-
In recent years, graphene has received wide attention due to its excellent optoelectronic properties and has been applied to transparent electrodes of light-emitting diodes to replace the scarce and expensive indium antimony oxide (ITO), which is a typical current spreading layer in lateral GaN LED. However, there are some problems in graphene transparent electrode, such as the mismatch between graphene work function and p-GaN work function, and difficult-to-form good Ohmic contact with p-GaN, resulting in poor current expansion and high voltage of devices. In this paper, a thin ITO layer is used as an insertion layer between a three-layer graphene transparent electrode and and p-GaN, thereby improving the Ohmic contact between them. And a three-layer graphene/ITO composite transparent electrode LED is prepared and also compared with the pristine three-layer graphene LED. The thickness of ITO is only 50 nm, which is much thinner than the thickness of ITO in conventional LED. The sheet resistance of the prepared three-layer pristine graphene transparent electrode is 252.6
$ \Omega/\Box $ , and the sheet resistance of the three-layer graphene/ITO composite transparent electrode is reduced to 70.1$ \Omega/\Box $ . The specific contact resistance between the three-layer pristine graphene transparent electrode and the p-GaN layer is 1.92 × 10–2 Ω·cm2, after the ITO being inserted, the specific resistance is reduced to 1.01 × 10–4 Ω·cm2. Based on the three-layer graphene transparent electrode LED, the forward voltage is 4.84 V at an injection current of 20 mA, while the forward voltage of the three-layer graphene/ITO composite transparent electrode LED is reduced to 2.80 V; under small currents, the ideal factor of the three-layer graphene/ITO composite transparent electrode LED is less than that of the three-layer graphene transparent electrode LED. In addition, with the current increasing, the luminous intensity of the three-layer graphene/ITO composite transparent electrode LED increases, so does the radiant flux, which is because the addition of the ITO thin layer reduces the barrier height at the interface between the three layers of graphene and p-GaN, and the sheet resistance of the composite transparent electrode is also reduced, thereby improving the Ohmic contact between graphene and p-GaN. At the same time, the current spread is more uniform. The composite transparent electrode uses the much less ITO and obtains better optoelectronic performance, and thus providing a feasible solution for the LED transparent electrode.[1] Dupuis R D, Krames M R 2008 J. Lighwave Technol. 26 1154Google Scholar
[2] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar
[3] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 物理学报 68 158505Google Scholar
Li Z C, Chen Z M, Zou G R X, Ye X L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar
[4] Kim B J, Yang G, Kim H Y, Baik K H, Mastro M A, Hite J K, Eddy C R, Ren F, Pearton S J, Kim J 2013 Opt. Express 21 29025Google Scholar
[5] Lee J M, Jeong H Y, Choi K J, Park W 2011 Appl. Phys. Lett. 99 41115Google Scholar
[6] Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611Google Scholar
[7] 蒲晓庆, 吴静, 郭强, 蔡建臻 2018 物理学报 67 217301Google Scholar
Pu X Q, Wu J, Guo Q, Cai J Z 2018 Acta Phys. Sin. 67 217301Google Scholar
[8] Seo T H, Kim S J, Kim M J, Kim H S, Suh E K 2014 J. Phys. D: Appl. Phys. 47 215103Google Scholar
[9] Wu C, Liu F, Liu B, Zhuang Z, Dai J P, Tao T, Zhang G, Xie Z L, Wang X R, Zhang R 2015 Solid State Electron. 109 47Google Scholar
[10] Xun K, Xie Y Y, Ma H L, Du Y X, Zeng F G, Ding P, Gao Z Y, Xu C, Sun J 2016 Solid State Electron. 126 5Google Scholar
[11] Youn D H, Yu Y J, Chio H K, Kim S K, Chio S Y, Chio C G 2013 Nanotechnology 24 075202Google Scholar
[12] Xu K, Xu C, Deng J, Zhu Y X, Guo W L, Mao M M, Zheng L Sun J 2013 Appl. Phys. Lett. 102 162102Google Scholar
[13] 甄聪棉, 李秀玲, 潘成福, 聂向富, 王印月 2005 大学物理 06 10Google Scholar
Zhen C M, Li X L, Pan C F, Nie C F, Wang Y Y 2005 College Phys. 06 10Google Scholar
[14] 马新宇, 陈茜, 廖杨芳, 肖清泉, 陈庆, 姚紫祎, 谢泉 2017 低温物理学报 39 16Google Scholar
Ma X Y, Chen X, Liao Y F, Xiao Q Q, Chen Q, Yao Z W, Xie Q 2017 Low Temp. Phys. Lett. 39 16Google Scholar
[15] 严光明, 李成, 汤梦饶, 黄诗浩, 王尘, 卢卫芳, 黄巍, 赖虹凯, 陈松岩 2013 物理学报 62 167304Google Scholar
Yan G M, Li C, Tang M R, Huang S H, Wang C, Lu W F, Huang W, Lai H K, Chen S Y 2013 Acta Phys. Sin. 62 167304Google Scholar
[16] 吴鼎芬, 颜本达 1989 金属-半导体界面欧姆接触的原理、测试与工艺 (上海: 上海交通大学出版社) 第36−39页
Wu D F, Yang B D 1989 Principle, Test and Process of Ohmic Contact at Metal-semiconductor Interface (Shanghai: Shanghai Jiaotong University Press) pp36−39 (in Chinese)
[17] Hao Y, Marc S, Tom S, Erik R, Koen M, Steven D, Naoto H, Kathy B, Nadine C, Kristin D M 2015 IEEE Electron Device Lett. 36 1Google Scholar
[18] Shah J M, Li Y L, Gessmann T, Schubert E F 2003 J. Appl. Phys. 94 2627Google Scholar
[19] 刘建朋, 朱彦旭, 郭伟玲, 闫微微, 吴国庆 2012 物理学报 61 137303Google Scholar
Liu J P, Zhu Y X, Guo W L, Yang W W, Wu G Q 2012 Acta Phys. Sin. 61 137303Google Scholar
[20] Guo X, Schubert E F 2001 Appl. Phys. Lett. 78 3337Google Scholar
[21] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 物理学报 68 148103Google Scholar
Wu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103Google Scholar
-
图 1 制备的LED器件的结构示意图 (a)石墨烯透明电极LED I; (b)石墨烯/ITO复合透明电极LED II; (c)湿法转移石墨烯的光学显微镜图(左侧阴影部分为石墨烯, 右侧为ITO)
Figure 1. Schematic diagram of the prepared LED device: (a) Graphene transparent electrode LED I; (b) graphene/ITO composite transparent electrode LED II; (c) optical micrograph of wet transfer graphene (graphene on the left and ITO on the right).
表 1 复合透明电极方块电阻及其与p-GaN比接触电阻率的测量结果
Table 1. Composite transparent electrode sheet resistance and its measurement results of contact resistivity with p-GaN.
透明电极类型 方块电阻 比接触电阻率 $R_{\rm sh}/ \Omega\cdot\Box^{-1}$ ρc/Ω·cm2 石墨烯 252.6 1.92 × 10–2 石墨烯/ITO 70.1 1.01 × 10–4 -
[1] Dupuis R D, Krames M R 2008 J. Lighwave Technol. 26 1154Google Scholar
[2] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar
[3] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 物理学报 68 158505Google Scholar
Li Z C, Chen Z M, Zou G R X, Ye X L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar
[4] Kim B J, Yang G, Kim H Y, Baik K H, Mastro M A, Hite J K, Eddy C R, Ren F, Pearton S J, Kim J 2013 Opt. Express 21 29025Google Scholar
[5] Lee J M, Jeong H Y, Choi K J, Park W 2011 Appl. Phys. Lett. 99 41115Google Scholar
[6] Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611Google Scholar
[7] 蒲晓庆, 吴静, 郭强, 蔡建臻 2018 物理学报 67 217301Google Scholar
Pu X Q, Wu J, Guo Q, Cai J Z 2018 Acta Phys. Sin. 67 217301Google Scholar
[8] Seo T H, Kim S J, Kim M J, Kim H S, Suh E K 2014 J. Phys. D: Appl. Phys. 47 215103Google Scholar
[9] Wu C, Liu F, Liu B, Zhuang Z, Dai J P, Tao T, Zhang G, Xie Z L, Wang X R, Zhang R 2015 Solid State Electron. 109 47Google Scholar
[10] Xun K, Xie Y Y, Ma H L, Du Y X, Zeng F G, Ding P, Gao Z Y, Xu C, Sun J 2016 Solid State Electron. 126 5Google Scholar
[11] Youn D H, Yu Y J, Chio H K, Kim S K, Chio S Y, Chio C G 2013 Nanotechnology 24 075202Google Scholar
[12] Xu K, Xu C, Deng J, Zhu Y X, Guo W L, Mao M M, Zheng L Sun J 2013 Appl. Phys. Lett. 102 162102Google Scholar
[13] 甄聪棉, 李秀玲, 潘成福, 聂向富, 王印月 2005 大学物理 06 10Google Scholar
Zhen C M, Li X L, Pan C F, Nie C F, Wang Y Y 2005 College Phys. 06 10Google Scholar
[14] 马新宇, 陈茜, 廖杨芳, 肖清泉, 陈庆, 姚紫祎, 谢泉 2017 低温物理学报 39 16Google Scholar
Ma X Y, Chen X, Liao Y F, Xiao Q Q, Chen Q, Yao Z W, Xie Q 2017 Low Temp. Phys. Lett. 39 16Google Scholar
[15] 严光明, 李成, 汤梦饶, 黄诗浩, 王尘, 卢卫芳, 黄巍, 赖虹凯, 陈松岩 2013 物理学报 62 167304Google Scholar
Yan G M, Li C, Tang M R, Huang S H, Wang C, Lu W F, Huang W, Lai H K, Chen S Y 2013 Acta Phys. Sin. 62 167304Google Scholar
[16] 吴鼎芬, 颜本达 1989 金属-半导体界面欧姆接触的原理、测试与工艺 (上海: 上海交通大学出版社) 第36−39页
Wu D F, Yang B D 1989 Principle, Test and Process of Ohmic Contact at Metal-semiconductor Interface (Shanghai: Shanghai Jiaotong University Press) pp36−39 (in Chinese)
[17] Hao Y, Marc S, Tom S, Erik R, Koen M, Steven D, Naoto H, Kathy B, Nadine C, Kristin D M 2015 IEEE Electron Device Lett. 36 1Google Scholar
[18] Shah J M, Li Y L, Gessmann T, Schubert E F 2003 J. Appl. Phys. 94 2627Google Scholar
[19] 刘建朋, 朱彦旭, 郭伟玲, 闫微微, 吴国庆 2012 物理学报 61 137303Google Scholar
Liu J P, Zhu Y X, Guo W L, Yang W W, Wu G Q 2012 Acta Phys. Sin. 61 137303Google Scholar
[20] Guo X, Schubert E F 2001 Appl. Phys. Lett. 78 3337Google Scholar
[21] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 物理学报 68 148103Google Scholar
Wu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103Google Scholar
Catalog
Metrics
- Abstract views: 11145
- PDF Downloads: 120
- Cited By: 0