-
In order to reduce the size of the device and realize the ultrafast response time and dynamic tunableness, the single-band and dual-band plasmon induced transparency (PIT) effect are investigated based on graphene nanoribbon waveguide side-coupled rectangle cavity. The slow light properties of the model are analyzed numerically and theoretically by coupled mode theory and finite difference time domain method. With controlling the chemical potential of the graphene rectangle cavity, the tunability of the resonant wavelength and the transmission peak can be achieved simultaneously in single-band and dual-band PIT model. As the chemical potential of graphene increases, the resonant wavelength of each transmission window of PIT effect decreases gradually and presents the blue shift. In addition, through dynamically tuning the resonant wavelength of the graphene rectangle cavity, when the chemical potential of the graphene rectangle cavity increases from 0.41 to 0.44 eV, the group index of single PIT system is controlled to be between 79.2 and 28.3, and the tunable bandwidth is 477 nm. Moreover, the group index of dual PIT system is controlled to be between 143.2 and 108.6 when the chemical potentials of graphene rectangle cavities 1, 2, and 3 are 0.39–0.42 eV, 0.40–0.43 eV, and 0.41–0.44 eV, respectively. The size of the entire PIT structure is <0.5 μm2. The research results here in this work are of reference significance in designing and fabricating the optical sensors, optical filters, slow light and light storage devices with ultrafast, ultracompact and dynamic tunableness.
-
Keywords:
- plasmon induced transparency /
- graphene /
- finite difference time domain /
- rectangle cavities
[1] Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar
[2] Liu J H, Yu Y F, Zhang Z M 2019 Opt. Express 27 15382Google Scholar
[3] Ziemkiewicz D, Slowik K, Zielinska-Raczynska S 2018 Opt. Lett. 43 490Google Scholar
[4] Neubert T J, Wehrhold M, Kaya N S, Balasubramanian K 2020 Nanotechnology 31 405201Google Scholar
[5] Li H J, Wang L L, Sun B, Huang Z R, Zhai X 2016 Plasmonics 11 87Google Scholar
[6] Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y, Xu K 2018 J. Phys. D:Appl. Phys. 51 055103Google Scholar
[7] Liu Y C, Li B B, Xiao Y F 2017 Nanophotonics 6 789Google Scholar
[8] Wang B Y, Zeng Q D, Xiao S Y, Xu C, Xiong L B, Lv H, Du J, Yu H Q 2017 J. Phys. D:Appl. Phys. 50 455107Google Scholar
[9] Xiong C X, Li H J, Xu H, Zhao M Z, Zhang B H, Liu C, Wu K 2019 Opt. Express 27 17718Google Scholar
[10] Han X, Wang T, Li X M, Zhu Y J 2015 J. Phys. D:Appl. Phys. 48 235102Google Scholar
[11] Xu H, Xiong C X, Chen Z Q, Zheng M F, Zhao M Z, Zhang B H, Li H J 2018 J. Opt. Soc. Am. B 35 1463Google Scholar
[12] Liu Z M, Zhang X 2020 New J. Phys. 22 083006Google Scholar
[13] Huang H L, Xia H, Guo Z B, Li H J, Xie D 2018 Opt. Commun. 424 163Google Scholar
[14] Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar
[15] Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598Google Scholar
[16] Cen H F, Wang F Q, Liang R S, Wei Z C, Meng H Y, Jiang L H, Dong H G, Qin S J, Wang L, Wang C L 2018 Opt. Commun. 420 78Google Scholar
[17] Qiu P P, Qiu W B, Lin Z L, Chen H B, Ren J B, Wang J X, Kan Q, Pan J Q 2017 Nanoscale Res. Lett. 12 374Google Scholar
[18] Sun C, Si J N, Dong Z W, Deng X X 2016 Opt. Express 24 11466Google Scholar
[19] Fan C Z, Jia Y L, Ren P W, Jia W 2021 J. Phys. D: Appl. Phys. 54 035107Google Scholar
[20] Li J B, Xiao X J, Tan Y, Guo Q Q, Liang S, Xiao S, Zhong H H, He M D, Liu L H, Luo J H, Chen L Q 2020 Opt. Express 28 3136Google Scholar
[21] Zhang T, Liu Q, Dan Y H, Yu S, Han X, Dai J, Xu K 2020 Opt. Express 28 18899Google Scholar
[22] Wang B Y, Zhu Y H, Zhang J, Zeng Q D, Du J, Wang T, Yu H Q 2020 Chin. Phys. B 29 377
[23] Karampitsos N, Kyrginas D, Couris S 2020 Opt. Lett. 45 1814Google Scholar
[24] Baudisch M, Marini A, Cox J D, Zhu T, Silva F, Teichmann S, Massicotte M, Koppens F, Levitov L S, Abajo F J G, Biegert J 2018 Nat. Commun. 9 1018Google Scholar
[25] Xiao B G, Zhu J F, Xiao L H 2020 Appl. Opt. 59 6041Google Scholar
[26] Xu H, Zhao M Z, Zheng M F, Xiong C X, Zhang B H, Peng Y Y, Li H J 2019 J. Phys. D:Appl. Phys. 52 025104Google Scholar
[27] 胡宝晶, 黄铭, 黎鹏, 杨晶晶 2020 物理学报 69 174201Google Scholar
Hu B J, Huang M, Li P, Yang J J 2020 Acta Phys. Sin. 69 174201Google Scholar
[28] Zhan S, Li H, Cao G, He Z, Li B, Yang H 2014 J. Phys. D:Appl. Phys. 47 205101Google Scholar
[29] Chen Z, Chen H, Yin J, Zhang R, Jile H, Xu D, Yi Z, Zhou Z, Cai S, Yan P 2021 Diamond Relat. Mater. 116 108393Google Scholar
[30] Chen Z, Chen H, Jile H, Xu D, Yi Z, Lei Y, Chen X, Zhou Z, Cai S, Li G 2021 Diamond Relat. Mater. 115 108374Google Scholar
[31] Jiang L, Yuan C, Li Z, Su J, Yi Z, Yao W, Wu P, Liu Z, Cheng S, Pan M 2021 Diamond Relat. Mater. 111 108227Google Scholar
-
表 1 PIT峰值波长处, 不同石墨烯矩形腔化学势、泵浦光强下的PIT系统最大群折射率
Table 1. The maximum group index of the PIT system under different chemical potentials of graphene rectangle cavities and pump light intensity at the peak wavelength of PIT.
调谐方式 相关参数 PIT系统最大群折射率 石墨烯化学势 EF1 = 0.39 eV, EF2 = 0.40 eV, EF3 = 0.41 eV 143.2 EF1 = 0.40 eV, EF2 = 0.41 eV, EF3 = 0.42 eV 127.3 EF1 = 0.41 eV, EF2 = 0.42 eV, EF3 = 0.43 eV 116.2 EF1 = 0.42 eV, EF2 = 0.43 eV, EF3 = 0.44 eV 108.6 泵浦光强 I = 11.7 MW·cm–2 14.5 [10] -
[1] Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar
[2] Liu J H, Yu Y F, Zhang Z M 2019 Opt. Express 27 15382Google Scholar
[3] Ziemkiewicz D, Slowik K, Zielinska-Raczynska S 2018 Opt. Lett. 43 490Google Scholar
[4] Neubert T J, Wehrhold M, Kaya N S, Balasubramanian K 2020 Nanotechnology 31 405201Google Scholar
[5] Li H J, Wang L L, Sun B, Huang Z R, Zhai X 2016 Plasmonics 11 87Google Scholar
[6] Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y, Xu K 2018 J. Phys. D:Appl. Phys. 51 055103Google Scholar
[7] Liu Y C, Li B B, Xiao Y F 2017 Nanophotonics 6 789Google Scholar
[8] Wang B Y, Zeng Q D, Xiao S Y, Xu C, Xiong L B, Lv H, Du J, Yu H Q 2017 J. Phys. D:Appl. Phys. 50 455107Google Scholar
[9] Xiong C X, Li H J, Xu H, Zhao M Z, Zhang B H, Liu C, Wu K 2019 Opt. Express 27 17718Google Scholar
[10] Han X, Wang T, Li X M, Zhu Y J 2015 J. Phys. D:Appl. Phys. 48 235102Google Scholar
[11] Xu H, Xiong C X, Chen Z Q, Zheng M F, Zhao M Z, Zhang B H, Li H J 2018 J. Opt. Soc. Am. B 35 1463Google Scholar
[12] Liu Z M, Zhang X 2020 New J. Phys. 22 083006Google Scholar
[13] Huang H L, Xia H, Guo Z B, Li H J, Xie D 2018 Opt. Commun. 424 163Google Scholar
[14] Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar
[15] Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598Google Scholar
[16] Cen H F, Wang F Q, Liang R S, Wei Z C, Meng H Y, Jiang L H, Dong H G, Qin S J, Wang L, Wang C L 2018 Opt. Commun. 420 78Google Scholar
[17] Qiu P P, Qiu W B, Lin Z L, Chen H B, Ren J B, Wang J X, Kan Q, Pan J Q 2017 Nanoscale Res. Lett. 12 374Google Scholar
[18] Sun C, Si J N, Dong Z W, Deng X X 2016 Opt. Express 24 11466Google Scholar
[19] Fan C Z, Jia Y L, Ren P W, Jia W 2021 J. Phys. D: Appl. Phys. 54 035107Google Scholar
[20] Li J B, Xiao X J, Tan Y, Guo Q Q, Liang S, Xiao S, Zhong H H, He M D, Liu L H, Luo J H, Chen L Q 2020 Opt. Express 28 3136Google Scholar
[21] Zhang T, Liu Q, Dan Y H, Yu S, Han X, Dai J, Xu K 2020 Opt. Express 28 18899Google Scholar
[22] Wang B Y, Zhu Y H, Zhang J, Zeng Q D, Du J, Wang T, Yu H Q 2020 Chin. Phys. B 29 377
[23] Karampitsos N, Kyrginas D, Couris S 2020 Opt. Lett. 45 1814Google Scholar
[24] Baudisch M, Marini A, Cox J D, Zhu T, Silva F, Teichmann S, Massicotte M, Koppens F, Levitov L S, Abajo F J G, Biegert J 2018 Nat. Commun. 9 1018Google Scholar
[25] Xiao B G, Zhu J F, Xiao L H 2020 Appl. Opt. 59 6041Google Scholar
[26] Xu H, Zhao M Z, Zheng M F, Xiong C X, Zhang B H, Peng Y Y, Li H J 2019 J. Phys. D:Appl. Phys. 52 025104Google Scholar
[27] 胡宝晶, 黄铭, 黎鹏, 杨晶晶 2020 物理学报 69 174201Google Scholar
Hu B J, Huang M, Li P, Yang J J 2020 Acta Phys. Sin. 69 174201Google Scholar
[28] Zhan S, Li H, Cao G, He Z, Li B, Yang H 2014 J. Phys. D:Appl. Phys. 47 205101Google Scholar
[29] Chen Z, Chen H, Yin J, Zhang R, Jile H, Xu D, Yi Z, Zhou Z, Cai S, Yan P 2021 Diamond Relat. Mater. 116 108393Google Scholar
[30] Chen Z, Chen H, Jile H, Xu D, Yi Z, Lei Y, Chen X, Zhou Z, Cai S, Li G 2021 Diamond Relat. Mater. 115 108374Google Scholar
[31] Jiang L, Yuan C, Li Z, Su J, Yi Z, Yao W, Wu P, Liu Z, Cheng S, Pan M 2021 Diamond Relat. Mater. 111 108227Google Scholar
Catalog
Metrics
- Abstract views: 4513
- PDF Downloads: 108
- Cited By: 0