Simulation of electronic emission characteristics of photocathode module with circular vacuum channel: (a) Structure model; (b) electronic distribution of lateral interface. Symbol 1, 2 and 3 are photocathode material, insulation, and grid electrode, respectively.

  • [1]

    Han J W, Oh J S, Meyyappan M 2012 Appl. Phys. Lett. 100 213505Google Scholar

    [2]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [3]

    Feng J J, Ren D P, Li H Y, Tang Y, Xing J Y 2011 Terahertz Sci. Technol. 4 164

    [4]

    Stepanov A G, Hebling J, Kuhl J 2003 Appl. Phys. Lett. 83 3000Google Scholar

    [5]

    Liu J F, Zhou Q L, Zhang C L 2013 Appl. Phys. Lett. 103 241911Google Scholar

    [6]

    Kim J, Kim J, Oh H, Meyyappan M, Han J W, Lee J S 2016 J. Vac. Sci. Technol. B 34 042201Google Scholar

    [7]

    Miao J S, Zhang S M, Cai L, Scherr M, Wang C 2015 Nano 9 9236

    [8]

    Kim M, Kim H K 2015 J. Appl. Phys. 118 104504Google Scholar

    [9]

    Gilad D, Er ez, Le eo 2008 Appl. Phys. Lett. 92 262903Google Scholar

    [10]

    Zhao J, Chang B K, XiongY J, Zhang JJ, Zhang Y J 2012 Opt. Commun. 285 589Google Scholar

    [11]

    张益军, 牛军, 赵静, 邹继军, 常本康 2011 物理学报 60 067301Google Scholar

    Zhang Y J, Niu J, Zhao J, Zou J J, Chang B K 2011 Acta Phys. Sin. 60 067301Google Scholar

    [12]

    Wang X H, Chang B K, Ren L, Gao P 2011 Appl. Phys. Lett. 98 082109Google Scholar

    [13]

    Zhang Y J, Zou J J, Niu J, Zhao J, Chang B K 2011 J. Appl. Phys. 110 063113Google Scholar

    [14]

    Hao G H, Yang M Z, Chang B K, Chen X L, Zhang J J, Fu X Q 2013 Appl. Opt. 52 5671Google Scholar

    [15]

    邹继军, 张益军, 杨智, 常本康 2011 物理学报 60 017902Google Scholar

    Zou J J, Zhang Y J, Yang Z, Chang B K 2011 Acta Phys. Sin. 60 017902Google Scholar

    [16]

    Takuya H, Lothar M, Andreas L, Peter D, Peter H 2015 Appl. Phys. Lett. 106 051109Google Scholar

    [17]

    Gys T 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 787 254Google Scholar

    [18]

    Chao Y C, Hu M C, Tsai W W, Zan H W, Meng H F, Tsai H K, Horng S F 2010 Appl. Phys. Lett. 97 223307Google Scholar

    [19]

    刘维浩, 张雅鑫, 胡旻, 周俊, 刘盛纲 2012 物理学报 61 127901Google Scholar

    Liu W H, Zhang Y X, Hu M, Zhou J, Liu S G 2012 Acta Phys. Sin. 61 127901Google Scholar

    [20]

    Hsu S H, Kang W P, Wisitsora-at A, Davidson J L 2012 Diamond Relat. Mater. 22 142Google Scholar

    [21]

    Hsu S H, Kang W P, Raina S, Howell M 2017 J. Vac. Sci. Technol. B 35 032201Google Scholar

Metrics
  • Abstract views:  6248
  • PDF Downloads:  134
  • Cited By: 0
Publishing process
  • Received Date:  15 December 2019
  • Accepted Date:  09 March 2020
  • Published Online:  20 May 2020

/

返回文章
返回